首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Compositional Zoning of the Bishop Tuff   总被引:14,自引:0,他引:14  
Compositional data for >400 pumice clasts, organized accordingto eruptive sequence, crystal content, and texture, providenew perspectives on eruption and pre-eruptive evolution of the>600 km3 of zoned rhyolitic magma ejected as the Bishop Tuffduring formation of Long Valley caldera. Proportions and compositionsof different pumice types are given for each ignimbrite packageand for the intercalated plinian pumice-fall layers that eruptedsynchronously. Although withdrawal of the zoned magma was lesssystematic than previously realized, the overall sequence displaystrends toward greater proportions of less evolved pumice, morecrystals (0·5–24 wt %), and higher FeTi-oxide temperatures(714–818°C). No significant hiatus took place duringthe 6 day eruption of the Bishop Tuff, nearly all of which issuedfrom an integrated, zoned, unitary reservoir. Shortly beforeeruption, however, the zoned melt-dominant portion of the chamberwas invaded by batches of disparate lower-silica rhyolite magma,poorer in crystals than most of the resident magma but slightlyhotter and richer in Ba, Sr, and Ti. Interaction with residentmagma at the deepest levels tapped promoted growth of Ti-richrims on quartz, Ba-rich rims on sanidine, and entrapment ofnear-rim melt inclusions relatively enriched in Ba and CO2.Varied amounts of mingling, even in higher parts of the chamber,led to the dark gray and swirly crystal-poor pumices sparselypresent in all ash-flow packages. As shown by FeTi-oxide geothermometry,the zoned rhyolitic chamber was hottest where crystal-richest,rendering any model of solidification fronts at the walls orroof unlikely. The main compositional gradient (75–195ppm Rb; 0·8–2·2 ppm Ta; 71–154 ppmZr; 0·40–1·73% FeO*) existed in the melt,prior to crystallization of the phenocryst suite observed, whichincluded zircon as much as 100 kyr older than the eruption.The compositions of crystals, though themselves largely unzoned,generally reflect magma temperature and the bulk compositionalgradient, implying both that few crystals settled or were transportedfar and that the observed crystals contributed little to establishingthat gradient. Upward increases in aqueous gas and dissolvedwater, combined with the adiabatic gradient (for the 5 km depthrange tapped) and the roofward decline in liquidus temperatureof the zoned melt, prevented significant crystallization againstthe roof, consistent with dominance of crystal-poor magma earlyin the eruption and lack of any roof-rind fragments among theBishop ejecta, before or after onset of caldera collapse. Amodel of secular incremental zoning is advanced wherein numerousbatches of crystal-poor melt were released from a mush zone(many kilometers thick) that floored the accumulating rhyoliticmelt-rich body. Each batch rose to its own appropriate levelin the melt-buoyancy gradient, which was self-sustaining againstwholesale convective re-homogenization, while the thick mushzone below buffered it against disruption by the deeper (non-rhyolitic)recharge that augmented the mush zone and thermally sustainedthe whole magma chamber. Crystal–melt fractionation wasthe dominant zoning process, but it took place not principallyin the shallow melt-rich body but mostly in the pluton-scalemush zone before and during batchwise melt extraction. KEY WORDS: Bishop Tuff; ignimbrite; magma zonation; mush model; rhyolite  相似文献   

2.
The petrology of five phenocryst-poor (2–5%) andesites and dacites, all of which were erupted from different short-lived, monogenetic vents, is compared to that of phenocryst-rich (10–25%) andesites erupted from the adjacent stratovolcano, Volcán Tequila, in the Mexican arc. Despite differences in phenocryst abundances, these magmas have comparable phase assemblages (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), and similarly wide variations in phenocryst compositions, coupled to complex zoning patterns. For the phenocryst-poor lavas, equilibrium pairs of two Fe–Ti oxides lead to a narrow range of calculated temperatures for each sample that range from 934 (±24) to 1,073 (±6)°C and oxygen fugacities that range from +0.1 to +0.7 log units relative to the Ni–NiO buffer. Application of the plagioclase-liquid hygrometer to each sample at these calculated temperatures leads to maximum melt water concentrations of 4.6–3.1 wt% during plagioclase crystallization, indicating that the magmas were fluid saturated at depths ≥6.4–4.5 km. There is a wide, continuous range in the composition of plagioclase (≤44 mol% An) and orthopyroxene (≤16% Mg#) phenocrysts in each sample, which is consistent with a loss of dissolved water (≤2.8 wt%) from the melt phase during degassing as the magmas ascended rapidly to the surface. Evidence is presented that shows the effect of dissolved water is to reduce the activity of MgO relative to FeO in the melt phase, which indicates that degassing will also affect the Mg# of pyroxene phenocrysts, with higher melt water concentrations favoring Fe-rich pyroxene. Both plagioclase and orthopyroxene commonly display diffusion-limited growth textures (e.g., skeletal and hopper crystals, large interior melt hollows, and swallow tails), which are consistent with large undercoolings produced by degassing-induced crystallization. Therefore, degassing is proposed as a possible cause for the phenocryst compositional diversity documented in the phenocryst-poor andesite and dacite lavas erupted from peripheral vents, including the coexistence of normally zoned plagioclase and reversely zoned orthopyroxene. Degassing-induced crystallization may also explain some of the phenocryst complexity in crystal-rich andesites erupted from large stratovolcanoes, including Volcán Tequila.  相似文献   

3.
More than ca 100 km3 of nearly homogeneous crystal-poor phonolite and ca 100 km3 of slightly zoned trachyte were erupted 39 ka during the Campanian Ignimbrite super eruption, the most powerful in the Neapolitan area. Partition coefficient calculations, equilibrium mineral assemblages, glass compositions and texture were used to reconstruct compositional, thermal and pressure gradients in the pre-eruptive reservoir as well as timing and mechanisms of evolution towards magma chamber overpressure and eruption. Our petrologic data indicate that a wide sill-like trachytic magma chamber was active under the Campanian Plain at 2.5 kbar before CI eruption. Thermal exchange between high liquidus (1199°C) trachytic sill and cool country rocks caused intense undercooling, driving a catastrophic and fast (102 years) in situ fractional crystallization and crustal assimilation that produced a water oversaturated phonolitic cap and an overpressure in the chamber that triggered the super eruption. This process culminated in an abrupt reservoir opening and in a fast single-step high decompression. Sanidine phenocrysts crystal size distributions reveal high differentiation rate, thus suggesting that such a sill-like magmatic system is capable of evolving in a very short time and erupting suddenly with only short-term warning.  相似文献   

4.
We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe–Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10–15 kyr before the eruption. The mush top was quartz-bearing and as shallow as ~3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of ~840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of ~790 °C, reflecting rapid cooling from the ~840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3–5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic magmas with the mush and melt-dominant body. However, the mafic magmas do not appear to have triggered the eruption or controlled magmatic temperatures in the erupted rhyolite. Integration of textural and compositional data from all available crystal types, across all dominant and subordinate magmatic components, allow the history of the Oruanui magma body to be reconstructed over a wide range of temporal scales using multiple techniques. This history spans the tens of millennia required to grow the parental magma system (U–Th disequilibrium dating in zircon), through the centuries and decades required to assemble the eruptible magma body (textural and diffusion modelling in orthopyroxene), to the months, days, hours and minutes over which individual phases of the eruption occurred, identified through field observations tied to diffusion modelling in magnetite, olivine, quartz and feldspar. Tectonic processes, rather than any inherent characteristics of the magmatic system, were a principal factor acting to drive the rapid accumulation of magma and control its release episodically during the eruption. This work highlights the richness of information that can be gained by integrating multiple lines of petrologic evidence into a holistic timeline of field-verifiable processes.  相似文献   

5.
S. Signorelli  B. Capaccioni   《Lithos》1999,46(4):171-730
This study deals with the distribution of chlorine in glassy mesostases and whole-pumices from the 79 A.D. Plinian eruption (Somma–Vesuvius volcanic complex, Italy). This explosive event produced a prominent Plinian fall deposit followed by flows and surges. The fall deposit can be divided into two sub-units on the basis of an abrupt change in colour at approximately mid-level: a phonolitic white pumice layer at the base and a tephriphonolitic grey pumice layer at the top. Due to its hybrid nature (a mixture of k-tephritic, tephriphonolitic and phonolitic magmas), information on chlorine behaviour in tephriphonolitic magma has been inferred only by means of mass balance calculations. In the white pumices, chlorine concentrations show constant whole-pumice values, whereas glassy mesostases display significant compositional variations. These variations have been linked to the cryptocrystallisation of leucite in glassy mesostases, which affected the original melt compositions just before and during the eruptive event. In this framework, whole-pumice appears to better represent the pre-eruptive melt compositions. Using chlorine concentration in whole-pumices, a three-stage model of chlorine behaviour prior and during the eruptive event is predicted: (i) free variation during Rayleigh fractionation, according to a system with variance greater than zero; (ii) exsolution of volatile chlorine compounds (e.g., metal chlorides), when chlorine reaches its solubility limit in silicate melt, in coexisting hyper-saline and in dilute immiscible fluids; the variance of the system is zero at a given temperature and pressure; (iii) residual syn-eruptive variable enrichment of chlorine in the melt due to cryptocrystallization of leucite, suggesting a very minor loss of chlorine in the gas phase during the eruption. Although chlorine does not behave as a volatile element during the eruption, it is present in the volcanic plume. This is due to the postulated ‘excess' fluid phase containing chlorine that formed in the magma chamber prior to the eruption. The homogeneous distribution of chlorine in whole pumices, in contrast with a well-established chemical and isotopic layering in Vesuvian magmas prior to Pompei eruption, suggests that the trace element zonation is not directly linked to chlorine distribution in silicic melts.  相似文献   

6.
Deposits of the 22.6 ka Okareka Eruption Episode from Tarawera Volcanic Complex record the sequential and simultaneous eruption of three discrete rhyolite magmas following a silicic recharge event related to basaltic intrusion. The episode started with basaltic eruption ( 0.01 km3 magma), and rapidly changed to a plinian eruption involving a moderate temperature (750 °C), cummingtonite-bearing rhyolite magma (T1) with a volume of  0.3 km3. Hybrid basalt/rhyolite clasts demonstrate direct basaltic intrusion that helped trigger the eruption. Crystals, shards and lapilli of two other rhyolite magmas then joined the eruption sequence. They comprise a cooler (720 °C) crystal-rich biotite–hornblende rhyolite magma (T2) ( 0.3 km3), and a hotter (780 °C), crystal-poor, pyroxene–hornblende rhyolite magma (T3) ( 4.5 km3). All mid to late-stage ash units contain various mixtures of T1, T2 and T3 components with a general increase in abundance of T3 and rapid decline of T1 with time. About 4 km3 of T3 magma was extruded as lavas at the end of the episode. Contrasts in melt composition, crystal and volatile contents, and temperatures influenced viscosity and miscibility, and thus limited pre-eruption mixing of the rhyolite magmas. The eruption sequence and the restricted direct basaltic intrusion into only one magma (T1) is consistent with the rhyolites occupying separate melt pods within a large crystal-mush zone. Melt–crystal equilibria and volatile contents in melt inclusions indicate temporary magma storage depths of < 8 km. Each of the magmas display quartz crystals containing melt inclusions that are compositionally highly evolved relative to the accompanying matrix glass, and thus point to a stage of more complete crystallisation. The matrix glass, enriched in Sr and Ti, represents a re-melting event of underlying the crystal pile induced by basaltic intrusion, presumably part of the same event that erupted scoria at the start of the eruption. This recharge rhyolite melt percolated upward and hybridised with the resident melts in each of the three magma pods. The Okareka episode rhyolites contrast with other well-documented rhyolites that are either continuously or discontinuously zoned, or have been homogenised during re-activation to a uniform composition. Rapid basalt dike intrusion to shallow levels appears to have (prematurely?) triggered the Okareka rhyolites into eruption, so that their early ponding in separate melt pods has been recorded before it could be masked by mixing or stratification had amalgamation into a larger body occurred.  相似文献   

7.
The composition of S-rich apatite, of volatile-rich glass inclusions in apatite, and of interstitial glasses in alkaline xenoliths from the 1949 basanite eruption in La Palma has been investigated to constrain the partitioning of volatiles between apatite and alkali-rich melts. The xenoliths are interpreted as cumulates from alkaline La Palma magmas. Apatite contains up to 0.89 wt% SO3 (3560 ppm S), 0.31 wt% Cl, and 0.66 wt% Ce2O3. Sulfur is incorporated in apatite via several independent exchange reactions involving (P5+, Ca2+) vs. (S6+, Si4+, Na+, and Ce3+). The concentration of halogens in phonolitic to trachytic glasses ranges from 0.15 to 0.44 wt% for Cl and from <0.07 to 0.65 wt% for F. The sulfur concentration in the glasses ranges from 0.06 to 0.23 wt% SO3 (sulfate-saturated systems). The chlorine partition coefficients (DClapatite/glass) range from 0.4 to 1.3 (average DClapatite/glass = 0.8), in good agreement with the results of experimental data in mafic and rhyolitic system with low Cl concentrations. With increasing F in glass inclusions DFapatite/glass decreases from 35 to 3. However, most of our data display a high partition coefficient (~30) close to DFapatite/glass determined experimentally in felsic rock. DSapatite/glass decreases from 9.1 to 2.9 with increasing SO3 in glass inclusions. The combination of natural and experimental data reveals that the S partition coefficient tends toward a value of 2 for high S content in the glass (>0.2 wt% SO3). DSapatite/glass is only slightly dependent on the melt composition and can be expressed as: SO3 apatite (wt%) = 0.157 * ln SO3 glass (wt%) + 0.9834. The phonolitic compositions of glass inclusions in amphibole and haüyne are very similar to evolved melts erupted on La Palma. The lower sulfur content and the higher Cl content in the phonolitic melt compared to basaltic magmas erupted in La Palma suggest that during magma evolution the crystallization of haüyne and pyrrhotite probably buffered the sulfur content of the melt, whereas the evolution of Cl concentration reflects an incompatible behavior. Trachytic compositions similar to those of the (water-rich) glass inclusions analyzed in apatite and clinopyroxene are not found as erupted products. These compositions are interpreted to be formed by the reaction between water-rich phonolitic melt and peridotite wall-rock.  相似文献   

8.
The ~1,000 km3 Carpenter Ridge Tuff (CRT), erupted at 27.55 Ma during the mid-tertiary ignimbrite flare-up in the western USA, is among the largest known strongly zoned ash-flow tuffs. It consists primarily of densely welded crystal-poor rhyolite with a pronounced, highly evolved chemical signature (high Rb/Sr, low Ba, Zr, Eu), but thickly ponded intracaldera CRT is capped by a more crystal-rich, less silicic facies. In the outflow ignimbrite, this upper zone is defined mainly by densely welded crystal-rich juvenile clasts of trachydacite composition, with higher Fe–Ti oxide temperatures, and is characterized by extremely high Ba (to 7,500 ppm), Zr, Sr, and positive Eu anomalies. Rare mafic clasts (51–53 wt% SiO2) with Ba contents to 4,000–5,000 ppm and positive Eu anomalies are also present. Much of the major and trace-element variations in the CRT juvenile clasts can be reproduced via in situ differentiation by interstitial melt extraction from a crystal-rich, upper-crustal mush zone, with the trachydacite, crystal-rich clasts representing the remobilized crystal cumulate left behind by the melt extraction process. Late recharge events, represented by the rare mafic clasts and high-Al amphiboles in some samples, mixed in with parts of the crystal cumulate and generated additional scatter in the whole-rock data. Recharge was important in thermally remobilizing the silicic crystal cumulate by partially melting the near-solidus phases, as supported by: (1) ubiquitous wormy/sieve textures and reverse zoning patterns in feldspars and biotites, (2) absence of quartz in this very silicic unit stored at depths of >4–5 km, and (3) heterogeneous melt compositions in the trachydacite fiamme and mafic clasts, particularly in Ba, indicating local enrichment of this element due mostly to sanidine and biotite melting. The injection of hot, juvenile magma into the upper-crustal cumulate also imparted the observed thermal gradient to the deposits and the mixing overprint that partly masks the in situ differentiation process. The CRT provides a particularly clear perspective on processes of in situ crystal-liquid separation into a lower crystal-rich zone and an upper eruptible cap, which appears common in incrementally built upper-crustal magma reservoirs of high-flux magmatic provinces.  相似文献   

9.
The Bandas del Sur Formation preserves a Quaternary extra-calderarecord of central phonolitic explosive volcanism of the LasCañadas volcano at Tenerife. Volcanic rocks are bimodalin composition, being predominantly phonolitic pyroclastic deposits,several eruptions of which resulted in summit caldera collapse,alkali basaltic lavas erupted from many fissures around theflanks. For the pyroclastic deposits, there is a broad rangeof pumice glass compositions from phonotephrite to phonolite.The phonolite pyroclastic deposits are also characterized bya diverse, 7–8-phase phenocryst assemblage (alkali feldspar+ biotite + sodian diopside + titanomagnetite + ilmenite + nosean–haüyne+ titanite + apatite) with alkali feldspar dominant, in contrastto interbedded phonolite lavas that typically have lower phenocrystcontents and lack hydrous phases. Petrological and geochemicaldata are consistent with fractional crystallization (involvingthe observed phenocryst assemblages) as the dominant processin the development of phonolite magmas. New stratigraphicallyconstrained data indicate that petrological and geochemicaldifferences exist between pyroclastic deposits of the last twoexplosive cycles of phonolitic volcanism. Cycle 2 (0·85–0·57Ma) pyroclastic fall deposits commonly show a cryptic compositionalzonation indicating that several eruptions tapped chemically,and probably thermally stratified magma systems. Evidence formagma mixing is most widespread in the pyroclastic depositsof Cycle 3 (0·37–0·17 Ma), which includesthe presence of reversely and normally zoned phenocrysts, quenchedmafic glass blebs in pumice, banded pumice, and bimodal to polymodalphenocryst compositional populations. Syn-eruptive mixing eventsinvolved mostly phonolite and tephriphonolite magmas, whereasa pre-eruptive mixing event involving basaltic magma is recordedin several banded pumice-bearing ignimbrites of Cycle 3. Theperiodic addition and mixing of basaltic magma ultimately mayhave triggered several eruptions. Recharge and underplatingby basaltic magma is interpreted to have elevated sulphur contents(occurring as an exsolved gas phase) in the capping phonoliticmagma reservoir. This promoted nosean–haüyne crystallizationover nepheline, elevated SO3 contents in apatite, and possiblyresulted in large, climatologically important SO2 emissions. KEY WORDS: Tenerife; phonolite; crystal fractionation; magma mixing; sulphur-rich explosive eruptions  相似文献   

10.
Piston-cylinder experiments on a Pleistocene adakite from Mindanao in the Philippines have been used to establish near-liquidus and sub-liquidus phase relationships relevant to conditions in the East Philippines subduction zone. The experimental starting material belongs to a consanguineous suite of adakitic andesites. Experiments were conducted at pressures from 0.5 to 2 GPa and temperatures from 950 to 1,150°C. With 5 wt. % of dissolved H2O in the starting mix, garnet, clinopyroxene and orthopyroxene are liquidus phases at pressures above 1.5 GPa, whereas clinopyroxene and orthopyroxene are liquidus (or near-liquidus) phases at pressures <1.5 GPa. Although amphibole is not a liquidus phase under any of the conditions examined, it is stable under sub-liquidus conditions at temperature ≤1,050°C and pressures up to 1.5 GPa. When combined with petrographic observations and bulk rock chemical data for the Mindanao adakites, these findings are consistent with polybaric fractionation that initially involved garnet (at pressures >1.5 GPa) and subsequently involved the lower pressure fractionation of amphibole, plagioclase and subordinate clinopyroxene. Thus, the distinctive Y and HREE depletions of the andesitic adakites (which distinguish them from associated non-adakitic andesites) must be established relatively early in the fractionation process. Our experiments show that this early fractionation must have occurred at pressures >1.5 GPa and, thus, deeper than the Mindanao Moho. Published thermal models of the Philippine Sea Plate preclude a direct origin by melting of the subducting ocean crust. Thus, our results favour a model whereby basaltic arc melt underwent high-pressure crystal fractionation while stalled beneath immature arc lithosphere. This produced residual magma of adakitic character which underwent further fractionation at relatively low (i.e. crustal) pressures before being erupted.  相似文献   

11.
The melt inclusion record from the rhyolitic Kos Plateau Tuff (Aegean Arc)   总被引:1,自引:1,他引:0  
The >60 km3 rhyolitic Kos Plateau Tuff provides an exceptional probe into the behavior of volatile components in highly evolved arc magmas: it is crystal-rich (30–40 vol% crystals), was rapidly quenched by the explosive eruptive process, and contains abundant homogeneous melt inclusions in large quartz crystals. Several methods for measuring major, trace and volatile element concentrations (SIMS, FTIR, Raman spectroscopy, electron microprobe, LA–ICPMS) were applied to these melt inclusions. We found a ~2 wt% range of H2O contents (4.5–6.5 wt% H2O, measured independently by SIMS, FTIR, and Raman spectroscopy) and relatively low CO2 concentrations (15–140 ppm measured by FTIR, with most analyses <100 ppm). No obvious correlations between H2O, CO2, major and trace elements are observed. These observations require a complex, protracted magma evolution in the upper crust that included: (1) vapor-saturated crystallization in a chamber located between 1.5 and 2.5 kb pressure, (2) closed-system degassing (with up to 10 vol% exsolved gas) as melts percolated upwards through a vertically extensive mush zone (2–4 km thick), and (3) periodic gas fluxing from subjacent, more mafic and more CO2-rich magma, which is preserved as andesite bands in pumices. These processes can account for the range of observed H2O and CO2 values and the lack of correlation between volatiles and trace elements in the melt inclusions.  相似文献   

12.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

13.
The gas and fluid transport in magmas via permeable flow through interconnected bubble networks controls the rate of outgassing from magmas ascending in volcanic conduits and the fluid transport in the mushy boundary layer of magma reservoirs. Hence, clarifying its mechanism and rate is crucial to understanding the explosivity of volcanic eruptions and the evolution and dynamics of a magma reservoir. Recent experimental studies have determined the gas permeabilities in crystal-free rhyolite and basalt. However, no experimental study has investigated the effect of the crystal contents on the permeable gas transport in magmas. In this study, we performed decompression experiments for hydrous rhyolitic melts having crystallinities of 30 and 50 vol% to examine the effect of crystals on the bubble microstructure and gas permeability during magma vesiculation. Size-controlled (100-meshed) corundum crystals were used as an analog of the phenocrysts in silicic magmas. Microstructural analyses using X-ray CT showed that bubbles coalesce and their connectivity increases with a decrease in the final pressure after the decompression, that is, an increase in the vesicularity. As long as the vesicularities of melt part in the crystal-free basis (melt vesicularity) were similar, no clear effect of the crystallinity on the degree of bubble coalescence and connectivity was observed at melt vesicularities <68 vol%. The corundum showed a large contact angle with aqueous fluid as well as plagioclase and alkaline feldspar; this failed to induce the efficient heterogeneous nucleation and coalescence of bubbles on its surface. The gas permeabilities of all the run products were lower than the detection limits of the present analysis (the order of 10−16 m2) at melt vesicularities <68 vol%. These results show that silicic magmas containing 30 and 50 vol% phenocrysts with a large contact angle have low gas permeabilities until the vesicularity becomes large (at least >68 vol%). This result indicates that the permeable fluid transport through a deep volcanic conduit, which has been proposed on the basis of the observations of volcanic gases and natural products, is so slow that other processes, like shear deformation or magma convection, may be needed to explain the observations.  相似文献   

14.
The solubility of sulphur in sulphide-saturated, H2O-bearing basaltic–andesitic and basaltic melts from Hekla volcano (Iceland) has been determined experimentally at 1,050°C, 300 and 200 MPa, and redox conditions with oxygen fugacity (logfO2) between QFM−1.2 and QFM+1.1 (QFM is a quartz–fayalite–magnetite oxygen buffer) in the systems containing various amounts of S and H2O. The S content of the H2O-rich glasses saturated with pyrrhotite decreases from 2,500 ppm in basalt to 1,500 ppm in basaltic andesite at the investigated conditions. Furthermore, the reduction of water content in the melt at pyrrhotite saturation and fixed T, P and redox conditions leads to a decrease in S concentration from 2,500 to 1,400 ppm for basaltic experiments (for H2O decrease from 7.8 to 1.4 wt%) and from 1,500 to 900 ppm (for H2O decrease from 6.7 to 1.7 wt%) for basaltic andesitic experiments. Our experimental data, combined with silicate melt inclusion investigations and the available models on sulphide saturation in mafic magmas, indicate that the parental basaltic melts of Hekla were not saturated with respect to sulphide. During magmatic differentiation, the S content in the residual melts increased and might have reached sulphide saturation with 2,500 ppm dissolved S. With further magma crystallization, the S concentration in the melt was controlled by the sulphide saturation of the magma, decreasing from ~2,500 to 900 ppm S.  相似文献   

15.
Multiple eruptions of silicic magma (dacite and rhyolites) occurred over the last ~3 My in the Kos-Nisyros volcanic center (eastern Aegean sea). During this period, magmas have changed from hornblende-biotite-rich units with low eruption temperatures (≤750–800°C; Kefalos and Kos dacites and rhyolites) to hotter, pyroxene-bearing units (>800–850°C; Nisyros rhyodacites) and are transitioning back to cooler magmas (Yali rhyolites). New whole-rock compositions, mineral chemistry, and zircon Hf isotopes show that these three types of silicic magmas followed the same differentiation trend: they all evolved by crystal fractionation and minor crustal assimilation (AFC) from parents with intermediate compositions characterized by high Sr/Y and low Nb content, following a wet, high oxygen fugacity liquid line of descent typical of subduction zones. As the transition between the Kos-Kefalos and Nisyros-type magmas occurred immediately and abruptly after the major caldera collapse in the area (the 161 ka Kos Plateau Tuff; KPT), we suggest that the efficient emptying of the magma chamber during the KPT drew out most of the eruptible, volatile-charged magma and partly solidified the unerupted mush zone in the upper crust due to rapid unloading, decompression, and coincident crystallization. Subsequently, the system reestablished a shallow silicic production zone from more mafic parents, recharged from the mid to lower crust. The first silicic eruptions evolving from these parents after the caldera collapse (Nisyros units) were hotter (up to >100°C) than the caldera-forming event and erupted from reservoirs characterized by different mineral proportions (more plagioclase and less amphibole). We interpret such a change as a reflection of slightly drier conditions in the magmatic column after the caldera collapse due to the decompression event. With time, the upper crustal intermediate mush progressively transitioned into the cold-wet state that prevailed during the Kefalos-Kos stage. The recent eruptions of the high-SiO2 rhyolite on Yali Island, which are low temperature and hydrous phases (sanidine, quartz, biotite), suggest that another large, potentially explosive magma chamber is presently building under the Kos-Nisyros volcanic center.  相似文献   

16.
The 14.1 Ma composite welded ignimbrite P1 (45 km3 DRE) on Gran Canaria is compositionally zoned from a felsic lower part to a basaltic top. It is composed of four component magmas mixed in vertically varying proportions: (1) Na-rhyolite (10 km3) zoned from crystal-poor to highly phyric; (2) a continuously zoned, evolved trachyte to sodic trachyandesite magma group (6 km3); (3) a minor fraction of Na-poor trachyandesite (<1 km3); and (4) nearly aphyric basalt (26 km3) zoned from 4.3 to 5.2 wt% MgO. We distinguish three sites and phases of mixing: (a) Mutual mineral inclusions show that mixing between trachytic and rhyolitic magmas occurred during early stages of their intratelluric crystallization, providing evidence for long-term residence in a common reservoir prior to eruption. This first phase of mixing was retarded by increasing viscosity of the rhyolite magma upon massive anorthoclase precipitation and accumulation. (b) All component magmas probably erupted through a ring-fissure from a common upper-crustal reservoir into which the basalt intruded during eruption. The second phase of mixing occurred during simultaneous withdrawal of magmas from the chamber and ascent through the conduit. The overall withdrawal and mixing pattern evolved in response to pre-eruptive chamber zonation and density and viscosity relationships among the magmas. Minor sectorial variations around the caldera reflect both varying configurations at the conduit entrance and unsteady discharge. (c) During each eruptive pulse, fragmentation and particulate transport in the vent and as pyroclastic flows caused additional mixing by reducing the length scale of heterogeneities. Based on considerations of magma density changes during crystallization, magma temperature constraints, and the pattern of withdrawal during eruption, we propose that eruption tapped the P1 magma chamber during a transient state of concentric zonation, which had resulted from destruction of a formerly layered zonation in order to maintain gravitational equilibrium. Our model of magma chamber zonation at the time of eruption envisages a basal high-density Na-poor trachyandesite layer that was overlain by a central mass of highly phyric rhyolite magma mantled by a sheath of vertically zoned trachyte-trachyandesite magma along the chamber walls. A conventional model of vertically stacked horizontal layers cannot account for the deduced density relationships nor for the withdrawal pattern.  相似文献   

17.
Profiles of a total of 23 plagioclase crystals erupted within the 1982–1991 and 1993 flows of the Coaxial segment of the Juan de Fuca ridge, the 1996 flow of the North Gorda ridge, and from the Western Volcanic Zone of the ultra-slow spreading Gakkel Ridge, have been studied for variations in major and trace element concentrations. We derive equilibration times for the relatively rapidly diffusing Sr in mid-ocean ridge basalt (MORB) plagioclase crystals of the order of months to a few years in each case. All crystals preserve diffusive disequilibria of strontium and barium. Crystal residence times at MORB magmatic temperatures are thus significantly shorter, of the order of days to a few months at most, precluding prolonged crystal storage in axial magma chambers and instead pointing to rapid crystal growth (up to ~10−8 cm s−1) and cooling (up to ~1°C h−1) shortly prior to eruption of these samples. Growth of these crystals is therefore inferred to occur almost entirely within oceanic layer 2 during dike injection. Crystals that grew at lower crustal levels or earlier in the differentiation sequence appear to have been excluded from the erupted magmas, as might occur if most of the gabbroic rocks in oceanic layer 3 formed an interlocking crystal framework, with viscosities that are too high to carry earlier formed crystals with the melt. The vertical extent of eruptible, crystal-poor melt lenses within the gabbroic zone is constrained to ~1 m or less by considering the width of local equilibrium growth zones, equilibration times, and crystal settling velocities. This lengthscale is consistent with field evidence from ophiolites. Finally, crystal aggregates within the Gakkel ridge sample studied here are the result of synneusis within the propagating dike during melt ascent.  相似文献   

18.
The discrimination between potential source materials involved in the genesis of Iberian granites and granodiorites, as well as the role of mantle-crust interactions, are examined using constraints imposed by melting experiments, melting-assimilation experiments and Sr-Nd isotope systematics. The Sr-Nd isotope relationships indicate the existence of different genetic trends in which juvenile mantle materials are involved by different mechanisms: (1) a source trend, traced by a particular evolution of the pre-Hercynian basement and indicating mantle participation at the time of sedimentation; (2) a set of magmatic trends traced by gabbro-tonalite-enclave-granodiorite associations, implying the incorporation of new mantle material at the time of granite generation. These relationships strongly support a pure crustal origin for the peraluminous leucogranites, derived from partial melting of crustal protoliths, and a hybrid origin for the peraluminous granodiorites. These granodiorites are the most abundant granitic rocks of the Central Iberian zone (CIZ) of the Iberian massif, implying that processes of hybridisation by assimilation and/or magma mixing played an important role in granitoid production during the Hercynian orogeny. These hypotheses have been tested by means of melting and assimilation experiments. Melting experiments in the range 800–900 °C and at pressures of 3, 6, 10 and 15 kbar indicate that: (1) several potential source materials such as Bt-Ms gneisses and metagreywackes are suitable for the production of peraluminous leucogranite melts; (2) the melt compositions are always leucogranitic, regardless of pressure; (3) pressure exerts a strong influence on the fertility of the source: experiments at 3 kbar produce more than 20 vol% of melt, compared with less than 5 vol% of melt produced at 10 and 15 kbar and at the same temperature. The melting-assimilation experiments carried out at 1000 °C and 4, 7 and 10 kbar and using a proportion of 50% gabbro and 50% gneiss give high melt proportions (more than 50 vol.%) and noritic residues. These melts have the composition of leucogranodiorites, and overlap with part of the compositional range of peraluminous granodiorites of the Iberian massif. The generation of more mafic granodiorites may be explained by the incorporation of some residual orthopyroxene to the granodiorite magmas. The low solubility of Fe + Mg prevents the generation of granodiorite melts with more than 3 wt% of MgO + FeO at all crustal pressures. The large volumes of peraluminous, hybrid granodiorites, produced by assimilation of crustal rocks by mantle magmas, imply that an important episode of crustal growth took place during the Late-Palaeozoic Hercynian orogeny in the Iberian massif. Received: 30 June 1998 / Accepted: 27 November 1998  相似文献   

19.
Igneous rocks derived from high‐temperature, crystal‐poor magmas of intermediate potassic composition are widespread in the central Lachlan Fold Belt, and have been assigned to the Boggy Plain Supersuite. These rocks range in composition from 45 to 78% SiO2, with a marked paucity of examples in the range 65–70% SiO2, the composition dominant in most other granites of the Lachlan Fold Belt. Evidence is presented from two units of the Boggy Plain Supersuite, the Boggy Plain zoned pluton and the Nallawa complex, to demonstrate that these high‐temperature magmas solidified under a regime of convective fractionation. By this process, a magma body solidified from margin to centre as the zone of solidification moved progressively inwards. High‐temperature near‐liquidus minerals with a certain proportion of trapped interstitial differentiated melt, separated from the buoyant differentiated melt during solidification. In most cases much of this differentiated melt buoyantly rose to the top of the magma chamber to form felsic sheets that overly the solidifying main magma chamber beneath. Some of these felsic tops erupted as volcanic rocks, but they mainly form extensive high‐level intrusive bodies, the largest being the granitic part of the Yeoval complex, with an area of over 200 km2. Back‐mixing of fractionated melt into the main magma chamber progressively changed the composition of the main melt, resulting in highly zoned plutons. In the more felsic part of the Boggy Plain zoned pluton back‐mixing was dominant, if not exclusive, forming an intrusive body cryptically zoned from 63% SiO2 on the margin to 72% SiO2 in the core. It is suggested that tonalitic bodies do not generally crystallise through convective fractionation because the differentiated melt is volumetrically small and totally trapped within the interstitial space: back‐mixing is excluded and homogeneous plutons with essentially the composition of the parental melt are formed.  相似文献   

20.
Previous U–Pb zircon dating of the Pomona Island Granite (PIG) pluton (South Island, New Zealand) yielded either Permo-Carboniferous or Late Jurassic ages for five samples essentially indistinguishable in their field, petrographic, and geochemical characteristics. Detailed cathodoluminescence imaging and LA-ICP-MS dating of zircon in new and previously dated samples reveal that portions of the pluton contain either delicately oscillatory-zoned Late Jurassic zircon grains with rare Permo-Carboniferous cores, or Permo-Carboniferous grains with ubiquitous but thin Late Jurassic rims. Based on zircon dissolution-overgrowth textures, zircon rim and core trace element compositions, and the limited extent of sub-solidus rock recrystallisation textures, the bipartite age distribution is unlikely to reflect variable Pb-loss or metamorphic re-equilibration. Magmatic Zr-saturation temperatures were ≥851°C for samples dominated by Jurassic zircon and ≤809°C for samples with a predominance of Permo-Carboniferous zircon. Together, these data are consistent with PIG magmas having been derived from partial melting of a Permo-Carboniferous felsic igneous source at variable temperature wholly in the Late Jurassic (157 ± 3 Ma). The lowest temperature melts would have been incapable of dissolving significant amounts of pre-existing zircon and consequently generated inheritance-rich magmas, with the very thin rims on the pre-existing zircon grains the only evidence of the Late Jurassic magmatic age. As the partial melting temperature increased and nearly all pre-existing zircon grains dissolved into the magma, an inheritance-poor batch of melt was generated, which precipitated new zircon grains upon crystallisation. Concentrations of major and many trace elements in both magma batches may have been buffered by retention of residual quartz and feldspar in the source, which would explain the limited geochemical differences between inheritance-rich and inheritance-poor portions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号