首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT. A time-dependent model is used to investigate the interaction between climate, extent and fluctuations of Patagonian ice sheet between 45° and 48°S during the last glacial maximum (LGM) and its subsequent deglaciation. The model is applied at 2 km resolution and enables ice thickness, lithospheric response and ice deformation and sliding to interact freely and is perturbed from present day by relative changes in sea level and equilibrium line altitude (ELA). Experiments implemented to identify an LGM configuration compatible with the available empirical record, indicate that a stepped ELA lowering of 750 to 950 m is required over 15000 years to bracket the Fenix I-V suite of moraines at Lago Buenos Aires. However, 900 m of ELA lowering yields an ice sheet which best matches the Fenix V moraine (c. 23000 a BP) and Caldenius' reconstructed LGM limit for the entire modelled area. This optimum LGM experiment yields a highly dynamic, low aspect ice sheet, with a mean ice thickness of c. 1130 m drained by numerous large ice streams to the western, seaward margin and two large, fast-flowing outlet lobes to the east. Forcing this scenario into deglaciation using a re-scaled Vostok ice core record results in an ice sheet that slowly shrinks by 25% to c. 14500 a bp , after which it experiences a rapid collapse, loosing some 85% of its volume in c. 800 years. Its margins stabilize during the Antarctic Cold Reversal after which it shrinks to near present-day limits by 11 000 a bp .  相似文献   

2.
ABSTRACT. We examine the deglaciation of the eastern flank of the North Patagonian Icefield between latitudes 46° and 48°S in an attempt to link the chronology of the Last Glacial Maximum moraines and those close to present-day outlet glaciers. The main features of the area are three shorelines created by ice-dammed lakes that drained eastwards to the Atlantic. On the basis of 16 14C and exposure age dates we conclude that there was rapid glacier retreat at 15–16 ka (calendar ages) that saw glaciers retreat 90–125 km to within 20 km of their present margins. There followed a phase of glacier and lake stability at 13.6–12.8 ka. The final stage of deglaciation occurred at c. 12.8 ka, a time when the lake suddenly drained, discharging nearly 2000 km3 to the Pacific Ocean. This latter event marks the final separation of the North and South Patagonian Icefields. The timing of the onset of deglaciation and its stepped nature are similar to elsewhere in Patagonia and the northern hemisphere. However, the phase of lake stability, coinciding with the Antarctic Cold Reversal and ending during the Younger Dryas interval, mirrors climatic trends as recorded in Antarctic ice cores. The implication is that late-glacial changes in southern Patagonia were under the influence of the Antarctic realm and out of phase with those of the northern hemisphere.  相似文献   

3.
利用多源遥感数据解译、野外考察、原位观测等方法,分析了巴丹吉林沙漠腹地湖泊群湖冰冻结-消融空间模式及其差异的主要影响因素。结果表明:该沙漠存在4种冻结-消融空间模式,湖冰自湖岸蔓延至湖心、冻结早的区域融化晚;湖冰自湖岸蔓延至湖心、冻结早的区域融化早;湖冰自湖泊一岸扩展至另一岸、冻结早的区域融化晚;湖冰自湖泊一岸扩展至另一岸、冻结早的区域融化早。大部分面积较小湖泊的冻结-消融空间模式为从湖岸冻结至湖心,冻结早的区域消融晚。不同冻结-消融空间模式之间的差异反映了泉水与地下水对湖泊的补给作用,同一盆地内部或同一沙山两侧孪生湖泊湖冰物候特征的差异主要受湖泊形态特征、湖泊溶解性固体总量(TDS)、局地气候条件的影响,有泉水或地下水出露、TDS越低、水位越浅、风力越小的区域冻结越早。泉水、地下水与湖水混合后使湖水TDS降低,更易于冻结,这是巴丹吉林沙漠大部分湖泊冰的最初生成形式,表明巴丹吉林沙漠湖冰物候在一定意义上是湖泊群接受区域深层地下水补给的直接反映。  相似文献   

4.
Proxy data from a total of 30 sediment cores and information from a seismic survey show that the sedimentological and limnological history of Lago di Tovel (1178 m a.s.l.) has been significantly influenced by slope dynamics of its mountainous catchment. The lake represents a dead-ice lake with pro-glacial deposits at the base of its sedimentary record. A prominent lake level rise in 1597/1598 that increased maximum water depth from ∼20 to 39 m caused slope instabilities, leading to the deposition of mass-flow sediments with a maximum thickness of 2.5 m in the northern part of the lake and less than 50 cm in the southern part, resulting in a total volume of more than 113,000 m3. Consequently, a rough lake bottom morphology was produced, which led to distinct differences in sedimentation rates of 0.07 cm yr−1 on sills and 0.18 cm yr−1 within depressions. The age of the top of the mass-flow deposits was used to validate the ages of the younger, laminated sediments, which were dated by 210Pb and 137Cs. Lithological investigations showed that the sediments below the mass-flow deposits are also laminated and that they were not bioturbated. The long-term meromixis of Lago di Tovel is therefore mainly due to a combination of its topographic setting and the 5-month period of ice cover. Both prevent effective mixing of the lake by strong winds during spring and autumn. Distinct spatial differences in sediment distribution within the lake show that it is risky to interpret proxy data from only one coring site, even if the lake is very small. This is especially true in mountainous areas, where rock falls, mass movements, and slope instabilities of a significant size may have considerable effects on lakes.  相似文献   

5.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

6.
湖冰物候变化特征是全球气候变化过程的重要指示器。通过长时间序列MODIS数据、Landsat数据提取的湖泊数据集,综合分析了2000—2019年新疆大型湖泊湖冰物候的变化特征。结果表明:(1) 近20 a新疆大型湖泊的开始冻结日呈现提前和推迟2种变化趋势,开始冻结日呈现推迟趋势的湖泊分别为博斯腾湖、赛里木湖、艾比湖、吉力湖、乌伦古湖、萨利吉勒干南库勒湖和鲸鱼湖,且大部分湖泊的开始冻结日推迟趋势在0.51~1.53 d·a-1之间;开始冻结日呈现提前趋势的湖泊有3个,分别为阿牙克库木湖(变化趋势为-1.04 d·a-1)、阿克赛钦湖(变化趋势为-0.41 d·a-1)、阿其克库勒湖(-0.31 d·a-1)。(2) 湖冰完全覆盖期是重要的湖冰参数,湖冰覆盖期的延长或者缩短能够直接表示区域气候变化过程,新疆大部分湖泊湖冰覆盖期表现为缩短趋势,其中分布在新疆中北部的艾比湖、吉力湖和博斯腾湖等湖泊的湖冰覆盖期缩短较为明显,变化趋势分别为-1.76 d·a-1、-2.13 d·a-1和-0.81 d·a-1;冰完全覆盖期延长的湖泊有3个,分别为阿牙克库木湖、阿其克库勒湖和鲸鱼湖,变化趋势分别为3.51 d·a-1、1.54 d·a-1和1.37 d·a-1,这些湖泊均匀分布在昆仑山高原北翼。(3) 新疆大型湖泊湖冰物候变化特征是受其自身条件(湖泊形态因子、湖泊面积等)及气候变化(气温、降水量等)等多种因素共同作用的结果。本研究探讨了气候变化环境下的新疆大型湖泊湖冰物候的冻融趋势及其变化模式,同时应用不同遥感数据和研究方法识别了湖冰,证实了MODIS数据反演湖冰物候的可行性。  相似文献   

7.
近10年来可可西里地区主要湖泊冰情时空变化   总被引:1,自引:0,他引:1  
姚晓军  李龙  赵军  孙美平  李净  宫鹏  安丽娜 《地理学报》2015,70(7):1114-1124
基于2000-2011年可可西里地区湖泊边界矢量数据、MODIS和Landsat TM/ETM+遥感影像和气象数据等资料,利用RS和GIS技术综合分析该地区主要湖泊冰情变化特征及其影响因素。结果表明:① 可可西里地区湖泊开始结冰和完全结冰出现在每年的10月下旬至11月上旬和11月中旬至12月上旬,湖泊由开始冻结至完全冻结持续时间约半个月;湖冰开始消融和完全消融时间较为分散,主要出现在每年的4月下旬至6月初和5月初至6月上旬,湖泊完全封冻期和封冻期为181 d和196 d。② 2000-2011年间,可可西里地区湖冰物候特征发生了显著变化,湖泊开始冻结和完全冻结时间推迟,湖冰开始消融和完全消融时间提前,湖泊完全封冻期和封冻期持续时间普遍缩短,平均变化速率分别为-2.21 d/a和-1.91 d/a。③ 湖冰物候特征及湖泊冰情演变是区域气候变化和湖泊自身条件共同作用的结果,其中气温、湖泊面积、湖水矿化度和湖泊形态是影响湖冰物候特征的主要因素,而湖泊热储量、地质构造等因素对湖冰演化的作用亦不可忽视。④ 可可西里地区湖泊冻结空间模式与消融过程相反,以湖冰由湖泊一岸扩展到另一岸的湖泊数量居多。  相似文献   

8.
Glaciolacustrine kames in the Bielsk Podlaski area (eastern Poland) exhibit a unique regular pattern. Three representative morphological kame types were chosen for detailed sedimentological analyses, specifically: isolated, isometric mounds; isolated, elongated hills; and branching ridges. All types comprised fine‐grained sandy and sandy/silty deposits. Lithofacies analysis resulted in the distinction of several lithofacies associations. Associations dominated by medium‐ or large‐scale, massive or horizontally laminated sands are interpreted as proximal subaqueous fans; associations dominated by medium‐ or small‐scale lithofacies of ripple‐drift cross‐laminated sand are interpreted as distal subaqueous fans; and those dominated by sandy/silty, silty or silty/clayey lithofacies with horizontal lamination are interpreted as lake bottomsets. Rates of sediment accumulation appear to have been fast, resulting in syndepositional and metadepositional deformation structures of two types: water‐escape structures, and slumps on subaqueous slopes. After the ice‐walled lake basins filled with sediment, glaciofluvial erosion and deposition alternated, resulting in erosional channels of up to 1 m deep, later filled with gravel or gravely sand. The results indicate that kames developed in a supraglacial environment within a topography of ice‐cored moraines containing ice‐walled lakes that persisted due to the presence of permafrost. Pauses during retreat of the ice walls resulted in ice‐contact deformations at the edges of the kames. Kame formation is therefore consistent with a continental climate and this may explain the increased abundance of this type of kame system in Eastern Europe.  相似文献   

9.
摘波兰北部有众多斯堪的纳维亚冰盖冰期形成的湖泊。通过湖泊区的研究,发现湖泊面积在逐渐减少,甚至导致消失.本文对变化的程度进行了观测,指出影响波兰湖泊面积变化的主要自然与人为因素,包括气候变化、湖盆深度、生物量增长、森林砍伐、水利工程建修、农药利用和排污等。  相似文献   

10.
Although rock glaciers in the Central and Desert Andes of Argentina and Chile have been previously studied in detail, much less attention has been paid to the occurrence of these permafrost forms in Patagonia. Recently, however, the establishment of the Argentinean Glacier Inventory program, which intends to inventory and monitor all ice masses along the Argentinean Andes, has started a large amount of new geocryological research. The project is designed to provide reliable and worldwide comparable results, supported by well established technical procedures and background information. Presented here is the first rock glacier inventory of the Monte San Lorenzo (Cerro Cochrane) region in the southern Patagonian Andes. A total of 130 intact (9.86 km2) and 47 fossil (1.45 km2) landforms were inventoried using two 2.5 m resolution ALOS Panchromatic Remote‐sensing Instruments for Stereo Mapping images. Since the Argentinean federal initiative described above legally protects all rock glaciers in the country as water reserves, and due to the little scientific knowledge concerning rock glaciers in the vast majority of the Patagonian Andes, this inventory provides an important basis for political decision‐making and opens further geocryological research avenues for the Patagonian region in general.  相似文献   

11.
Here we present datasets from a hydroacoustic survey in July 2011 at Lake Torneträsk, northern Sweden. Our hydroacoustic data exhibit lake floor morphologies formed by glacial erosion and accumulation processes, insights into lacustrine sediment accumulation since the beginning of deglaciation, and information on seismic activity along the Pärvie Fault. Features of glacial scouring with a high‐energy relief, steep slopes, and relative reliefs of more than 50 m are observed in the large W‐basin. The remainder of the lacustrine subsurface appears to host a broad variety of well preserved formations from glacial accumulation related to the last retreat of the Fennoscandian ice sheet. Deposition of glaciolacustrine and lacustrine sediments is focused in areas situated in proximity to major inlets. Sediment accumulation in distal areas of the lake seldom exceeds 2 m or is not observable. We assume that lack of sediment deposition in the lake is a result of different factors, including low rates of erosion in the catchment, a previously high lake level leading to deposition of sediments in higher elevated paleodeltas, tributaries carrying low suspension loads as a result of sedimentation in upstream lakes, and an overall low productivity in the lake. A clear off‐shore trace of the Pärvie Fault could not be detected from our hydroacoustic data. However, an absence of sediment disturbance in close proximity to the presumed fault trace implies minimal seismic activity since deposition of the glaciolacustrine and lacustrine sediments.  相似文献   

12.
The Himalayas are prone to glacial lake outburst floods, which can pose a severe threat to downstream villages and infrastructure. The Zhangmu and Gyirong land treaty ports are located on the China-Nepal border in the central Himalayas. In recent years, the expansion of glacial lakes has increased the threat of these two port regions. This article describes the results of mapping the glacial lakes larger than 0.01 km2 in the Zhangmu and Gyirong port regions and analyzes their change. It provides a comprehensive assessment of potentially dangerous glacial lakes and predicts the development of future glacial lakes. From 1988 to 2019, the glacial lakes in these port regions underwent "expansion", and moraine-dammed lakes show the most significant expansion trend. A total of eleven potentially dangerous glacial lakes are identified based on the assessment criteria and historical outburst events; most expanded by more than 150% from 1988 to 2019, with some by over 500%. The Cirenmaco, a moraine-dammed lake, is extremely prone to overtopping due to ice avalanches or the melting of dead ice in the dam. For other large lakes, such as the Jialongco, Gangxico and Galongco, ice avalanches may likely cause the lakes to burst besides self-destructive failure. The potential dangers of the Youmojianco glacial lakes, including lakes Nos. 9, 10 and 11, will increase in the future. In addition, the glacier-bed topography model predicts that 113 glacial lakes with a size larger than 0.01 km2, a total area of 11.88 km2 and a total volume of 6.37×109 m3 will form in the study area by the end of the 21 century. Due to global warming, the glacial lakes in the Zhangmu and Gyirong port regions will continue to grow in the short term, and hence the risk of glacial lake outburst floods will increase.  相似文献   

13.
东南极中山站附近湖冰与固定冰热力学过程比较   总被引:2,自引:0,他引:2       下载免费PDF全文
2006年对东南极中山站附近湖冰和固定冰的热力学过程进行了系统观测.基于观测数据比较湖冰和固定冰热力学生消过程;分析湖冰和固定冰温度对气温变化的响应规律;计算不同深度层湖冰和固定冰的垂向热传导通量.结果表明:观测的湖泊和海岸区均在2月底至3月初形成连续冰层;湖冰9月底至10月初达到最大冰厚,早于固定冰1-2个月,湖冰最...  相似文献   

14.
Lake ice phenology, i.e. the timing of freeze-up and break-up and the duration of the ice cover, is regarded as an important indicator of changes in regional climate. Based on the boundary data of lakes, some moderate-high resolution remote sensing datasets including MODIS and Landsat TM/ETM+ images and the meteorological data, the spatial-temporal variations of lake ice phenology in the Hoh Xil region during the period 2000–2011 were analyzed by using RS and GIS technology. And the factors affecting the lake ice phenology were also identified. Some conclusions can be drawn as follows. (1) The time of freeze-up start (FUS) and freeze-up end (FUE) of lake ice appeared in the late October–early November, mid-November–early December, respectively. The duration of lake ice freeze-up was about half a month. The time of break-up start (BUS) and break-up end (BUE) of lake ice were relatively dispersed, and appeared in the early February–early June, early May–early June, respectively. The average ice duration (ID) and the complete ice duration (CID) of lakes were 196 days and 181 days, respectively. (2) The phenology of lake ice in the Hoh Xil region changed dramatically in the last 10 years. Specifically, the FUS and FUE time of lake ice showed an increasingly delaying trend. In contrast, the BUS and BUE time of lake ice presented an advance. This led to the reduction of the ID and CID of lake. The average rates of ID and CID were–2.21 d/a and–1.91 d/a, respectively. (3) The variations of phenology and evolution of lake ice were a result of local and climatic factors. The temperature, lake area, salinity and shape of the shoreline were the main factors affecting the phenology of lake ice. However, the other factors such as the thermal capacity and the geological structure of lake should not be ignored as well. (4) The spatial process of lake ice freeze-up was contrary to its break-up process. The type of lake ice extending from one side of lakeshore to the opposite side was the most in the Hoh Xil region.  相似文献   

15.
Glacier dammed lakes may have their outflow over a bedrock threshold like other lakes, or they may flow on the surface or below the damming ice. In the former case the lake, over some considerable period, has a constant maximum level with marked shore lines corresponding to the threshold. But when the level is determined by the ice dam, the conditions are unstable. The level of the lake will then to a certain extent vary in step with the glacier, and never remain at a certain level for any length of time. The normal behaviour of such a lake will be a moderately fast rise of the water level, dependent upon the supply, until a certain critical level is reached, whereupon drainage is rapid. Such is also to some extent the case with the type of lake first mentioned, if the height of the pass is situated near to the critical level for drainage.  相似文献   

16.
云南高原典型湖泊现代过程及环境演变研究进展   总被引:4,自引:1,他引:4  
对云南省境内从南到北、由低至高分布的7个典型湖泊进行钻探取样,共钻取岩芯140m,同时对部分湖泊采集了表泥样品。对湖区古湖岸阶地、层状地貌和相关地层考察研究表明:主要存在着2~3次明显的高湖岸,高湖岸已受构造作用的强烈影响发生变形;杞麓湖、拉市海、文海等分布着高于落水洞时代很新的多层贝壳层,蛇山组沉积结束于末次冰期晚期及其它相关证据说明,该区现代水系可能是最近几万年才最终形成。  相似文献   

17.
The Inylchek glacier system in Central Tian Shan, Kyrgyzstan, comprises a large glacier‐dammed lake which usually drains once a year through a subglacial drainage system. Detailed GPS measurements on the ice dam and the analysis of Aster scenes from several subsequent years provide insight into the post‐drainage dam response and the changed ice dynamic conditions. We demonstrate that during high water levels in the lake a large part of the ice dam is afloat, lifting the ice surface up to almost 20 m in the central dam region. During this phase of extensive flotation strong calving is facilitated, which is supported by the high density of ice debris in the lake. In general, surface ice velocities are about 1.5‐2 times higher during summer than winter. Closer to the lake, however, ice velocities increase considerably after the drainage event, showing values more than three times the annual mean. The increased mass flux during the phase of high lake level needs to be compensated by replenishment of the lost ice from the dam. Therefore the ice velocities show compressive flow during the remaining part of the year. These results show that Southern Inylchek glacier is strongly influenced by the existence of the lake.  相似文献   

18.
The timing of clastic sedimentation in two glacial‐fed lakes with contrasting watersheds was monitored using sequencing sediment traps for two consecutive years at Allison Lake (Chugach Range, Alaska) and four months at Shainin Lake (Brooks Range, Alaska). Shainin Lake is a weakly stratified lake fed by distant glaciers, whereas Allison Lake is more strongly stratified and fed predominantly by proximal glaciers. At Shainin Lake, sediment accumulation started in late June and reached its maximum in mid‐August, just before lake mixing and during a period of low river discharge. The grain size of the sediment reaching the sediment trap in Shainin Lake was homogenous throughout the summer. At Allison Lake, pulsed sedimentation of coarse particles during late summer and early fall storms were superimposed on the fine‐grained sedimentation pattern similar to that observed at Shainin Lake. These storms triggered underflows that were observed in the thermal structure of the lake and deposited abundant sediment. The sequencing sediment traps reveal a lag between fluvial discharge and sediment deposition at both lakes, implying limitations to interpreting intra‐annual sedimentary features in terms of inflow discharge.  相似文献   

19.
近30年来西藏那曲地区湖泊变化对气候波动的响应   总被引:33,自引:4,他引:29  
根据1975年地形图、20世纪80年代至2005年的TM、CBERS卫星遥感资料和近45年的气温、降水量、蒸发量、最大积雪深度和最大冻土深度等气候资料分析得出,西藏那曲地区东南部的巴木错、蓬错、东错、乃日平错等四个湖泊的水位面积在近30年来呈较显著的扩大趋势,2005年与1975年相比,分别增加了48.2 km2、38.2km2、19.8 km2 (比2004年)、26.0 km2,增长幅度分别为25.6%、28.2%、16.2%、37.6%。其主要原因与该地区近年来气温的上升、降水量的增加和蒸发量的减少、冻土退化等暖湿化的气候变化有很大关系。  相似文献   

20.
ABSTRACT. This paper critically appraises the evidence for a succession of ice-dammed lakes in the central Strait of Magellan ( c. 53°S) c. 17 000–12 250 cal. yr BP. The topographic configuration of islands and channels in the southern Strait of Magellan means that the presence of lakes provides compelling constraints on the position of former ice margins. Lake shorelines and glacio-lacustrine sediments have been dated by their association with a key tephra layer from Volcan Reclús (c. 15 510–14 350 cal. years bp ) and by 14C-dated peats. The timing of glacial lake formation and associated glacier readvances is at odds with the rapid and widespread glacier retreat of the Patagonian ice fields further north after c. 17 000 cal. yr bp , suggesting rather that the lakes were coeval with the Antarctic Cold Reversal and persisted to the Late-glacial/Holocene transition. This apparent asymmetrical latitudinal response in glacier behaviour may reflect overlapping spheres of northern hemisphere and Antarctic climatic influence in the Magellan region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号