首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
The IRAS and 2MASS associations for 193 T Tauri stars are identified in this paper. From the color–color diagrams and spectral index, it is found that the IR excesses for most samples are due to thermal emission from the circumstellar material, as suggested previously. It is also found that the IR excesses at IRAS region for few T Tauri stars and the near-IR excesses for some T Tauri stars are likely attributed to free-free emission or free-bound emission from the circumstellar ionized gas. Moreover, It is found in deredened J–H versus H–K color–color diagram that there is a slight separation in different spectral groups. The T Tauri stars locus equation in J–H versus H–K color–color diagram for our sample is also presented.  相似文献   

2.
Star-forming regions have been observed in X-rays since the first generation of satellites in the late 70s. They are very rich in magnetically-controlled X-ray phenomena: stellar flares and star-disk interactions in hundreds of T Tauri stars, confined winds in massive stars, etc. More recently, in a few low-mass stars, X-ray evidence has been found for accretion shocks. Even if it is not dominant, when it is found the influence of the circumstellar environment on X-ray emission gives precious clues on the magnetic structure in the vicinity of young stars. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have compiled infrared photometric data from the literature of practically all T Tauri stars found up to date including 444 classical T Tauri stars (CTTSs), 1698 weak-line T Tauri stars (WTTSs) and 1258 not classified T Tauri stars (3400 in total) in addition to 196 post-T Tauri stars (PTTSs). From this data bank we extract the infrared characteristics of the different groups and discuss different origins of the infrared radiation. The observational data are taken from the AKARI, IRAS, WISE and 2MASS missions. We show that in the wavelength range 1–140 μm, all T Tauri stars have infrared excesses. CTTSs have more infrared excess than WTTSs, while PTTSs have little or no infrared excess. We found that in the 1–3 μm wavelength range the infrared emission of T Tauri stars is mainly due to thermal radiation from the photosphere and hot dust grains from circumstellar envelopes. In the 3–140 μm wavelength range the infrared emission of T Tauri stars is mainly due to radiation from dusty/gaseous disks surrounding the stars. In addition, we also make a comparison between T Tauri stars and Herbig AeBe stars (HAeBe). There are some differences between these two kinds of objects in that for HAeBe stars the infrared radiation as a rule originates in dusty/gaseous disks in the 1–3 μm wavelength range, while in the range 3–12 μm it is possibly due to PAH emission for about half of HAeBe stars. In other wavelength ranges both kinds of stars have similar infrared characteristics indicating emission from dusty/gaseous disks.  相似文献   

4.
By using the 2.16 m telescope of Xinglong Observing Station of National Astronomical Observatories and its high-dispersion spectrograph, the high-dispersion spectroscopic observations of six T Tauri-type stars with weak emission lines (i.e., weak-line T Tauri-type stars, abbreviated as WTTS) were carried out. The lithium abundances of these weak-line T Tauri-type stars are calculated and the relationships of the lithium abundances with the rotation periods as well as the amplitudes of light variations of these stars are discussed. It is found by this study that the lithium abundance for the weak-line T Tauri-type stars with fast rotations tends to be less than that of those with slow rotations. However, for all these weak-line T Tauri-type stars, the lithium abundances have no conspicuous correlation with the amplitudes of light variations of these stars in the V waveband.  相似文献   

5.
We have measured polarization of the 1.1 mm and 0.8 mm continuum emission for 3 pre-T Tauri stars and 2 T Tauri stars. Positive detections were made for NGC 1333 IRAS 4 and IRAS 16293-2422, while L1551 IRS 5 and HL Tau were only marginally detected. For GG Tau we measured a 2 upper limit of 3%. The polarization is interpreted in terms of thermal emission by magnetically aligned dust grains in circumstellar disks or envelopes. We have found a definite geometrical relation between the polarization and other circumstellar structure.  相似文献   

6.
We present Doppler imaging and a Balmer line analysis of the weak-line T Tauri star TWA 17. Spectra were taken in 2006 with the University College London Echelle Spectrograph on the Anglo-Australian Telescope. Using least-squares deconvolution to improve the effective signal-to-noise ratio, we produced a Doppler map of the surface spot distribution. This shows similar features to maps of other rapidly rotating T Tauri stars, i.e. a polar spot with more spots extending out of it down to the equator.
In addition to the photospheric variability, the chromospheric variability was studied using the Balmer emission. The mean Hα profile has a narrow component consistent with rotational broadening and a broad component extending out to 220 km s−1. The variability in Hα suggests that the chromosphere has at least one slingshot prominence  3 R *  above the surface.  相似文献   

7.
Hitherto unstudied objects from Stephenson's list of Hα emission line objects at high galactic latitude were observed spectroscopically to prove their nature. 9 out of 11 objects show Hα in emission. Spectroscopy combined with photometric information indicates most of them being classical Be stars, while one object is a Post‐AGB star and one a T‐Tauri star. The classification of two objects, which are showing Hα in emission, is unclear. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
We monitored the light curves of 22 weak-line T Tauri stars (WTTSs) discovered among the X-ray sources in the field of the Taurus-Auriga cloud. For 12 of the 22 WTTSs photometric periodic variability is confirmed and their rational periods are determined using Phase Dispersion Minimization (PDM) and Fourier analysis. Most of them are found to have periods shorter than one day. This gives further evidence for the spin up of solar-type stars predicted by the models of angular momentum evolution of pre-main sequence stars.  相似文献   

9.
I discuss recent observational results on the X-ray properties of young stellar objects, based mostly on Chandra and XMM-Newton observations. The sensitive X-ray data on large, well characterized samples of T Tauri stars (and a number of protostars) allow to study in detail the dependence of magnetic activity on the bulk properties of the young objects and to draw important clues towards the origin of the X-ray emission. The absence of a relation between X-ray activity and rotation for T Tauri stars clearly suggests that their magnetic activity cannot be simply explained by the action of a scaled-up solar-like dynamo. I discuss alternative models for the generation of magnetic fields and also consider the long standing question whether the X-ray properties of the T Tauri stars are related to the presence/absence of circumstellar disks or active accretion.  相似文献   

10.
The protoplanetary discs of T Tauri and Herbig Ae/Be stars have previously been studied using geometric disc models to fit their spectral energy distribution (SED). The simulations provide a means to reproduce the signatures of various circumstellar structures, which are related to different levels of infrared excess. With the aim of improving our previous model, which assumed a simple flat-disc configuration, we adopt here a reprocessing flared-disc model that assumes hydrostatic, radiative equilibrium. We have developed a method to optimize the parameter estimation based on genetic algorithms (GAs). This paper describes the implementation of the new code, which has been applied to Herbig stars from the Pico dos Dias Survey catalogue, in order to illustrate the quality of the fitting for a variety of SED shapes. The star AB Aur was used as a test of the GA parameter estimation, and demonstrates that the new code reproduces successfully a canonical example of the flared-disc model. The GA method gives a good quality of fit, but the range of input parameters must be chosen with caution, as unrealistic disc parameters can be derived. It is confirmed that the flared-disc model fits the flattened SEDs typical of Herbig stars; however, embedded objects (increasing SED slope) and debris discs (steeply decreasing SED slope) are not well fitted with this configuration. Even considering the limitation of the derived parameters, the automatic process of SED fitting provides an interesting tool for the statistical analysis of the circumstellar luminosity of large samples of young stars.  相似文献   

11.
The spectral type is a key parameter in calibrating the temperature which is required to estimate the mass of young stars and brown dwarfs. We describe an approach developed to classify low-mass stars and brown dwarfs in the Trapezium Cluster using red optical spectra, which can be applied to other star-forming regions. The classification uses two methods for greater accuracy: the use of narrow-band spectral indices which rely on the variation of the strength of molecular lines with spectral type and a comparison with other previously classified young, low-mass objects in the Chamaeleon I star-forming region. We have investigated and compared many different molecular indices and have identified a small number of indices which work well for classifying M-type objects in nebular regions. The indices are calibrated for young, pre-main-sequence objects whose spectra are affected by their lower surface gravities compared with those on the main sequence. Spectral types obtained are essentially independent of both reddening and nebular emission lines.
Confirmation of candidate young stars and brown dwarfs as bona fide cluster members may be accomplished with moderate resolution spectra in the optical region by an analysis of the strength of the gravity-sensitive Na doublet. It has been established that this feature is much weaker in these very young objects than in field dwarfs. A sodium spectral index is used to estimate the surface gravity and to demonstrate quantitatively the difference between young (1–2 Myr) objects, and dwarf and giant field stars.  相似文献   

12.
We present first results of Hipparcos observations of nearby low-mass pre-main-sequence (PMS) stars (T Tauri and Herbig Ae/Be stars). The data obtained by Hipparcos allow us to derive weighted mean parallaxes for three major nearby star-forming regions (SFRs), Lupus, Chamaeleon I and Taurus–Auriga. Furthermore, results on the isolated objects AB Dor and TW Hya are presented. Finally, we discuss the evolutionary status of Herbig Ae/Be (HAEBE) stars on the basis of Hipparcos results.  相似文献   

13.
We present optical spectra of four intermediate-mass candidate young stellar objects that have often been classified as Herbig Ae/Be stars. Typical Herbig Ae/Be emission features are not present in the spectra of these stars. Three of them, HD 36917, HD 36982 and HD 37062, are members of the young Orion nebula cluster (ONC). This association constrains their ages to be ≲1 Myr. The lack of appreciable near-infrared excess in them suggests the absence of hot dust close to the central star. However, they do possess significant amounts of cold and extended dust as revealed by the large excess emission observed at far-infrared wavelengths. The fractional infrared luminosities  ( L ir/ L )  and the dust masses computed from IRAS fluxes are systematically lower than those found for Herbig Ae/Be stars but higher than those for Vega-like stars. These stars may thus represent the youngest examples of the Vega phenomenon known so far. In contrast, the other star in our sample, HD 58647, is more likely to be a classical Be star, as is evident from the low   L ir/ L   , the scarcity of circumstellar dust, the low polarization, the presence of H α emission and near-infrared excess, and the far-infrared spectral energy distribution consistent with free–free emission similar to other well-known classical Be stars.  相似文献   

14.
We report on the discovery of over 50 strong Hα emitting objects towards the large OB association Cyg OB2 and the H  ii region DR 15 on its southern periphery. This was achieved using the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS), combined with follow-up spectroscopy using the MMT multi-object spectrometer HectoSpec. We present optical spectra, supplemented with optical r ',  i ' and H α photometry from IPHAS, and near-infrared J ,  H and K photometry from Two Micron All Sky Survey. The position of the objects in the ( J − H ) versus ( H − K ) diagram strongly suggests most of them are young. Many show Ca  ii infrared triplet emission indicating that they are in a pre-main-sequence phase of evolution of T Tauri and Herbig Ae nature. Among these, we have uncovered pronounced clustering of T Tauri stars roughly a degree south of the centre of Cyg OB2, in an arc close to the H  ii region DR 15, and the radio ring nebula G79.29+0.46, for which we discuss its candidacy as a luminous blue variable. The emission-line objects towards Cyg OB2 itself could be the brightest most prominent component of a population of lower mass pre-main-sequence stars that has yet to be uncovered. Finally, we discuss the nature of the ongoing star formation in Cyg OB2 and the possibility that the central OB stars have triggered star formation in the periphery.  相似文献   

15.
We present spectropolarimetric observations, obtained at H α , of the Herbig Ae star AB Aurigae. Changes in linear polarization across the H α line probe structure in the immediate circumstellar environment of the central star, down to scales of the order of one to a few stellar radii. In the case of AB Aurigae the observed polarimetric signature is complex. After applying a correction for foreground continuum polarization, we find that there is a linear-polarized H α emission component intrinsic to the source. Rotation of the angle of polarization through the emission-line profile suggests scattering in a rotating circumstellar disc. The magnetic accretor model commonly applied to T Tauri stars shows promise of explaining these data.  相似文献   

16.
Preliminary results are presented of observations of the pure rotational lines of H2 toward T Tauri and Herbig Ae stars using the Short Wavelength Spectrometer (SWS) on the Infrared Space Observatory (ISO). The sources are selected to be isolated low- and intermediate-mass young stellar objects, for which the presence of a circumstellar disk has been established by millimeter interferometry. The lowest H2 S(0) and S(1) lines are detected in 3 out of 5 objects. The measured intensities indicate ∼ 0.01 M⊙ of warm (T ≈ 150 K) gas in the ISO beam. It is argued that for at least one case (HD 163296), the emission is probably dominated by the warm gas in the circumstellar disk rather than by shocked- or photon-heated gas in the surrounding envelope. Such observations can provide important constraints on the radial and vertical temperature profiles in circumstellar disks. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
We present Hα spectropolarimetry observations of a sample of 23 Herbig Ae/Be stars. A change in the linear polarization across Hα is detected in a large fraction of the objects, which indicates that the regions around Herbig stars are flattened (disc-like) on small scales. A second outcome of our study is that the spectropolarimetric signatures for the Ae stars differ from those of the Herbig Be stars, with characteristics changing from depolarization across Hα in the Herbig Be stars, to line polarizations in the Ae group. The frequency of depolarizations detected in the Herbig Be stars (seven out of 12) is particularly interesting as, by analogy with classical Be stars, it may be the best evidence to date that the higher-mass Herbig stars are surrounded by flattened structures. For the Herbig Ae stars, nine out of 11 show a line polarization effect that can be understood in terms of a compact Hα emission that is itself polarized by a rotating disc-like circumstellar medium. The spectropolarimetric difference between the Herbig Be and Ae stars may be the first indication that there is a transition in the Hertzsprung–Russell diagram from magnetic accretion at spectral type A to disc accretion at spectral type B. Alternatively, the interior polarized line emission apparent in the Ae stars may be masked in the Herbig Be stars owing to their higher levels of Hα emission.  相似文献   

18.
The study of star forming regions (SFR) allows us to observe many young stellar objects with both the same metallicities and distances but with different masses. Because of its close distance ( 140pc) Taurus-Auriga is one of the best studied SFR with more than 100 well-studied, low-mass, pre-main sequence stars, T Tauri stars (TTS). A motivation for studying X-ray emission of T associations is to understand the origin of X-rays and coronal activity. The large sample observed with the ROSAT All-Sky Survey (RASS) also enables us to compare different types of young stars. Other primary goals include star formation efficiency and the interaction of young stars with their intermediate environment (probed by absorption of X-rays). RASS detection rates are comparable withEinstein Observatory results: 43 out of 65 (66%) weak-lined TTS (WTTS) and 9 out of 79 (11%) classical TTS (CTTS) exhibit X-ray emission above RASS detection limit. A strong correlation between X-ray surface flux and stellar rotation indicates that WTTS are intrinsically more X-ray active than CTTS, because WTTS rotate faster. However, rotation is not the only parameter that determines X-ray activity. Also, we compare Taurus-Auriga TTS with TTS of southern SFR like ScoCen, Lupus, Chamaeleon, and CrA. A new result is that CTTS and WTTS can be discriminated reliably by their X-ray spectral hardness ratios. X-ray emission of CTTS appears to be harder, partly because of circumstellar absorption. Spectral fits give results consistent with Raymond-Smith spectra and emission temperatures of 1.0 keV for both WTTS and CTTS. However, we find that CTTS and WTTS have significantly different X-ray luminosity functions. Medians of absorption corrected X-ray luminosities (logL X in cgs units) are 29.701 ± 0.045 for WTTS and 29.091 ± 0.032 for CTTS. WTTS are intrinsically more luminous than CTTS, most likely because WTTS rotate on average faster than CTTS and are less absorbed. This paper concentrates on differences between CTTS and WTTS and indirect clues to be drawn from X-ray absorption and hardness ratios about circumstellar material around TTS.  相似文献   

19.
This article summarizes the processes of high‐energy emission in young stellar objects. Stars of spectral type A and B are called Herbig Ae/Be (HAeBe) stars in this stage, all later spectral types are termed classical T Tauri stars (CTTS). Both types are studied by high‐resolution X‐ray and UV spectroscopy and modeling. Three mechanisms contribute to the highenergy emission from CTTS: 1) CTTS have active coronae similar to main‐sequence stars, 2) the accreted material passes through an accretion shock at the stellar surface, which heats it to a few MK, and 3) some CTTS drive powerful outflows. Shocks within these jets can heat the plasma to X‐ray emitting temperatures. Coronae are already well characterized in the literature; for the latter two scenarios models are shown. The magnetic field suppresses motion perpendicular to the field lines in the accretion shock, thus justifying a 1D geometry. The radiative loss is calculated as optically thin emission. A mixture of shocked and coronal gas is fitted to X‐ray observations of accreting CTTS. Specifically, the model explains the peculiar line‐ratios in the He‐like triplets of Ne IX and O VII. All stars require only small mass accretion rates to power the X‐ray emission. In contrast, the HAeBe HD 163296 has line ratios similar to coronal sources, indicating that neither a high density nor a strong UV‐field is present in the region of the X‐ray emission. This could be caused by a shock in its jet. Similar emission is found in the deeply absorbed CTTS DG Tau. Shock velocities between 400 and 500 km s–1 are required to explain the observed spectrum (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Basic ideas concerning the nature of young T Tauri stars (TTS) are briefly outlined and some examples of spectral investigations of those stars are considered. The photometric and spectral variability of TTS is believed to be due to circumstellar extinction, magnetic activity, and accretion of matter from the circumstellar disk onto the stellar surface. In the 1990s, a series of high resolution spectra of several TTS were obtained using the SOFIN echelle spectrograph with the Nordic Optical Telescope (NOT). In particular, the emission lines in the spectra of the star RW Aur A were shown to be rotationally modulated with a period of 2.7 days, which was interpreted in terms of the magnetospheric accretion model with an inclined magnetic rotator. The spectra of TTS obtained using the UVES spectrograph with the VLT demonstrated that the effect of veiling the photospheric spectrum, usually attributed to accretion, was largely due to chromospheric extinction. The accretion is suggested to be a complementary heating source in chromospheres of TTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号