首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Volcanic Sedimentary Complex (VSC) of the Iberian Pyrite Belt (IPB) in southern Portugal and Spain, comprises an Upper Devonian to Lower Carboniferous submarine succession with a variety of felsic volcanic lithofacies. The architecture of the felsic volcanic centres includes felsic lavas/domes, pyroclastic units, intrusions and minor mafic units that define lava–cryptodome–pumice cone volcanoes. The diversity of volcanic lithofacies recognized in different areas of the IPB mainly reflects variations in proximity to source, but also differences in the eruption style. The IPB volcanoes are intrabasinal, range in length from 2 km to > 8 km and their thickest sections vary from ∼ 400 m to > 800 m. These volcanoes are dominated by felsic lavas/domes that occur at several stratigraphic positions within the volcanic centre, however the pyroclastic units are also abundant and are spatially related to the lavas/domes. The intrusions are minor, and define cryptodomes and partly-extrusive cryptodomes. The hydrothermal systems that formed the Neves Corvo and Lousal massive sulfide ore deposits are associated with effusive units of felsic volcanic centres. At Neves Corvo, the massive sulfide orebodies are associated to rhyolitic lavas that overlie relatively thick fiamme-rich pyroclastic unit. In several other locations within the belt, pyroclastic units contain sulfide clasts that may have been derived from yet to be discovered coeval massive sulfide deposits at or below the sea floor, which enhances the exploration potential of these pyroclastic units and demonstrates the need for volcanic facies analysis in exploration.  相似文献   

2.
Current models for unconformity‐associated uranium deposits predict fluid flow and ore deposition along reactivated faults in >1.76 Ga basement beneath Mesoproterozoic siliciclastic basins. In frontier regions such as the Thelon Basin in the Kivalliq region of Nunavut, little is known about the sub‐basin distribution of units and structures, making exploration targeting very tenuous. We constructed a geological map of the basement beneath the unconformity by extrapolating exposed features into the subsurface. The new map is constrained by detailed geological, geophysical, and rock property observations of outcrops adjacent to the basin and by aeromagnetic and gravity data over the geophysically transparent sedimentary basin. From rock property measurements, it is clear that the diverse magnetic and density characteristics of major rock packages provide quantitative three‐dimensional constraints. Gravity profiles forward modelled in four cross sections define broad synforms of the Amer Belt and Archean volcanic rocks that are consistent with the structural style outside the basin. Major lithotectonic entities beneath the unconformity include: supracrustal rocks of the Archean Woodburn Lake group and Marjorie Hills meta sedimentary gneiss and associated mixed granitoid and amphibolitic gneiss; the Amer Mylonite Zone and inferred mafic intrusions oriented parallel and sub‐parallel; other igneous intrusions of 2.6 Ga, 1.83 Ga, and 1.75 Ga vintage; and the <2.3 Ga to >1.84 Ga Amer Group. Four main brittle regional fault arrays (040°–060°, 075°–90°, 120°, and 150°) controlled development and preservation of the basin. The reactivated intersections of such faults along fertile basement units such as the Rumble assemblage, Marjorie Hills assemblage, Nueltin igneous rocks, and Pitz formation are the best targets for uranium exploration.  相似文献   

3.
A positive gravity anomaly, anomalous seismic structure, and abnormally high reduced heat flow occur in a possible extension of the Rio Grande rift in southern New Mexico. The reduced heat flux is explained by the transient effects of basaltic intrusions with dimensions based on interpretations from gravity and seismic data. Ages of volcanic activity in the rift area are used to determine times of thermal events. The effect of latent heat and sharp boundaries of the reduced heat flow anomaly also restrict modeling. The thermal model consists of three intrusions at the base of the crust at 35 m.y., 10 m.y. and 5 m.y. The initial temperatures of these intrusions would differ from those in the surrounding crust and upper mantle by about +800°C, +800°C, and +600°C, respectively. The 35-m.y. intrusion is consistent with Oligocene volcanism and tectonic activity in southwestern New Mexico. This mass also contributes to the Bouguer gravity high in the rift area, as do the intrusions at 10 and 5 m.y. The intrusions at 10 and 5 m.y. explain the excess reduced flux, with the 5-m.y. pulse accounting for most of the curvature in the sharp boundaries of the anomaly. The idealized model is consistent with late Tertiary andesites, the periods of little extrusive activity, and Pliocene-Quaternary basalts in the rift area.  相似文献   

4.
A semi-detailed gravity survey was carried out over an area of 650 km2 localized in the Eo-Neoproterozoic coastal zone of Paraiba State where 548 new gravity stations were added to the existing database. Gravity measurements were made with a LaCoste and Romberg model G meter with a precision of 0.04 mGal. The altitude was determined by barometric levelling with a fixed base achieving a 1.2 m measure of uncertainty, corresponding to an overall accuracy of 0.24 mGal for the Bouguer anomaly. The residual Bouguer map for a 7th degree regional polynomial showed a circumscribed negative anomaly coincident with a localized aero-magnetic anomaly and with hydro-thermally altered outcrops, near the city of Itapororoca. The 3D gravity modelling, constrained by geologic mapping was interpreted as a low density, fractured and/or altered material with a most probable volume of approximately 23 km3, extending to about 8,500 m depth. This result is in accordance with a volcanic body associated with hydrothermal processes accompanied by surface mineralization evidence, which may be of interest to the mining industry.  相似文献   

5.
Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive εNd values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high ε values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation and of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic “oceanic” crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high εNd values of the Archean upper mantle. Using oceanic crustal production proportional to heat productivity, we show that temporary storage in the mantle of that crust, whether basaltic as formed by 5–20% partial melting, or partly komatiitic and formed by higher extents of melting is sufficient to balance an early depleted mantle of significant volume with εNd at least +3.0.  相似文献   

6.
The oldest known bona fide succession of clastic metasediments occurs in the Isua Greenstone Belt, SW Greenland and consists of a variety of mica schists and rare metaconglomerates. The metasediments are in direct contact with a felsic metavolcanic lithology that has previously been dated to 3.71 Ga. Based on trace element geochemical data for > 30 metasediments, we selected the six samples with highest Zr concentrations for zircon extraction. These samples all yielded very few or no zircon. Those extracted from mica schists yielded ion probe U/Pb ages between 3.70 and 3.71 Ga. One metaconglomerate sample yielded just a single zircon of 3.74 Ga age.The mica schist hosted zircons have U/Pb ages, Th / U ratios, REE patterns and Eu anomalies indistinguishable from zircon in the adjacent 3.71 Ga felsic metavolcanic unit. Trace element modelling requires the bulk of material in the metasediments to be derived from variably weathered mafic lithologies but some metasediments contain substantial contribution from more evolved source lithologies. The paucity of zircon in the mica schists is thus explained by incorporation of material from largely zircon-free volcanic lithologies. The absence of older zircon in the mica schists and the preponderance of mafic source material imply intense, mainly basaltic resurfacing of the early Earth. The implications of this process are discussed.Thermal considerations suggest that horizontal growth of Hadean crust by addition of mafic-ultramafic lavas must have triggered self-reorganisation of the protocrust by remelting. Reworking of Hadean crust may have been aided by burial of hydrated (weathered) metabasalt due to semi-continuous addition of new voluminous basalt outpourings. This process causes a bias towards eruption of Zr-saturated partial melts at the surface with O-isotope compositions potentially different from the mantle. The oldest zircons hosted in sediments would have been buried to substantial depth or formed in plutons that crystallised at some depth, from which it took hundreds of millions of years for them to be exhumed and incorporated into much younger sediments.  相似文献   

7.
UPb geochronology provides an absolute time framework for the evolution of the Sigma gold deposit and surrounding rocks at Val d'Or, southern Abitibi subprovince. The Bourlamaque batholith, the largest pluton in the area, gives a 2699.8 ± 1.0 Ma UPb zircon age. This pluton cuts the Val d'Or Formation which hosts the mineralization. A UPb zircon age of 2704.9 ± 1.1 Ma on a felsic volcanic rock, the Colombière “rhyolite”, 13 km east of the mine dates that formation. The gold-bearing quartz vein system at Sigma is hosted by andesites and two generations of porphyry intrusions, all metamorphosed to the greenschist facies. The oldest porphyry (“porphyritic diorite”) shows the same deformation as the volcanic rocks, and has a 2703.7 ± 2.5 Ma UPb zircon age. The porphyritic diorite and volcanic rocks are cut by feldspar-porphyry dykes which post-date regional folding and have a 2694.0 ± 2.2 Ma UPb zircon age.Regional greenschist metamorphism has been dated directly, with a UPb date of 2684 ± 7 Ma on rutile in the Colombière “rhyolite”. The mineralization and hydrothermal alteration in the mine are superimposed on the metamorphic minerals. Hydrothermal rutile, from an alteration halo around the veins in andesite, has a 2599 ± 9 Ma UPb age. Textural evidence clearly indicates that the wall-rock alteration and vein filling are contemporaneous, and hence the vein system and gold mineralization appear to have developed at least 80 m.y. after the formation and metamorphism of host greenstones.  相似文献   

8.
The Beldih open cast mine of the South Purulia Shear Zone in Eastern India is well known for apatite deposits associated with Nb–rare‐earth‐element–uranium mineralization within steeply dipping, altered ferruginous kaolinite and quartz–magnetite–apatite rocks with E–W strikes at the contact of altered mafic–ultramafic and granite/quartzite rocks. A detailed geophysical study using gravity, magnetic, and gradient resistivity profiling surveys has been carried out over ~1 km2 area surrounding the Beldih mine to investigate further the dip, depth, lateral extension, and associated geophysical signatures of the uranium mineralization in the environs of South Purulia Shear Zone. The high‐to‐low transition zone on the northern part and high‐to‐low anomaly patches on the southeastern and southwestern parts of the Bouguer, reduced‐to‐pole magnetic, and trend‐surface‐separated residual gravity–magnetic anomaly maps indicate the possibility of highly altered zone(s) on the northern, southeastern, and southwestern parts of the Beldih mine. The gradient resistivity survey on either side of the mine has also revealed the correlation of low‐resistivity anomalies with low‐gravity and moderately high magnetic anomalies. In particular, the anomalies and modeled subsurface features along profile P6 perfectly match with subsurface geology and uranium mineralization at depth. Two‐dimensional and three‐dimensional residual gravity models along P6 depict the presence of highly altered vertical sheet of low‐density material up to a depth of ~200 m. The drilling results along the same profile confirm the continuation of uranium mineralization zone for the low‐density material. This not only validates the findings of the gravity model but also establishes the geophysical signatures for uranium mineralization as low‐gravity, moderate‐to‐high magnetic, and low‐resistivity values in this region. This study enhances the scope of further integrated geophysical investigations along the South Purulia Shear Zone to delineate suitable target areas for uranium exploration.  相似文献   

9.
Recent field and geochemical studies indicate a need to test the stratigraphy of the ca. 3.5 Ga Barberton Greenstone Belt as it is presently adopted [1,2]. This work uses the ion microprobe SHRIMP, to attempt such a test. Results show that: (1) Volcaniclastic sediments of the Theespruit Formation (< 3453 ± 6Ma) could be younger than the (structurally) overlying mafic and ultramafic volcanics of the Komati Formation (3482 ± 5Ma). A major structural discontinuity may therefore exist between the two formations. (2) An age of 3538 ± 6Ma established for a tectonic wedge of tonalitic gneiss within the Theespruit Formation confirms the presence of a sialic basement and deformed unconformity below that unit. The tonalitic gneiss is the oldest unit yet recorded within the greenstone belt, equal in age to the older components of the adjacent Ancient Gneiss Complex. (3) The interpreted ages of felsic volcanic rocks from both the Hooggenoeg (3445 ± 8Ma) and Theespruit Formations and the nearby Theespruit Pluton (3437 ± 6Ma) are essentially the same, and corroborate field and geochemical evidence that the felsic units were probably cogenetic and emplaced simultaneously as high-level equivalents of trondjhemite-tonalite plutons that intrude the greenstone belt at its southwestern extremity. (4) Felsic-intermediate volcanic-volcaniclastic rocks locally separating the two major groups (the Fig Tree and Moodies Groups) which overlie the Onverwacht Group record a second major peak of tonalitic magmatism in the Barberton terrain at about 3250 Ma. This is close to the age of the Kaap Valley tonalite pluton which intrudes the Barberton Greenstone Belt at ca. 3226 Ma along its northwestern margin. The present results indicate the Barberton Greenstone Belt is part of an allochthonous sequence containing major tectonic and stratigraphic breaks, with a protracted history; of which the last 200 million years, at least, evolved within a tectonically active convergent environment.  相似文献   

10.
A Bouguer gravity anomaly map is presented of the North Sea and adjacent land areas in Norway and Denmark, covering an area situated between 56° and 62°N, 1°W and 10°E. The gravity data from the UK sector of the North Sea, the land and offshore areas of Denmark, and the land areas of Norway have been published before. However, the gravity data from the Norwegian sector of the North Sea are new. A large number (about 60) of individual gravity features can be defined in the mapped area. Most of those situated in the UK sector of the North Sea and on land in Norway have been discussed earlier; however, most of the anomalies found elsewhere which are qualitatively interpreted here have not been discussed before. An interpreted Bouguer anomaly map is presented which identifies all these features. The majority of the gravity anomalies encountered in the mapped area can be shown to be associated with one of the following geological features: (i) basement highs, (ii) large bodies of heavy basic or ultrabasic rock in the crystalline basement, (iii) large igneous intrusions within the sedimentary column and thick accumulations of volcanic rocks or their associated eruption centers, (iv) major basement faults. Large-scale geological structures such as the Central, Viking and Sogn Grabens and the East Shetland, Stord, Forth Approaches and Norwegian-Danish Basins are essentially in isostatic equilibrium and are only locally marked by relatively weak gravity minima. A residual gravity anomaly map has been produced by subtracting from the observed Bouguer anomalies the estimated gravity effect of an assumed thinned crust. This residual gravity anomaly map shows a number of features of the Bouguer anomaly field with greater clarity.  相似文献   

11.
Studies of late Tertiary silicic volcanic centres in the Western and Eastern Cordilleras of the Central Andes show that three volcanic environments are appropriate sites for mineralization: (1) ring-fracture extrusions post-dating large calderas; (2) similar extrusions within ignimbrite shields; and (3) isolated, small silicic volcanoes. Subvolcanic tin mineralization in the Eastern Cordillera is located in silicic stocks and associated breccias of Miocene age. The Cerro Rico stock, Potosi, Bolivia, contains tin and silver mineralization and has an intrusion age apparently millions of years younger than that of the associated Kari Kari caldera. Similar age relationships between mineralization and caldera formation have been described from the San Juan province, Colorado. The vein deposits of Chocaya, southern Bolivia, were emplaced in the lower part of an ignimbrite shield, a type of volcanic edifice as yet unrecognized in comparable areas of silicic volcanism. The El Salvador porphyry copper deposit, Chile, is related to silicic stocks which may have been intruded along a caldera ring fracture. Cerro Bonete, Chile, provides a modern example of the volcanic superstructure which may have overlain isolated mineralized stocks and breccia pipes such as that of Salvadora at Llallagua, Bolivia.Existing models for the genesis of porphyry copper deposits suggest that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. Sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit was probably an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile suggests that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano.The dome of La Soufriere, Guadeloupe is proposed as a modern analog for the surface expression of subvolcanic mineralization processes, the phreatic eruptions there suggesting the formation of hydrothermal breccia bodies in depth. Occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that intrusions and mineralization are not genetically related to the sub-caldera pluton, but may be a consequence of the long thermal histories (1–10 million years) of the lowermost parts of large plutons. Caldera formation can only inhibit mineralization by dispersal of ore metals when these are of magmatic origin, and ignimbrites should not be taken as being unlikely to be associated with porphyry mineralization. Whether ore metals are of wall rock or magmatic origin, the key to understanding the relationships between silicic volcanism and mineralization lies in the fractionation of trace elements within large zoned magma chambers during their igneous history, and their subsequent hydrothermal migration. Small, highly mineralized intrusions formed late in a caldera cycle (such as the Cerro Rico) may be due to the introduction of fresh supplies of mafic magma into the lower parts of the main pluton.  相似文献   

12.
As the core block of the East Gondwana Land, the East Antarctic Shield was traditionally thought, before 1992, as an amalgamation of a number of Archaean-Paleoproterozoic nuclei, be-ing welded by Grenville aged mobile belts during 1400—900 Ma, while the …  相似文献   

13.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   

14.
The disposition and petrology of a fractionated alkali olivine basalt—peralkaline rhyolite suite from subantarctic Campbell Island are discussed. These rocks (Campbell Island Volcanics: new name) are flows and high-level intrusions derived from two centres of igneous activity. Their age is Upper Miocene and they evolved over a period of 5 Ma. A gabbro intrusion pre-dates volcanism by 5 Ma. The ages of the flows and high-level intrusions cannot be separated, although the intrusions are chemically distinct as they contain all the intermediate members of the suite (mugearite and benmoreite). Similar La/Ce and Zr/Nb ratios for flows and high-level intrusions suggest a co-magmatic origin. Chemical variations indicate that the suite resulted from low-pressure mafic then felsic-dominated fractional crystallisation, which is substantiated for intermediate members of the suite by least-squares and Rayleigh fractionation modelling. One flow of alkali olivine basalt clearly pre-dates other volcanic rocks, and is thus regarded as being genetically unrelated.Although chemically similar to alkali olivine basalt and hawaiite, variations in the mineral chemistry and modal mineralogy of gabbro indicates a prolonged period of in-situ fractionation and re-equilibration.  相似文献   

15.
依据EIGEN-6C4重力模型和ETOPO1高程模型数据,围绕新疆精河6.6级地震展开岩石圈均衡与挠曲机理研究,得到如下结论:(1)震中附近的布格与自由空气重力异常分别为-221和-92mGal(10~(-5 )m·s~(-2)),震中位于重力异常高梯度带上;(2)震中周边地区地壳厚度约为50km,密度结构总体变化平缓,东西方向地壳厚度变化较小,但自南向北地壳厚度逐渐变薄,精河6.6级地震初始破裂发生在上中地壳分界面附近;(3)震中附近岩石圈承载的垂向构造应力为20MPa左右,震中位于岩石圈垂向构造应力极大值附近的高梯度带上;(4)地震周边地区岩石圈有效弹性厚度最优解为26km,加载比最优解为F_1=1,F_2=F_3=0,表明该区域岩石圈相对坚硬,且导致岩石圈变形的初始加载全部来自地表.  相似文献   

16.
结合1992—1994年的重力变化资料和1988—1991年的水准资料,运用遗传有限元方法计算西安地区的重力变化和对应的地层密度变化,然后计算重力变化梯度场进一步分析西安地区重力变化的原因。结果表明,过量抽取承压地下水引起承压水位下降、黏土层释水压密和两者共同作用导致的地面沉降是西安地区的重力变化的主要原因。大部分地区承压含水层系统中黏土层的压密产生正的剩余地层密度,而在如小寨、铁炉庙区的局部区域,抽取潜水导致潜水位下降、水体流失是产生负的地层密度变化的主要原因,但不排除其与地裂缝活动相关的可能性  相似文献   

17.
The Galilee study area, northern Israel, is at present an uplifted, steep continental margin that formed mainly during the Jurassic and has a large positive isostatic anomaly. Since the Jurassic, it was modified by several tectonomagmatic events, which this study attempts to define and classify by updating, reprocessing and reinterpreting gravity, aeromagnetic and geological data. The prominent Rehovot-Carmel N–S positive reduced-to-pole (RTP) magnetic anomaly caused by the Gevim Volcanics, as well as the coexisting Helez-Gaash high Bouguer gravity and the Pleshet low Bouguer gravity, represent the deep (>5 km) Permo-Triassic dominant horst and graben structure of Israel. The Jonah Ridge and Beirut high SW–NE RTP magnetic anomalies in the Levant basin delineate the Levant continental edge that is marked by a deeply buried horst covered by a Late Cretaceous volcanic complex. The Asher and Devora Jurassic volcanics appear to be responcible for the Atlit and Galilee negative magnetic anomalies and for significant negative gravity anomalies which became clear after removing gravity effect of the upper (post-Turonian) light density sediments from the observed gravity. The volcanics extend along a SW–NE belt parallel to the strike of the Moho. It is suggested here that the Carmel-Gilboa fault propagated during the Late Cretaceous from the Levant basin across the Galilee area southeastward to form the Azraq-Sirhan graben in Jordan. As such, it forms a right-step, en echelon, dextral strike-slip fault with associated tectonic basins of various shapes. During the Oligocene and before formation of the Dead Sea transform (DST), the reactivation of the Azraq-Sirhan graben was accompanied by tectonic driven rift propagation in the opposite direction, from Azraq-Sirhan to northwest. It dispersed into many faults and terminated ∼10 km west of the present DST. During the Miocene it propagated in the same direction and includes internal volcanic activity. The numerous Miocene-Pliocene volcanic centers on the margins of the DST indicate that the preferred pathway for magmas at that time was not within the deep basins of the DST.  相似文献   

18.
Lengshuiqing is part of the late Proterozoic igneous province from the western margin of the Yangtze craton. The Lengshuiqing area comprises five ultramafic–mafic intrusions, emplaced in the late Proterozoic Yanbian Group. The intrusions from Lengshuiqing contain cumulate ultramafic zones (peridotite + olivine pyroxenite), with cumulus olivine and Cr-spinel, and intercumulus pyroxenes, hornblende, phlogopite and plagioclase. Ni–Cu ore (pyrrhotite + pentlandite + chalcopyrite) is hosted in the ultramafic zones. Olivine-free diorite–quartz diorite ± gabbro and granite zones commonly occur above the ultramafic rocks. The genesis of the intrusions (conduit-related accumulation or differentiation from stagnant magma) was investigated. The amount of sulphides in the intrusions from Lengshuiqing is one order of magnitude bigger than the sulphides that can be dissolved by a volume of mafic magma similar with the volume of the intrusions. Most intrusions from Lengshuiqing have bulk composition (peridotite ± diorite ± granite) more magnesian (MgO = 21–22%; Mg# > 78) than the deduced composition of their parental magma (MgO = 9–11%; Mg# = 64–67). This indicates the accumulation of sulphide and mafic silicates from a volume of magma much bigger than the volume of the intrusions, which can be explained by the fractionation from magma ascending through the intrusions to shallower depths. A continuous supply and vent of magma is consistent with the lack of chilled margins, the melting of the wall rocks and the generation of high-temperature mineral assemblages (K-feldspar, diopside, and sillimanite) in the Yanbian Group. The intrusions from Lengshuiqing are seen as microchambers on conduits draining olivine-, Cr-spinel-, and sulphide-bearing mafic magma from a larger staging chamber.  相似文献   

19.
Igneous intrusions, notably carbonatitic–alkalic intrusions, peralkaline intrusions, and pegmatites, represent significant sources of rare‐earth metals. Geophysical exploration for and of such intrusions has met with considerable success. Examples of the application of the gravity, magnetic, and radiometric methods in the search for rare metals are presented and described. Ground gravity surveys defining small positive gravity anomalies helped outline the shape and depth of the Nechalacho (formerly Lake) deposit within the Blatchford Lake alkaline complex, Northwest Territories, and of spodumene‐rich mineralization associated with the Tanco deposit, Manitoba, within the hosting Tanco pegmatite. Based on density considerations, the bastnaesite‐bearing main ore body within the Mountain Pass carbonatite, California, should produce a gravity high similar in amplitude to those associated with the Nechalacho and Tanco deposits. Gravity also has utility in modelling hosting carbonatite intrusions, such as the Mount Weld intrusion, Western Australia, and Elk Creek intrusion, Nebraska. The magnetic method is probably the most successful geophysical technique for locating carbonatitic–alkalic host intrusions, which are typically characterized by intense positive, circular to sub‐circular, crescentic, or annular anomalies. Intrusions found by this technique include the Mount Weld carbonatite and the Misery Lake alkali complex, Quebec. Two potential carbonatitic–alkalic intrusions are proposed in the Grenville Province of Eastern Quebec, where application of an automatic technique to locate circular magnetic anomalies identified several examples. Two in particular displayed strong similarities in magnetic pattern to anomalies accompanying known carbonatitic or alkalic intrusions hosting rare‐metal mineralization and are proposed to have a similar origin. Discovery of carbonatitic–alkalic hosts of rare metals has also been achieved by the radiometric method. The Thor Lake group of rare‐earth metal deposits, which includes the Nechalacho deposit, were found by follow‐up investigations of strong equivalent thorium and uranium peaks defined by an airborne survey. Prominent linear radiometric anomalies associated with glacial till in the Canadian Shield have provided vectors based on ice flow directions to source intrusions. The Allan Lake carbonatite in the Grenville Province of Ontario is one such intrusion found by this method. Although not discovered by its radiometric characteristics, the Strange Lake alkali intrusion on the Quebec–Labrador border is associated with prominent linear thorium and uranium anomalies extending at least 50 km down ice from the intrusion. Radiometric exploration of rare metals hosted by pegmatites is evaluated through examination of radiometric signatures of peraluminous pegmatitic granites in the area of the Tanco pegmatite.  相似文献   

20.
An equivalent layer magnetization model obtained from inversion of long-wavelength satellite magnetic anomaly data indicates a very magnetic source region centered in south central Kentucky. The magnetization maximum nearly coincides with a gravity high elongated north-south and extending into Tennessee. Previous refraction profiles suggest that the source of the gravity anomaly is a large mass of rock occupying much of the crustal thickness. The outline of the source delineated by gravity contours is also discernible in aeromagnetic anomaly patterns. Taken together, the geophysical data suggest a large, localized mass of intracrustal rock which is both dense and very magnetic. A simple magnetization/density model is given which accounts for the gravity and long-wavelength aeromagnetic anomalies due to the body. We interpret it as a mafic plutonic complex, and several lines of evidence are consistent with a rift association. The body is, however, clearly related to the inferred position of the Grenville Front. It is bounded on the north by the fault zones of the 38th Parallel Lineament. The inferred mean magnetization (4 A/m) of the body is large, but not inconsistent with values reported by others for deep crustal bodies associated with long-wavelength magnetic anomalies. Such magnetization levels can be achieved with magnetic mineralogies produced by normal oxidation and metamorphic processes and enhanced by viscous build-up, especially in mafic rocks of alkaline character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号