首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
针对硫磺沟煤矿工作面常规施工单孔深度不足、有效孔段短、钻进施工效率低、钻孔孔径小等诸多问题,提出采用窄体式ZDY4000LD(C)型履带钻机、第二代随钻测量系统(YHD2-1000(A)型)等附属定向设备进行穿层定向长钻孔成孔技术,以提高钻孔成孔精度、钻孔深度,增大钻孔孔径等参数,减小煤层因受采动影响,导致工作面瓦斯涌出量增大的问题。现场试验施工了4个大直径穿层定向长钻孔,孔深300 m以上钻孔成孔率达到100%,孔深最深399 m,最大钻孔孔径193 mm,钻进总进尺1581 m,平均孔深395.25 m,钻孔抽采效率显著增加。其中3号钻孔最大抽采混合流量8.3 m3/min,最大抽采纯量1.6 m3/min,瓦斯抽采浓度51%,瓦斯抽采效果显著。  相似文献   

2.
于成凤 《探矿工程》2022,49(4):124-130
针对煤矿地层条件复杂,常规钻进工作量大、单孔深度不足、难以成孔、瓦斯抽采浓度低等诸多问题,开展了煤矿复杂地层中施工顶板大直径高位定向钻孔试验。以东保卫煤矿施工为依据,根据煤层顶板地质实际情况,在36号煤层顶板施工6个?120 mm大孔径顶板高位定向钻孔,其中孔深>300 m钻孔成孔率达到83.3%,最大孔深510 m。利用顶板大直径高位定向钻孔进行瓦斯抽采,其抽采浓度比原有工作面常规瓦斯钻孔抽采浓度增加66.7%,取得显著瓦斯抽采效果。顶板大直径高位定向钻孔的成功应用,为东保卫煤矿以及相似条件矿区推广应用提供了技术支撑。  相似文献   

3.
石浩  张杰  何乐 《探矿工程》2018,45(7):37-40
针对工作面回采后采空区瓦斯易超限问题,采用螺杆马达结合随钻测量技术的定向钻进工艺,在桃园矿1029工作面施工了3个长距离煤层顶板大直径定向钻孔,最大孔深531 m,累计进尺1701 m(含分支孔),通过精准控制钻孔轨迹,使钻孔沿煤层顶板裂隙带延伸,有效抽采煤层回采后采空区内瓦斯,总结了一套适用于采空区瓦斯治理的高位顶板长钻孔施工方法,保障了煤矿安全高效生产。  相似文献   

4.
代茂  徐书荣  梁道富  蔡天亮  曹建明 《探矿工程》2019,46(10):58-61,74
顶板高位定向钻孔是进行上隅角瓦斯治理的关键技术措施。针对青龙煤矿顶板裂隙瓦斯治理需要及复杂顶板高位定向钻孔成孔难题,阐述了顶板高位定向钻孔的技术原理和技术优势;基于“三带”理论综合确定了高位定向钻孔的层位,并优化钻具组合和钻进工艺参数。在青龙煤矿11615工作面完成5个顶板高位定向钻孔的施工,最大孔深达到612 m,单孔最大瓦斯纯流量达到2.79 m3/min,瓦斯浓度达到23.4%,有效地保证了工作面的安全回采。  相似文献   

5.
抽放瓦斯顺煤层长钻孔施工技术   总被引:4,自引:2,他引:2  
介绍了抽放瓦斯顺煤层长钻孔试验情况。在试验中使用定向钻进技术施工了3个钻孔,有1个试验孔深度达509.03m,是目前国内最深的全煤层长钻孔,平均纯钻进时效24.4m/h。这些抽放孔的瓦斯涌出量均达到2.0~2.5m3/min。   相似文献   

6.
针对碎软煤层渗透率低、瓦斯抽采衰减快、压裂不均匀、裂缝易闭合、瓦斯抽采效果差、无法实现区域瓦斯超前预抽的问题,提出了煤层顶板定向长钻孔水力加砂分段压裂强化瓦斯抽采的技术思路,研发适合煤矿井下煤层顶板定向长钻孔水力加砂分段压裂煤层增透技术,研制了成套的煤矿井下水力加砂压裂泵组装备、定向喷砂射孔装置及工具组合、防砂封隔器及工具组合。水力压裂泵组装备最大排量90 m3/h,最大泵注压力70 MPa,最大携砂能力20%,支撑剂粒径小于等于1 mm;定向喷砂射孔装置通过水压驱动喷射器定向,最大旋转角度180°;防砂封隔器最大承压70 MPa,最大膨胀系数为2。研发的定向长钻孔连续定向喷砂射孔工艺技术和定向长钻孔拖动式水力加砂分段压裂工艺技术,在山西阳泉新景煤矿井下开展工程试验,完成2个压裂钻孔(孔深均为609 m)共计16段水力加砂分段压裂施工,累计实施80次定向喷砂射孔作业,石英砂的体积分数2%~3%,定向喷砂射孔压力22.6~28.6 MPa,共计使用石英砂19.8 t;水力加砂分段压裂单段注入压裂液153.8~235.1 m3、核桃壳砂的体积分数2.02%~2.56%,累计注入压裂液2 808.57 m3,注入核桃壳砂36.47 t;综合评价本次水力加砂分段压裂影响半径为20~38 m,统计分析压裂后2个钻场100 d瓦斯抽采数据,1号钻场、2号钻场日均瓦斯抽采纯量分别为1 025、2 811m3。试验结果表明:压裂装备加砂量大,施工排量大,能够实现连续作业,压裂后煤层透气性显著增加,极大地提高瓦斯抽采浓度和瓦斯抽采纯量。研究成果对碎软煤层区域瓦斯增透提供新思路,为我国类似矿区区域瓦斯超前治理提供技术借鉴。   相似文献   

7.
白刚 《探矿工程》2021,48(6):57-62
针对煤矿井下定向钻孔超长套管下放成功率低、速度慢的问题,提出开孔段保直钻进、造斜段曲率控制、钻机驱动主动钻杆下放及套管导正等改进技术措施。在阳泉新景矿进行了现场试验,完成了3个满足煤矿井下水力压裂要求的定向钻孔超长套管下放,最大下深达到168 m,套管下放成功率达到100%,下套管平均工效由5.5 m/h最大提高至13.1 m/h,有效地解决了定向钻孔超长套管下放受限的难题。  相似文献   

8.
2008年4月21日,由煤炭科学研究总院西安研究院承担的国家发改委煤矿瓦斯综合治理与利用关键技术研发和装备研制项目“井下水平长钻孔钻机研制及配套工艺开发”,在淄矿集团陕西彬长亭南煤矿一盘区113工作面1#联络巷的现场工业性试验中成功完成了主孔深度1046m、终孔直径96mm的水平定向瓦斯抽放钻孔,创造了我国煤矿井下瓦斯抽放水平定向钻孔的最高记录,平均钻进效率达到160m/d,在1000m的设计目标位置,钻孔纵向偏差不足1m,横向摆动不超过8m。钻孔施工全部采用国产自主知识产权技术装备,对钻孔轨迹进行全程监测控制,有效保证了钻孔按设计轨迹延伸。  相似文献   

9.
东欢坨煤矿2号井运用受控定向钻进技术钻成孔深750m 的丛式S形定向注浆钻孔,实现了井筒深0~420m 凿井与深420~750m 地面预注浆堵水平行作业。S 形钻孔孔身轨迹包括垂直孔段,造斜孔段(含增斜、稳钭、降斜),直孔段,直斜孔段。钻孔孔身轨迹的设计包括:(1)S 形孔型施工可行性的判定式与计算;(2)平面弯曲S 形孔身轨迹的设计计算;(3)空间弯曲S 形孔身轨迹的设计计算。设计计算误差小于0.5‰;6个钻孔偏离靶点的精度达到6‰。钻孔的造斜强度、造斜长度以及钻孔顶角和方位等参数接近设计计算值。  相似文献   

10.
针对黄陇侏罗纪煤田中硬煤层渗透性差、瓦斯抽采浓度及流量衰减速度快等问题,利用自主研发的水力压裂成套工艺设备,提出煤层定向长钻孔水力压裂瓦斯高效抽采技术,并在黄陇煤田黄陵二号煤矿进行工程应用试验。现场共完成5个定向长钻孔钻探施工,单孔孔深240~285 m,总进尺1 320 m;采用整体压裂工艺对5个本煤层钻孔进行压裂施工,累计压裂液用量1 557.5 m3,单孔最大泵注压力19 MPa;压裂后单孔瓦斯抽采浓度及百米抽采纯量分别提升0.7~20.5倍、1.7~9.8倍;相比于普通钻孔,压裂孔瓦斯初始涌出强度提升2.1倍,钻孔瓦斯流量衰减系数降低39.6%。试验结果表明:采取水力压裂增透措施后,瓦斯抽采效果得到显著提升,煤层瓦斯可抽采性增加,为类似矿区低渗煤层瓦斯高效抽采提供了技术支撑。   相似文献   

11.
地质异常体是矿井灾害发生的主要隐蔽致灾因素,井下钻探工程是进行地质异常体探查、验证和治理的重要技术手段。针对常规钻孔探查距离短、精度低,且易存在探查盲区的不足,介绍了采用井下定向钻孔进行地质异常体探查的方案。总结地质异常体空间形态、岩性和钻探等识别特征,给出探查定向钻孔轨迹布设原则,得到基于定向钻孔的地质异常点和地质异常体空间计算定位方法,并从钻孔布设间距、钻孔轨迹测控精度、地层和地质异常识别精度、地质异常体发育规模等方面分析定向钻孔探查精度影响因素与解决方法。在焦作赵固二矿和宁东梅花井煤矿开展地质异常体探查试验,采用主孔与分支孔结合实现巷道条带煤层稳定性探查,探查距离达到621 m;采用定向钻孔群实现工作面充水水源区域探查,单孔最大出水量为10.2 m3/h,并对充水水源进行了疏放。试验结果表明,井下定向钻孔具有探查精度高、距离远等优点,实现地质异常体精确定位,为矿井灾害事故防治提供技术保障。   相似文献   

12.
煤矿井下定向钻进工艺技术的应用   总被引:3,自引:0,他引:3  
定向钻进技术以其精确控制钻孔轨迹逐渐被应用于煤矿井下瓦斯抽采钻孔及防治水钻孔施工中。从定向钻进技术的原理入手,以国内多家煤矿企业井下施工定向钻孔的实际资料,研究了定向钻进技术在煤矿井下进行瓦斯抽采、地质构造探测及防治水施工的适用条件、布孔方式和成孔原理。结果显示,定向钻进技术在煤矿井下瓦斯抽采、地质构造探测及防治水领域的应用效果显著。   相似文献   

13.
煤矿井下水平定向钻进技术与装备的新进展   总被引:1,自引:1,他引:0       下载免费PDF全文
煤矿井下定向钻进技术作为一项工程领域的新技术,已经广泛应用于煤矿井下瓦斯抽采、防治水、地质勘探和精确工程钻孔施工等领域。经过在国内30多个矿区推广应用,煤矿井下定向钻进技术和装备逐渐完善并取得新进展,形成了ZDY12000LD型大功率定向钻机、无线随钻测量系统、地质导向钻进装置及复合定向钻进工艺。结合现场试验完成了主孔深度1881 m的煤层定向长钻孔和1026 m岩层定向长钻孔,充分说明了ZDY12000LD型钻机功率大、钻进及事故处理能力强,无线随钻测量系统测量精度高,配套复合定向钻进技术形成的钻孔孔壁光滑、沉渣少、钻孔曲率小,钻进效率高。  相似文献   

14.
为解决底板梳状定向钻孔卡钻事故中采用常规"强力回转起拔"工艺处理效果不理想,而采用反丝钻杆或强力拧断方法存在工期和经济损失大的问题,对套铣打捞钻具弯曲孔段通过性计算分析及套铣打捞钻进技术参数研究,成功解决了河南某矿孔深344 m底板梳状定向钻孔卡钻事故。应用结果表明:现有套铣打捞钻具允许通过的最大钻孔曲率大,套铣打捞过程中转速控制在30~50 r/min,钻进速度控制在6~12 m/h,间隔12~15 m配合冲洗液进行一次冲孔,采用该套铣打捞技术及装备能够有效提高底板梳状定向钻孔卡钻事故处理成功率。   相似文献   

15.
曹建明 《探矿工程》2021,48(12):20-25
针对贵州毕节地区某煤矿瓦斯治理预抽时钻孔抽采距离短、成孔性差、孔内事故频发等难题,提出在某煤矿采用底板穿层梳状定向长钻孔的技术方法。通过优化钻孔布孔形式、布孔层位和分支孔施工工艺,保证钻孔主孔成孔深度和分支孔见遇煤层率。试验期间,施工钻孔主孔深度均大于600 m,分支孔见遇煤层率达到60%。钻孔成孔明显得到改善,单孔最大瓦斯抽采浓度达到85%,最大瓦斯抽采纯量达到2.5 m3/min,同时节省了施工成本,为毕节矿区瓦斯治理提供了新的方案。  相似文献   

16.
淮南矿务局谢李煤矿深部大井副井,是“八五”期间国家重点建设工程,挖掘深度1080m,系煤炭部门目前设计挖掘最深的竖井。为获建井前必需的水文及工程地质资料,设计了检查2号孔,孔深1150m,终孔孔径91mm,要求钻孔轨迹于垂深690m以上进入以井筒中心为圆心,半径为25m的圆筒形靶区,并原  相似文献   

17.
近两年来,在两个矿区的7个钻孔中,用螺杆钻具进行了39次定向造斜,总进尺143.16m,成功地解决了其它钻探工具无法解决的钻孔弯曲问题,因此,螺杆钻深受广大钻探工人和技术人员的欢迎。下面着重介绍螺杆钻的使用效果及使用中摸索的三点经验。  相似文献   

18.
《探矿工程》2004,31(12):8-8
在加勒比海岛国——特列尼达和多巴哥近期完成了一项水平定向钻进天然气输气管线工程。该工程需铺设直径为1.4m,长度分别为670、750和720m的3条钢管。为此所需完成钻孔的直径为1.8m。  相似文献   

19.
针对淮南矿区利用顺层定向钻孔对工作面和邻近巷道条带煤层瓦斯消突(简称“一孔两消”)的需求,提出了利用气动定向长钻孔实现“一孔两消”的技术思路。在前期气动螺杆定向钻进工艺试验基础上,开发了一款宽度仅为1.1 m、主轴倾角可在±90°范围内无级调整、具备50 m最大遥控距离的窄体全断面遥控定向钻机;优选了杆体直径73 mm、螺旋翼片外径82 mm的?73/82 mm螺旋气动螺杆钻具,最大转矩可达256 N·m;研制了集除尘系统、压风监测系统和油雾润滑系统为一体的多功能除尘车;改进了电磁波随钻测量系统供电电池,提高了系统使用时间和稳定性;开发了碎软煤层双动力复合强排渣技术和定向钻孔长距离筛管完孔技术。利用成套装备与技术在淮南矿区潘三煤矿1682(1)运输巷开展软煤气动定向钻进技术与装备的试验,先后完成16个孔深为240 m以上钻孔,试验总进尺4 548 m,煤层钻遇率达93.1%,所有定向孔全程下筛管,最大钻孔深度423 m。试验过程中即开始连抽,统计期间,抽采平均浓度(体积分数)60%,最大达到81%,抽采混合量基本维持在1.5 m3/min,平均抽采纯量0.9 m3/min,最大抽采纯量1.56 m3/min,累计抽采纯量17.4万m3。试验结果表明,成套装备性能稳定,使用方便,能实现远程遥控操作,施工安全保障度高,能够满足软煤气动定向钻进成孔需要。形成淮南矿区软煤气动定向钻孔施工成套技术和装备,为矿区安全高效抽采提供了必要技术和装备支撑。   相似文献   

20.
粤港澳大湾区狮子洋主航道地质勘察无法采用垂直点状钻探勘察施工,为此采用水平孔勘察方案,设计了一个特大水垂比大位移科学钻孔。该孔设计孔深940 m,取心靶点14个,靶区半径5.0 m,水平段长380 m,垂深60 m,水垂比14,是国内单孔作业靶点最多、水垂比最大的钻孔之一。研究制定了一套多靶点定向钻进、水平螺杆马达原状性取心、地质录井和存储式钻杆输送测井的综合勘察技术,在水利水电勘察中首次应用,取得了良好的效果。该孔完钻孔深936.20 m,中靶率85.71%,其中,取心进尺81.70 m,机械钻速2.38 m/h,岩心采取率89.84%,精准实现了洋底主航道的地质超前预报,大幅度减少了勘察孔数量,降低了环境破坏,提高了勘察效率,保证了地质资料的连续性和可靠性,是一项值得在隧道勘察中推广使用的先进技术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号