首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A two‐dimensional mathematical model considering coupling between a deforming elasto‐visco‐plastic fold–thrust belt, flexural subsidence and diffusional surface processes is solved using the Finite Element Method to investigate how the mechanical behaviour of brittle–ductile wedges influences the development of foreland basins. Results show that, depending mainly on the strength of the basal décollement, two end‐member types of foreland basin are possible. When the basal detachment is relatively strong, the foreland basin system is characterised by: (1) Highly asymmetrical orogen formed by thrusts concentrated in the incoming pro‐wedge. (2) Sedimentation on retro‐side takes place in one major foredeep basin which grows throughout orogen evolution. (3) Deposition on the pro‐side occurs initially in the foredeep, and continues in the wedge‐top before isolated basins are advected towards the orogen core where they become uplifted and exhumed. (4) Most pro‐wedge basins show an upward progression from low altitude, foredeep deposits at the base to high altitude, wedge‐top deposits near the surface. In contrast, when the basal detachment behaves weakly due to the presence of low viscosity material such as salt, the foreland basin system is characterised by (1) Broad, low relief orogen showing little preferential vergence and predominance of folding relative to faulting. (2) Deposition mainly in wedge‐top basins showing growth strata. (3) Many basins are initiated contemporaneously but form discontinuously due to the locus of active deformation jumping back and forth between different structures. Model results successfully reproduce first order observations of deforming brittle–ductile wedges and foreland basins. Moreover, the results support and provide a framework for understanding the existence of two main end‐member foreland basin types, simple and complex, associated with fold–thrust belts whose detachments are relatively strong and weak, respectively.  相似文献   

2.
Forward modeled, balanced cross sections that account for the flexural response to thrust loading and erosional unloading can verify and refine the kinematic sequence of deformation in fold‐thrust belts as well as help assess the validity of a balanced cross section. Results from flexural‐kinematic reconstructions that indicate either the cross section, the kinematic order or both are invalid include: (a) a predicted final topography that is dramatically different from the actual topography; (b) large normal fault or thrust fault bounded synorogenic basins that are not present in the mapped geology; and/or (c) an exhumation history that is not consistent with provenance records in the basin or measured thermochronometers. Where detailed measured foreland basin sections exist, flexural‐kinematic modeling of fold‐thrust belt deformation, including out‐of‐sequence (OOS) faults can predict a foreland basin evolution that can be compared to measured data. The modeling process creates a “pseudostratigraphy” in the modeled foreland. The pseudostratigraphy and predicted provenance of each modeled stratigraphic increment can be directly compared to measured stratigraphic sections. We present a case study using two cross sections through the Himalaya of far western Nepal (Api and Simikot) to assess the validity of the section geometries and the resulting kinematic histories, displacement rates, flexural wave response and predicted provenance for both sections. Insights from combining the flexural‐kinematic models with existing stratigraphic data include: (a) Changing the order of proposed OOS and normal faults to earlier in the evolution of the fold‐thrust belt was necessary to reproduce the foreland provenance data. We argue that OOS thrust and normal faults in the Api section occurred between 11 and 4 Ma. (b) Published shortening estimates for the Simikot cross section are too high (>50 km), resulting in unrealistic shortening rates up to 80 mm/yr between 25 and 20 Ma. (c) Flexural forward models with and without an additional sediment loading modeling step indicate that while sediment loading does not have a measurable effect on the magnitude and location of erosion within the fold‐thrust belt, it does have a small effect on accumulation rates and thus the predicted age of stratigraphic boundaries when compared to measured stratigraphic thicknesses and age. Thickness difference range from 0.2 to 0.5 km and can result in predicted age differences of ca. 1 Ma. Accounting for both flexural isostacy and erosion can eliminate unviable kinematic sequences and when combined with provenance data from measured stratigraphic sections, can provide insight into the order, age and rate of deformation.  相似文献   

3.
Pro- vs. retro-foreland basins   总被引:1,自引:0,他引:1  
Alpine‐type mountain belts formed by continental collision are characterised by a strong cross‐sectional asymmetry driven by the dominant underthrusting of one plate beneath the other. Such mountain belts are flanked on either side by two peripheral foreland basins, one over the underthrust plate and one over the over‐riding plate; these have been termed pro‐ and retro‐foreland basins, respectively. Numerical modelling that incorporates suitable tectonic boundary conditions, and models orogenesis from growth to a steady‐state form (i.e. where accretionary influx equals erosional outflux), predicts contrasting basin development to these two end‐member basin types. Pro‐foreland basins are characterised by: (1) Accelerating tectonic subsidence driven primarily by the translation of the basin fill towards the mountain belt at the convergence rate. (2) Stratigraphic onlap onto the cratonic margin at a rate at least equal to the plate convergence rate. (3) A basin infill that records the most recent development of the mountain belt with a preserved interval determined by the width of the basin divided by the convergence rate. In contrast, retro‐foreland basins are relatively stable, are not translated into the mountain belt once steady‐state is achieved, and are consequently characterised by: (1) A constant tectonic subsidence rate during growth of the thrust wedge, with zero tectonic subsidence during the steady‐state phase (i.e. ongoing accretion‐erosion, but constant load). (2) Relatively little stratigraphic onlap driven only by the growth of the retro‐wedge. (3) A basin fill that records the entire growth phase of the mountain belt, but only a condensed representation of steady‐state conditions. Examples of pro‐foreland basins include the Appalachian foredeep, the west Taiwan foreland basin, the North Alpine Foreland Basin and the Ebro Basin (southern Pyrenees). Examples of retro‐foreland basins include the South Westland Basin (Southern Alps, New Zealand), the Aquitaine Basin (northern Pyrenees), and the Po Basin (southern European Alps). We discuss how this new insight into the variability of collisional foreland basins can be used to better interpret mountain belt evolution and the hydrocarbon potential of these basins types.  相似文献   

4.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

5.
Tectonic subsidence and uplift may be recorded by concomitant sedimentation, not only from decompacted accumulation curves but also from the evolving depositional environment relative to sea level at the time. In thrust belts there are two types of processes capable of generating vertical movements, each with different wavelengths and amplitudes. Regional subsidence is driven by flexural loading by the orogenic hinterland, the thrust belt and accumulated sediments of the underlying foreland lithosphere. Within this flexure, the foreland thrust belt will generate areas of local uplift, notably at the crests of thrust anticlines. In this contribution we examine how these processes have interacted to influence relative sea level as recorded by late Neogene sediments in an array of basins developed above and adjacent to the Maghrebian thrust belt of central Sicily. Two particular periods are addressed, the late Tortonian to early Messinian (Terravecchia Formation) and early to early late Pliocene. The earlier of these is characterized by a deltaic complex that formed prograding depositional geometries, migrating into perched basins. Collectively, however, these units are transgressive and migrate back towards the orogen. A depositional model is presented that links the migration of facies belts to subsidence caused by accentuated tectonic loading in the hinterland and break-back thrust sequences across the basins. We infer that a palaeobathymetric profile of underfilled sub-basins resulted and that this influenced the pattern of evaporite accumulation during Mediterranean desiccation in Messinian times. The Pliocene sediments, accumulated under renewed global sea levels, prograded towards the foreland. A waning tectonic load in the hinterland driving isostatic rebound, uplift and coastal offlap is the proposed explanation. This contribution is a case history for the depositional evolution of dominantly submarine thrust systems and their record of relative sea-level changes.  相似文献   

6.
7.
The Eocene Hecho Group turbidite system of the Aínsa‐Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity‐bounded tectonostratigraphic units (TSU), consisting of quartz‐rich and feldspar‐poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU‐2, whereas calclithites and hybrid arenites occur in the overlying TSU‐3, TSU‐4 and TSU‐5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold‐and‐thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz‐rich and feldspar‐poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar‐rich and, to some extent, rock fragments‐rich sandstones), thrust‐and‐fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono‐stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins.  相似文献   

8.
Drainage networks link erosional landscapes and sedimentary basins in a source‐to‐sink system, controlling the spatial and temporal distribution of sediment flux at the outlets. Variations of accumulation rates in a sedimentary basin have been classically interpreted as changes in erosion rates driven by tectonics and/or climate. We studied the interactions between deformation, rainfall rate and the intrinsic dynamics of drainage basins in an experimental fold‐and‐thrust belt subjected to erosion and sedimentation under constant rainfall and shortening rates. The emergence of thrust sheets at the front of a prism may divert antecedent transverse channels (perpendicular to the structural grain) leading to the formation of longitudinal reaches, later uplifted and incorporated in the prism by the ongoing deformation. In the experiments, transverse incisions appear in the external slopes of the emerging thrust sheets. Headward erosion in these transverse channels results in divide migration and capture of the uplifted longitudinal channels located in the inner parts of the prism, leading to drainage network reorganization and modification of the sediment routing system. We show that the rate of drainage reorganization increases with the rainfall rate. It also increases in a nonlinear way with the rate of uplift. We explain this behaviour by an exponent > 1 on the slope variable in the framework of the stream power erosion model. Our results confirm the view that early longitudinal‐dominated networks are progressively replaced by transverse‐dominated rivers during mountain building. We show that drainage network dynamics modulate the distribution of sedimentary fluxes at the outlets of experimental wedges. We propose that under constant shortening and rainfall rates the drainage network reorganization can also modulate the composition and the spatial distribution of clastic fluxes in foreland basins.  相似文献   

9.
ABSTRACT Foreland basins form by lithospheric flexure under orogenic loading and are filled by surface transport of sediment. This work readdresses the interplay between these processes by integrating in a 3D numerical model: the mechanisms of thrust stacking, elastic flexural subsidence and sediment transport along the drainage network. The experiments show that both crustal tectonic deformation and vertical movements related to lithospheric flexure control and organise the basin-scale drainage pattern, competing with the nonlinear, unpredictable intrinsic nature of river network evolution. Drainage pattern characteristics are predicted that match those observed in many foreland basins, such as the axial drainage, the distal location of the main river within the basin, and the formation of large, long-lasting lacustrine systems. In areas where the river network is not well developed before the formation of the basin, these lithospheric flexural effects on drainage patterns may be enhanced by the role of the forebulge uplift as drainage divide. Inversely, fluvial transport modifies the flexural vertical movements differently than simpler transport models (e.g. diffusion): Rivers can drive erosion products far from a filled basin, amplifying the erosional rebound of both orogen and basin. The evolution of the sediment budget between orogen and basin is strongly dependent on this coupling between flexure and fluvial transport: Maximum sediment accumulations on the foreland are predicted for a narrow range of lithospheric elastic thickness between 15 and 40 km, coinciding with the T e values most commonly reported for foreland basins.  相似文献   

10.
ABSTRACT Fluvial megafans chronicle the evolution of large mountainous drainage networks, providing a record of erosional denudation in adjacent mountain belts. An actualistic investigation of the development of fluvial megafans is presented here by comparing active fluvial megafans in the proximal foreland basin of the central Andes to Tertiary foreland‐basin deposits exposed in the interior of the mountain belt. Modern fluvial megafans of the Chaco Plain of southern Bolivia are large (5800–22 600 km2), fan‐shaped masses of dominantly sand and mud deposited by major transverse rivers (Rio Grande, Rio Parapeti, and Rio Pilcomayo) emanating from the central Andes. The rivers exit the mountain belt and debouch onto the low‐relief Chaco Plain at fixed points along the mountain front. On each fluvial megafan, the presently active channel is straight in plan view and dominated by deposition of mid‐channel and bank‐attached sand bars. Overbank areas are characterized by crevasse‐splay and paludal deposition with minor soil development. However, overbank areas also contain numerous relicts of recently abandoned divergent channels, suggesting a long‐term distributary drainage pattern and frequent channel avulsions. The position of the primary channel on each megafan is highly unstable over short time scales. Fluvial megafans of the Chaco Plain provide a modern analogue for a coarsening‐upward, > 2‐km‐thick succession of Tertiary strata exposed along the Camargo syncline in the Eastern Cordillera of the central Andean fold‐thrust belt, about 200 km west of the modern megafans. Lithofacies of the mid‐Tertiary Camargo Formation include: (1) large channel and small channel deposits interpreted, respectively, as the main river stem on the proximal megafan and distributary channels on the distal megafan; and (2) crevasse‐splay, paludal and palaeosol deposits attributed to sedimentation in overbank areas. A reversal in palaeocurrents in the lowermost Camargo succession and an overall upward coarsening and thickening trend are best explained by progradation of a fluvial megafan during eastward advance of the fold‐thrust belt. In addition, the present‐day drainage network in this area of the Eastern Cordillera is focused into a single outlet point that coincides with the location of the coarsest and thickest strata of the Camargo succession. Thus, the modern drainage network may be inherited from an ancestral mid‐Tertiary drainage network. Persistence and expansion of Andean drainage networks provides the basis for a geometric model of the evolution of drainage networks in advancing fold‐thrust belts and the origin and development of fluvial megafans. The model suggests that fluvial megafans may only develop once a drainage network has reached a particular size, roughly 104 km2– a value based on a review of active fluvial megafans that would be affected by the tectonic, climatic and geomorphologic processes operating in a given mountain belt. Furthermore, once a drainage network has achieved this critical size, the river may have sufficient stream power to prove relatively insensitive to possible geometric changes imparted by growing frontal structures in the fold‐thrust belt.  相似文献   

11.
Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia–Eurasia collision zone offer the unique possibility to study middle–late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long‐term evolution of the Iranian Plateau, including the regional spatio‐temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle–late Miocene crustal shortening and thickening processes led to the growth of a basement‐cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland‐basin (Great Pari Basin) to the east between 16.5 and 10.7 Ma. By 10.7 Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement‐cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle‐flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.  相似文献   

12.
We present field and seismic evidence for the existence of Coniacian–Campanian syntectonic angular unconformities within basal foreland basin sequences of the Austral or Magallanes Basin, with implications for the understanding of deformation and sedimentation in the southern Patagonian Andes. The studied sequences belong to the mainly turbiditic Upper Cretaceous Cerro Toro Formation that includes a world‐class example of conglomerate‐filled deep‐water channel bodies deposited in an axial foredeep depocentre. We present multiple evidence of syntectonic deposition showing that the present internal domain of the fold‐thrust belt was an active Coniacian–Campanian wedge‐top depozone where deposition of turbidites and conglomerate channels of Cerro Toro took place. Cretaceous synsedimentary deformation was dominated by positive inversion of Jurassic extensional structures that produced elongated axial submarine trenches separated by structural highs controlling the development and distribution of axial channels. The position of Coniacian‐Campanian unconformities indicates a ca. 50–80 km advance of the orogenic front throughout the internal domain, implying that Late Cretaceous deformation was more significant in terms of widening the orogenic wedge than all subsequent Andean deformation stages. This south Patagonian orogenic event can be related to compressional stresses generated by the combination of both the collision of the western margin of Rocas Verdes Basin during its closure, and Atlantic ridge push forces due to its accelerated opening, during a global‐scale plate reorganization event.  相似文献   

13.
The Andean Orogen is the type‐example of an active Cordilleran style margin with a long‐lived retroarc fold‐and‐thrust belt and foreland basin. Timing of initial shortening and foreland basin development in Argentina is diachronous along‐strike, with ages varying by 20–30 Myr. The Neuquén Basin (32°S to 40°S) contains a thick sedimentary sequence ranging in age from late Triassic to Cenozoic, which preserves a record of rift, back arc and foreland basin environments. As much of the primary evidence for initial uplift has been overprinted or covered by younger shortening and volcanic activity, basin strata provide the most complete record of early mountain building. Detailed sedimentology and new maximum depositional ages obtained from detrital zircon U–Pb analyses from the Malargüe fold‐and‐thrust belt (35°S) record a facies change between the marine evaporites of the Huitrín Formation (ca. 122 Ma) and the fluvial sandstones and conglomerates of the Diamante Formation (ca. 95 Ma). A 25–30 Myr unconformity between the Huitrín and Diamante formations represents the transition from post‐rift thermal subsidence to forebulge erosion during initial flexural loading related to crustal shortening and uplift along the magmatic arc to the west by at least 97 ± 2 Ma. This change in basin style is not marked by any significant difference in provenance and detrital zircon signature. A distinct change in detrital zircons, sandstone composition and palaeocurrent direction from west‐directed to east‐directed occurs instead in the middle Diamante Formation and may reflect the Late Cretaceous transition from forebulge derived sediment in the distal foredeep to proximal foredeep material derived from the thrust belt to the west. This change in palaeoflow represents the migration of the forebulge, and therefore, of the foreland basin system between 80 and 90 Ma in the Malargüe area.  相似文献   

14.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   

15.
Structural development of Neogene basins in western Greece   总被引:3,自引:0,他引:3  
Abstract An account is given of the structural setting of the various Neogene sedimentary basins of western Greece. Compressional basins are attributable to foreland loading by the Alpine fold and thrust belt of the Outer Hellenides, and to active subduction in the adjacent western Hellenic arc. Late extensional basins are related to N-S crustal extension in the Aegean marginal basin and, in western Greece, are superimposed on the earlier compressional structures. The local seismicity provides evidence that the main E-W-trending basin-bounding faults of the extensional basins form a linked system that includes NW-SE- and NE-SW-trending transfer zones of transtension. The transfer zones are themselves the sites of small extensional basins.  相似文献   

16.
The Xunhua, Guide and Tongren intermontane basin system in the NE Tibetan Plateau, situated near the Xining basin to the N and the Linxia basin to the E, is bounded by thrust fault‐controlled ranges. These include to the N, the Riyue Shan, Laji Shan and Jishi Shan ranges, and to the S the northern West Qinling Shan (NWQ). An integrated study of the structural geology, sedimentology and provenance of the Cenozoic Xunhua and Guide basins provides a detailed record of the growth of the NE Tibetan Plateau since the early Eocene. The Xining Group (ca. 52–21 Ma) is interpreted as consisting of unified foreland basin deposits which were controlled by the bounding thrust belt of the NWQ. The Xunhua, Guide and Xining subbasins were interconnected prior to later uplift and damming by the Laji Shan and Jishi Shan ranges. Their sediment source, the NWQ, is constrained by strong unidirectional paleocurrent trends towards the N, a northward fining lithology, distinct and recognizable clast types and detrital zircon ages. Collectively, formation of this mountain–basin system indicates that the Tibetan Plateau expanded into the NWQ at a time roughly coinciding with Eocene to earliest Miocene continental collision between India and Eurasia. The Guide Group (ca. 21–1.8 Ma) is inferred to have been deposited in the separate Xunhua, Guide and Tongren broken foreland basins. Each basin was filled by locally sourced alluvial fans, braided streams and deltaic‐lacustrine systems. Structural, paleogeographic, paleocurrent and provenance data indicate that thrust faulting in the NWQ stepped northward to the Laji Shan from ca. 21 to 16 Ma. This northward shift was accompanied by E–W shortening related to nearly N–S‐striking thrust faulting in Jishi Shan after 11–13 Ma. A lower Pleistocene conglomerate (1.8–1.7 Ma) was deposited by a through‐flowing river system in the overfilled and connected Guide and Xunhua basins following the termination of thrust activity. All of the basin–mountain zones developed along the Tibetan Plateau's NE margin since Indian–Tibetan continental collision may have been driven by collision‐induced basal drag of old slab remnants in the manner of N‐dipping and flat‐slab subduction, and their subsequent sinking into the deep mantle.  相似文献   

17.
The Paradox Basin is a large (190 km × 265 km) asymmetric basin that developed along the southwestern flank of the basement‐involved Uncompahgre uplift in Utah and Colorado, USA during the Pennsylvanian–Permian Ancestral Rocky Mountain (ARM) orogenic event. Previously interpreted as a pull‐apart basin, the Paradox Basin more closely resembles intraforeland flexural basins such as those that developed between the basement‐cored uplifts of the Late Cretaceous–Eocene Laramide orogeny in the western interior USA. The shape, subsidence history, facies architecture, and structural relationships of the Uncompahgre–Paradox system are exemplary of typical ‘immobile’ foreland basin systems. Along the southwest‐vergent Uncompahgre thrust, ~5 km of coarse‐grained syntectonic Desmoinesian–Wolfcampian (mid‐Pennsylvanian to early Permian; ~310–260 Ma) sediments were shed from the Uncompahgre uplift by alluvial fans and reworked by aeolian‐modified fluvial megafan deposystems in the proximal Paradox Basin. The coeval rise of an uplift‐parallel barrier ~200 km southwest of the Uncompahgre front restricted reflux from the open ocean south and west of the basin, and promoted deposition of thick evaporite‐shale and biohermal carbonate facies in the medial and distal submarine parts of the basin, respectively. Nearshore carbonate shoal and terrestrial siliciclastic deposystems overtopped the basin during the late stages of subsidence during the Missourian through Wolfcampian (~300–260 Ma) as sediment flux outpaced the rate of generation of accommodation space. Reconstruction of an end‐Permian two‐dimensional basin profile from seismic, borehole, and outcrop data depicts the relationship of these deposystems to the differential accommodation space generated by Pennsylvanian–Permian subsidence, highlighting the similarities between the Paradox basin‐fill and that of other ancient and modern foreland basins. Flexural modeling of the restored basin profile indicates that the Paradox Basin can be described by flexural loading of a fully broken continental crust by a model Uncompahgre uplift and accompanying synorogenic sediments. Other thrust‐bounded basins of the ARM have similar basin profiles and facies architectures to those of the Paradox Basin, suggesting that many ARM basins may share a flexural geodynamic mechanism. Therefore, plate tectonic models that attempt to explain the development of ARM uplifts need to incorporate a mechanism for the widespread generation of flexural basins.  相似文献   

18.
The Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.  相似文献   

19.
Locating and quantifying overpressures are essential to understand basin evolution and hydrocarbon migration in deep basins and thickly sedimented continental margins. Overpressures influence sediment cohesion and hence fault slip in seismically active areas or failure on steep slopes, and may drive catastrophic fluid expulsion. They also represent a significant drilling hazard. Here, we present a method to calculate the pore pressure due to disequilibrium compaction. Our method provides an estimate of the compaction factor, surface porosity and sedimentation rate of each layer in a sediment column using a decompaction model and the constraints imposed by seismic data and geological observations. For a range of surface porosities, an ad hoc iterative equation determines the compaction factor that gives a calculated layer thickness that matches the observed thickness within a tolerance. The surface porosity and compaction factor are then used to obtain a density profile and a corresponding estimate of P‐wave velocity (Vp). The selected parameters are those that give a good match with both the observed and calculated layer thicknesses and Vp profiles. We apply our method to the centre of the Eastern Black Sea Basin (EBSB), where overpressures have been linked to a low‐velocity zone (LVZ) at ca. 5500–8500 m depth. These overpressures were generated by the relatively high sedimentation rate of ca. 0.28 m ka?1 of the low permeability organic‐rich Maikop formation at 33.9–20.5 Ma and an even higher sedimentation rate of ca. 0.85 m ka?1 at 13–11 Ma. We estimate a maximum pore pressure of ca. 138 MPa at ca. 8285 m depth, associated with a ratio of overpressure to vertical effective stress in hydrostatic conditions () of ca. 0.7. These values are lower than those presented in a previous study for the same area.  相似文献   

20.
This paper discusses the Cenozoic interaction of regional tectonics and climate changes. These processes were responsible for mass flux from mountain belts to depositional basins in the eastern Alpine retro‐foreland basin (Venetian–Friulian Basin). Our discussion is based on the depositional architecture and basin‐scale depositional rate curves obtained from the decompacted thicknesses of stratigraphic units. We compare these data with the timing of tectonic deformation in the surrounding mountain ranges and the chronology of both long‐term trends and short‐term high‐magnitude (‘aberrant’) episodes of climate change. Our results confirm that climate forcing (and especially aberrant episodes) impacted the depositional evolution of the basin, but that tectonics was the main factor driving sediment flux in the basin up to the Late Miocene. The depositional rate remained below 0.1 mm year?1 on average from the Eocene to the Miocene, peaking at around 0.36 mm year?1, during periods of maximum tectonic activity in the eastern Southern Alps. This dynamic strongly changed during the Pliocene–Pleistocene, when the basin‐scale depositional rate increased to an average of 0.26 mm year?1 (Pliocene) and 0.73 mm year?1 (Pleistocene). This result fits nicely with the long‐term global cooling trend recorded during this time interval. Nevertheless, we note that the timing of the observed increase may be connected with the presumed onset of major glaciations in the southern flank of the Alps (0.7–0.9 Ma), the acceleration of the global cooling trend (since 3–4 Ma) and climate variability (in terms of magnitude and frequency). All these factors suggest that combined high‐frequency and high‐magnitude cooling–warming cycles are particularly powerful in promoting erosion in mid‐latitude mountain belts and therefore in increasing the sediment flux in foreland basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号