首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the interaction of bubbles, a submerged or floating structure, and free surface waves. A three-dimensional fully nonlinear model has been developed based on the coupling of the boundary integral method (BIM) for bubble dynamics and free surface waves and the finite element method for structure deformation. The present method is well validated by comparing the numerical results with the experimental data. Three structure characteristics, including fixed, rigidly moving and flexible, are investigated separately to determine their influence on bubble dynamics. For a free-floating structure, the free surface causes not only a larger reduction in peak pressure for a rigid structure compared with a fixed body but also the modification of the bubble period and structural response. The interaction between a bubble and a flexible structure, in the absence of a free surface, is simulated. Both the rigid motion and the deformation at the local structure appear in the simulation. The effect of the structural thickness on the reduction in peak pressure is also considered.  相似文献   

2.
Inviscid three-dimensional free surface wave motions are simulated using a novel quadratic higher order boundary element model (HOBEM) based on potential theory for irrotational, incompressible fluid flow in an infinite water-depth. The free surface boundary conditions are fully non-linear. Based on the use of images, a channel Green function is developed and applied to the present model so that two lateral surfaces of an infinite-depth wave tank can be excluded from the calculation domain. In order to generate incident waves and dissipate outgoing waves, a non-reflective wave generator, composed of a series of vertically aligned point sources in the computational domain, is used in conjunction with upstream and downstream damping layers. Numerical experiments are carried out, with linear and fully non-linear, regular and focused waves. It can be seen from the results that the present approach is effective in generating a specified wave profile in an infinite water-depth without reflection at the open boundaries, and fully non-linear numerical simulations compare well with theoretical solutions. The present numerical technique is aimed at efficient modelling of the non-linear wave interactions with ocean structures in deep water.  相似文献   

3.
A numerical method, based on a boundary integral equation combined with a non-linear time stepping procedure for the free water surface, is developed for simulations of the interaction between highly non-linear water waves and submerged horizontal cylinders. The method is based on potential theory, and the omission of viscous effects restricts the wave-structure interaction computations to low Keulegan-Carpenter numbers where inertia forces are dominant. The numerical scheme is verified by computations with a steep wave of exact form during several wave periods, and by computations of a breaking wave. A new method for tracing the orbits of water particles in the fluid domain is developed, and the influence from submerged structures on the orbits is visualized through several computational examples. The wave forces on submerged structures are computed and are found to correspond well with other computed results for low Keulegan-Carpenter numbers.  相似文献   

4.
The dynamic response of offshore platforms is more serious in hostile sea environment than inshallow sea.In this paper,a hybrid solution combined with analytical and numerical method is proposedto compute the stochastic response of fixed offshore platforms to random waves,considering wave-struc-ture interaction and non-linear drag force.The simulation program includes two steps:the first step is theeigenanalysis aspects associated the structure and the second step is response estimation based on spectralequations.The eigenanalysis could be done through conventional finite element method conveniently andits natural frequency and mode shapes obtained.In the second part of the process,the solution of theoffshore structural response is obtained by iteration of a series of coupled spectral equations.Consideringthe third-order term in the drag force,the evaluation of the three-fold convolution should be demanded fornonlinear stochastic response analysis.To demonstrate this method,a numerical analysis is carrie  相似文献   

5.
基于FLOW-3D的三维数值波流水槽的构建及应用研究   总被引:1,自引:0,他引:1  
侯勇俊  熊烈  何环庆  杨晖 《海洋科学》2015,39(9):111-116
为获得具有自由液面的三维波流水槽,基于FLOW-3D有限差分程序,选用RNG?-?紊流模型,基于线性波速度入口法造波,采用VOF方法对自由液面进行追踪。构建具有自由液面的三维波流联合作用数值水槽,对比压力出流边界与Sammerfeld辐射边界发现,在波流水槽内采用压力出流边界能够保持流体体积守恒,波形稳定;加入的孔隙结构,不仅能保证良好的消波效果,而且流体能够顺利通过,对消除反射波影响效果良好;与实验结果对比发现,垂向时均流速与实验数据拟合较好。波流场中桩柱前形成明显下潜水流及漩涡,是形成局部冲刷主要原因。本文所构建的波流数值模型波形稳定、具有良好的波流特性,能较好反应波浪与水流之间的相互作用,可进一步模拟波流场与结构物之间的相互作用或波流作用下泥沙冲刷等研究。  相似文献   

6.
A three-dimensional (3D) numerical model of fixed Oscillating Water Column system (OWC) is presented and validated. The steady-state potential flow boundary value problem due to regular wave interaction with the OWC is solved by a first order mixed distribution panel method. Ocean response predictions are derived using a deterministic statistical model based on a spectral analysis method. The model validation focusses on diffraction predictions and involves convergence tests and numerical comparisons with independent potential flow computations. Predictions of both regular and irregular wave responses are also compared against experimental results. Sample results including the yearly-averaged power conversion efficiency are presented in the final section to illustrate the method’s suitability to a 3D hydrodynamic design optimisation.  相似文献   

7.
Abstract

Blast response of submerged pipelines has been a research focus in recent years. In this article, a three-dimensional numerical model is established to investigate dynamic response of pipelines due to underwater explosion. The up approximation is integrated into finite element method (FEM) to simulate pore water effect in the seabed. Numerical continuity between hydraulic pressure in the flow field and pore pressure in the marine sediment is guaranteed to realize the blast response of submerged pipelines in ocean environment. Both fluid–structure interaction (FSI) and pipeline–seabed interaction (PSI) have been considered in the proposed model simultaneously. A comprehensive parametric study is carried out after validation of the present model with test data from underground explosion and underwater explosion, respectively. The effect of embedment depth, TNT equivalent, stand-off distance, pipeline diameter, and pipeline thickness to blast response of the submerged pipelines is investigated based on numerical results. Variation of deformation patterns and stress distribution of the pipeline with various installation and structure parameters has been illustrated and discussed to facilitate engineering practice.  相似文献   

8.
基于欧拉-伯努力梁理论确定了多跨管道结构振动方程,采用非线性Van der pol方程描述旋涡脱落的尾流动力特性,利用弹簧模拟两端和中间的复杂边界约束,构建了多跨海底管道横流向涡激振动预报模型。基于模态正交性展开流-固耦合作用方程,对各阶主坐标响应进行数值求解。对比了本模型预报结果与试验结果、软件分析以及DNV规范推荐值,吻合情况比较理想。本模型可为深海多跨管道涡激振动的研究、防范和治理提供有效的分析方法。  相似文献   

9.
Pressure variations and three-dimensional effects on liquid sloshing loads in a moving partially filled rectangular tank have been carried out numerically and experimentally. A numerical algorithm based on the volume of fluid (VOF) technique is used to study the non-linear behavior and damping characteristics of liquid sloshing. A moving coordinate system is used to include the non-linearity and avoid the complex boundary conditions of moving walls. The numerical model solves the complete Navier–Stokes equations in primitive variables by using of the finite difference approximations. In order to mitigate a series of discrete impacts, the signal computed is averaged over several time steps. In order to assess the accuracy of the method used, computations are compared with the experimental results. Several configurations of both baffled and unbaffled tanks are studied. Comparisons show good agreement for both impact and non- impact type slosh loads in the cases investigated.  相似文献   

10.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

11.
提出了一种对内孤立波与深海立管相互作用耦合数值模拟方法。流场采用内孤立波数值水槽方法进行模拟,结构响应采用基于薄壳理论的有限元方法进行计算,采用一种将流场和结构响应数据进行实时传输的方法,实现了流体与固体之间的耦合数值模拟。对内孤立波作用下某长径比为1 200的深海立管载荷及其动力响应特性进行了数值模拟与分析。结果表明内孤立波不仅会对深海立管产生突发性剪切载荷作用,而且还会使立管产生大幅度变形响应现象,因此在深海立管设计与应用中,内孤立波的影响是不可忽视的。研究表明,该方法为研究内孤立波作用下深海立管动力特性及其工程预报相关问题提供了一种有效的手段。  相似文献   

12.
Over the last 15 years improved awareness of wave impact induced failures has focused attention on the need to account for the dynamic response of maritime structures to wave impact load. In this work a non-linear model is introduced that allows evaluating the effective design load and the potential sliding of caisson breakwater subject to both pulsating and impulsive wave loads. The caisson dynamics is modelled using a time-step numerical method to solve numerically the equations of motion for a rigid body founded on multiple non-linear springs having both horizontal and vertical stiffness. The model is first shown to correctly describe the dynamics of caisson breakwaters subject to wave attack, including nonlinear features of wave–structure–soil interaction. Predictions of sliding distances by the new method are then compared with measurements from physical model tests, showing very good agreement with observations. The model succeeds in describing the physics that stands behind the process and is fast, accurate and flexible enough to be suitable for performance design of caisson breakwaters.  相似文献   

13.
《Ocean Engineering》2007,34(5-6):645-652
Although International Maritime Organization (IMO) has taken many measures to minimize ship collisions, ships carrying liquid cargo sometimes do get struck by other vessels. The outflow of crude oil causes very serious consequences to the environment. In such cases it is necessary to analyze the response of structure of struck liquid cargo-filled tank to account for fluid–structure interaction accurately. In this paper, numerical simulation of collision between a container ship with double hull very large crude carrier (VLCC) is presented. Three different numerical simulation mothods were adopted to model fluid–structure interaction in liquid-filled cargo tank, namely arbitrary Lagrangian–Eulerian finite element method, Lagrangian finite element method and linear sloshing model. The numerical simulation results reveal that the fluid–structure interaction of liquid cargo-filled tank has a significant effect on the motion and structural response of the struck cargo tank. Compared with the calculation results of ALE FE method, the linear sloshing model underestimates the influence of fluid–structure interaction of liquid cargo tank while the Lagrangian–Eulerian finite element method may be considered as the practical method for engineering applications as it provided more reasonable results with a relatively low central processing unit (CPU) time.  相似文献   

14.
Potential flow based vortex numerical methods have been widely used in aerodynamics and hydrodynamics. In these methods, vortices shed from lifting bodies are traced by using vortex filaments or dipole panels. When the wake elements encounter a downstream body, such as a rudder behind a propeller or a stator behind a rotor, a treatment is necessary to divert the wake elements to pass by the body. This treatment is vital to make wake simulations realistic and to satisfy the non-penetration condition during wake body interaction. It also helps to avoid pure numerical disturbances such as when a vortex filament or an edge of a dipole panel passes through the collection point of a body element; this is a singularity for induced velocity and it will introduce a large numerical disturbance. This necessary treatment for three-dimensional problems with geometrical complexity has not been found to date. In this study, a wake impingement model was developed to divert wake elements to slip over the body surface, model the vortex/body interaction, and predict forces on fluctuating components. The model was also tested on configurations of oscillating foils in tandem with an existing panel method code. Simulation results with the wake impingement model are shown to be in closer agreement with limited published experimental data than those without the model. With the established wake impingement model, force fluctuations on the after body due to the wake vortex impingement were investigated based on a series of simulations. The series varied several parameters including distance between two foils, oscillating frequency, span, rear foil pitch angle, swap angle and vertical position.  相似文献   

15.
The results of the three-dimensional numerical simulation for the study of the stratification effect and wave processes associated with it on the drag of the underwater part of the hummocked ice are considered. The numerical model is based on the sampling of equations on a rectangular grid using the immersed boundary method that makes it possible to explicitly describe the interaction of moving ice with a stratified flow. The dependence of the drag force on the Froude number was established based on these calculations. This dependence has expressed points of maximum and minimum. The form of this dependence is common for the considered models of ice keels. The obtained estimations of drag force consistent with the known results of laboratory experiments show the need for the construction of parametrizations of the drag coefficient on the ice–ocean boundary, taking into account wave effects.  相似文献   

16.
The paper analyses results of the numerical simulation of upwelling events in the north-western part of the Black Sea, mostly near the South Crimea. The calculations were performed using a numerical model based on primitive hydrodynamics equations. Emphasis is laid on the case when a salinity front simulating the Black Sea rim current is prescribed in the initial conditions. The interaction of the Black Sea rim current's stream with the coastline and bottom topography leads to the development of an upwelling near the Crimea's coast, even in the absence of wind forcing. The paper discusses the structure of the three-dimensional circulation of waters in the shelf area of the NW Black Sea. Numerical modelling results are matched up with the satellite data obtained by the HRPT receiving station. Translated by Vladimir A. Puchkin.  相似文献   

17.
A partly non-linear time-domain numerical model is used for the prediction of parametric roll resonance in regular waves. The ship is assumed to be a system with four degrees of freedom, namely, sway, heave, roll and pitch. The non-linear incident wave and hydrostatic restoring forces/moments are evaluated considering the instantaneous wetted surface whereas the hydrodynamic forces and moments, including diffraction, are expressed in terms of convolution integrals based on the mean wetted surface. The model also accounts for non-potential roll damping expressed in an equivalent linearised form. Finally, the coupled equations of motion are solved in the time-domain referenced to a body fixed axis system.This method is applied to a range of hull forms, a post-Panamax C11 class containership, a transom stern Trawler and the ITTC-A1 containership, all travelling in regular waves. Obtained results are validated by comparison with numerical/experimental data available in the literature. A thorough investigation into the influence of the inclusion of sway motion is conducted. In addition, for the ITTC-A1 containership, an investigation is carried out into the influence of tuning the numerical model by modifying the numerical roll added inertia to match that obtained from roll decay curves.  相似文献   

18.
1 .Introduction In the present numerical analysis of a tsunami ,atwo-dimensional numerical model based on non-linear shallowwater theoryis mainly used (Aburaya and Imamura ,2002 ;Imamura ,1995 ; Goto andOgawa ,1992) .Thoughthis model representstsunami hei…  相似文献   

19.
A practical, low order and potential-based surface panel method is presented to predict the flow around a three-dimensional rectangular foil section including the effect of boundary layer. The method is based on a boundary-integral formulation, known as the “Morino formulation” and the boundary layer effect is taken into account through a complementary thin boundary layer model. The numerical approach used in the method presents a strongly convergent solution based on the iterative wake roll-up and contraction model including the boundary layer effect. The method is applied to a three-dimensional foil section for which the velocity distribution around the foil was measured using a 2D Laser Doppler Velocimetry system in a large cavitation tunnel. Comparison of the predicted velocity distributions both inside and outside of the boundary layer of the foil as well as the boundary layer shapes obtained from the numerical model show fairly good correlation with the measurements, indicating the robustness and practical worthiness of the proposed method.  相似文献   

20.
A liftboat has big independent spuncans. The interaction between the liftboat structure and the foundation can provide significant fixity. Both methods of numerical simulation and experimental test are adopted to study the fixity. An experimental model to the scale of 1:40 ofa liftboat was mounted on a sand box in the laboratory, and also a three-dimensional FEM model was established in the numerical simulation. The variation of the fixity and the maximum stress in the legs are studied. On the basis of the fact that the experimental data are in good agreement with the numerical simulation results, the fixity is further studied by numerical simulation with different soil foundation parameters and different sizes of spuncans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号