首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The quantification of uncertainty in the simulations from complex physically based distributed hydrologic models is important for developing reliable applications. The generalized likelihood uncertainty estimation method (GLUE) is one of the most commonly used methods in the field of hydrology. The GLUE helps reduce the parametric uncertainty by deriving the probability distribution function of parameters, and help analyze the uncertainty in model output. In the GLUE, the uncertainty of model output is analyzed through Monte Carlo simulations, which require large number of model runs. This induces high computational demand for the GLUE to characterize multi-dimensional parameter space, especially in the case of complex hydrologic models with large number of parameters. While there are a lot of variants of GLUE that derive the probability distribution of parameters, none of them have addressed the computational requirement in the analysis. A method to reduce such computational requirement for GLUE is proposed in this study. It is envisaged that conditional sampling, while generating ensembles for the GLUE, can help reduce the number of model simulations. The mutual relationship between the parameters was used for conditional sampling in this study. The method is illustrated using a case study of Soil and Water Assessment Tool (SWAT) model on a watershed in the USA. The number of simulations required for the uncertainty analysis was reduced by 90 % in the proposed method compared to existing methods. The proposed method also resulted in an uncertainty reduction in terms of reduced average band width and high containing ratio.  相似文献   

2.
Hydrological and statistical models are playing an increasing role in hydrological forecasting, particularly for river basins with data of different temporal scales. In this study, statistical models, e.g. artificial neural networks, adaptive network-based fuzzy inference system, genetic programming, least squares support vector machine, multiple linear regression, were developed, based on parametric optimization methods such as particle swarm optimization (PSO), genetic algorithm (GA), and data-preprocessing techniques such as wavelet decomposition (WD) for river flow modelling using daily streamflow data from four hydrological stations for a period of 1954–2009. These models were used for 1-, 3- and 5-day streamflow forecasting and the better model was used for uncertainty evaluation using bootstrap resampling method. Meanwhile, a simple conceptual hydrological model GR4J was used to evaluate parametric uncertainty based on generalized likelihood uncertainty estimation method. Results indicated that: (1) GA and PSO did not help improve the forecast performance of the model. However, the hybrid model with WD significantly improved the forecast performance; (2) the hybrid model with WD as a data preprocessing procedure can clarify hydrological effects of water reservoirs and can capture peak high/low flow changes; (3) Forecast accuracy of data-driven models is significantly influenced by the availability of streamflow data. More human interferences from the upper to the lower East River basin can help to introduce greater uncertainty in streamflow forecasts; (4) The structure of GR4J may introduce larger parametric uncertainty at the Longchuan station than at the Boluo station in the East river basin. This study provides a theoretical background for data-driven model-based streamflow forecasting and a comprehensive view about data and parametric uncertainty in data-scarce river basins.  相似文献   

3.
This paper presents a Bayesian non-parametric method based on Gaussian Process (GP) regression to derive ground-motion models for peak-ground parameters and response spectral ordinates. Due to its non-parametric nature there is no need to specify any fixed functional form as in parametric regression models. A GP defines a distribution over functions, which implicitly expresses the uncertainty over the underlying data generating process. An advantage of GP regression is that it is possible to capture the whole uncertainty involved in ground-motion modeling, both in terms of aleatory variability as well as epistemic uncertainty associated with the underlying functional form and data coverage. The distribution over functions is updated in a Bayesian way by computing the posterior distribution of the GP after observing ground-motion data, which in turn can be used to make predictions. The proposed GP regression models is evaluated on a subset of the RESORCE data base for the SIGMA project. The experiments show that GP models have a better generalization error than a simple parametric regression model. A visual assessment of different scenarios demonstrates that the inferred GP models are physically plausible.  相似文献   

4.
ABSTRACT

The problem of estimation of suspended load carried by a river is an important topic for many water resources projects. Conventional estimation methods are based on the assumption of exact observations. In practice, however, a major source of natural uncertainty is due to imprecise measurements and/or imprecise relationships between variables. In this paper, using the Multivariate Adaptive Regression Splines (MARS) technique, a novel fuzzy regression model for imprecise response and crisp explanatory variables is presented. The investigated fuzzy regression model is applied to forecast suspended load by discharge based on two real-world datasets. The accuracy of the proposed method is compared with two well-known parametric fuzzy regression models, namely, the fuzzy least-absolutes model and the fuzzy least-squares model. The comparison results reveal that the MARS-fuzzy regression model performs better than the other models in suspended load estimation for the particular datasets. This comparison is done based on four goodness-of-fit criteria: the criterion based on similarity measure, the criterion based on absolute errors and the two objective functions of the fuzzy least-absolutes model and the fuzzy least-squares model. The proposed model is general and can be used for modelling natural phenomena whose available observations are reported as imprecise rather than crisp.
Editor D. Koutsoyiannis; Associate editor H. Aksoy  相似文献   

5.
任梦依  刘哲 《地震学报》2022,44(6):1035-1048
基于广义帕累托分布构建地震活动性模型,因其输入参数取值难以避免不确定性,导致依据该模型所得的地震危险性估计结果具有不确定性。鉴于此,本文选取青藏高原东北缘为研究区,提出了基于全域敏感性分析的地震危险性估计的不确定性分析流程和方法。首先,利用地震活动性广义帕累托模型,进行研究区地震危险性估计;然后,选取地震记录的起始时间和震级阈值作为地震活动性模型的输入参数,采用具有全域敏感性分析功能的E-FAST方法,对上述两个参数的不确定性以及两参数之间的相互作用对地震危险性估计不确定性的影响进行定量分析。结果表明:地震危险性估计结果(不同重现期的震级重现水平、震级上限及相应的置信区间)对两个输入参数中的震级阈值更为敏感;不同重现期的地震危险性估计结果对震级阈值的敏感程度不同;对不同的重现期而言,在影响地震危险性估计结果的不确定性上,两个输入参数之间存在非线性效应,且非线性效应程度不同。本文提出的不确定性分析流程和方法,可以推广应用于基于其它类型地震活动性模型的地震危险性估计不确定性分析。   相似文献   

6.
The physically based distributed hydrological models are ideal for hydrological simulations; however most of such models do not use the basic equations pertaining to mass, energy and momentum conservation, to represent the physics of the process. This is plausibly due to the lack of complete understanding of the hydrological process. The soil and water assessment tool (SWAT) is one such widely accepted semi-distributed, conceptual hydrological model used for water resources planning. However, the over-parameterization, difficulty in its calibration process and the uncertainty associated with predictions make its applications skeptical. This study considers assessing the predictive uncertainty associated with distributed hydrological models. The existing methods for uncertainty estimation demand high computational time and therefore make them challenging to apply on complex hydrological models. The proposed approach employs the concepts of generalized likelihood uncertainty estimation (GLUE) in an iterative procedure by starting with an assumed prior probability distribution of parameters, and by using mutual information (MI) index for sampling the behavioral parameter set. The distributions are conditioned on the observed information through successive cycles of simulations. During each cycle of simulation, MI is used in conjunction with Markov Chain Monte Carlo procedure to sample the parameter sets so as to increase the number of behavioral sets, which in turn helps reduce the number of cycles/simulations for the analysis. The method is demonstrated through a case study of SWAT model in Illinois River basin in the USA. A comparison of the proposed method with GLUE indicates that the computational requirement of uncertainty analysis is considerably reduced in the proposed approach. It is also noted that the model prediction band, derived using the proposed method, is more effective compared to that derived using the other methods considered in this study.  相似文献   

7.
There are two basic approaches for estimating flood quantiles: a parametric and a nonparametric method. In this study, the comparisons of parametric and nonparametric models for annual maximum flood data of Goan gauging station in Korea were performed based on Monte Carlo simulation. In order to consider uncertainties that can arise from model and data errors, kernel density estimation for fitting the sampling distributions was chosen to determine safety factors (SFs) that depend on the probability model used to fit the real data. The relative biases of Sheater and Jones plug-in (SJ) are the smallest in most cases among seven bandwidth selectors applied. The relative root mean square errors (RRMSEs) of the Gumbel (GUM) are smaller than those of any other models regardless of parent models considered. When the Weibull-2 is assumed as a parent model, the RRMSEs of kernel density estimation are relatively small, while those of kernel density estimation are much bigger than those of parametric methods for other parent models. However, the RRMSEs of kernel density estimation within interpolation range are much smaller than those for extrapolation range in comparison with those of parametric methods. Among the applied distributions, the GUM model has the smallest SFs for all parent models, and the general extreme value model has the largest values for all parent models considered.  相似文献   

8.
This study describes the parametric uncertainty of artificial neural networks (ANNs) by employing the generalized likelihood uncertainty estimation (GLUE) method. The ANNs are used to forecast daily streamflow for three sub-basins of the Rhine Basin (East Alpine, Main, and Mosel) having different hydrological and climatological characteristics. We have obtained prior parameter distributions from 5000 ANNs in the training period to capture the parametric uncertainty and subsequently 125,000 correlated parameter sets were generated. These parameter sets were used to quantify the uncertainty in the forecasted streamflow in the testing period using three uncertainty measures: percentage of coverage, average relative length, and average asymmetry degree. The results indicated that the highest uncertainty was obtained for the Mosel sub-basin and the lowest for the East Alpine sub-basin mainly due to hydro-climatic differences between these basins. The prediction results and uncertainty estimates of the proposed methodology were compared to the direct ensemble and bootstrap methods. The GLUE method successfully captured the observed discharges with the generated prediction intervals, especially the peak flows. It was also illustrated that uncertainty bands are sensitive to the selection of the threshold value for the Nash–Sutcliffe efficiency measure used in the GLUE method by employing the Wilcoxon–Mann–Whitney test.  相似文献   

9.
Stauffer F 《Ground water》2005,43(6):843-849
A method is proposed to estimate the uncertainty of the location of pathlines in two-dimensional, steady-state confined or unconfined flow in aquifers due to the uncertainty of the spatially variable unconditional hydraulic conductivity or transmissivity field. The method is based on concepts of the semianalytical first-order theory given in Stauffer et al. (2002, 2004), which allows estimates of the lateral second moment (variance) of the location of a moving particle. However, this method is reformulated in order to account for nonuniform recharge and nonuniform aquifer thickness. One prominent application is the uncertainty estimation of the catchment of a pumping well by considering the boundary pathlines starting at a stagnation point. In this method, the advective transport of particles is considered, based on the velocity field. In the case of a well catchment, backtracking is applied by using the reversed velocity field. Spatial variability of hydraulic conductivity or transmissivity is considered by taking into account an isotropic exponential covariance function of log-transformed values with parameters describing the variance and correlation length. The method allows postprocessing of results from ground water models with respect to uncertainty estimation. The code PPPath, which was developed for this purpose, provides a postprocessing of pathline computations under PMWIN, which is based on MODFLOW. In order to test the methodology, it was applied to results from Monte Carlo simulations for catchments of pumping wells. The results correspond well. Practical applications illustrate the use of the method in aquifers.  相似文献   

10.
This paper investigates the effects of uncertainty in rock-physics models on reservoir parameter estimation using seismic amplitude variation with angle and controlled-source electromagnetics data. The reservoir parameters are related to electrical resistivity by the Poupon model and to elastic moduli and density by the Xu-White model. To handle uncertainty in the rock-physics models, we consider their outputs to be random functions with modes or means given by the predictions of those rock-physics models and we consider the parameters of the rock-physics models to be random variables defined by specified probability distributions. Using a Bayesian framework and Markov Chain Monte Carlo sampling methods, we are able to obtain estimates of reservoir parameters and information on the uncertainty in the estimation. The developed method is applied to a synthetic case study based on a layered reservoir model and the results show that uncertainty in both rock-physics models and in their parameters may have significant effects on reservoir parameter estimation. When the biases in rock-physics models and in their associated parameters are unknown, conventional joint inversion approaches, which consider rock-physics models as deterministic functions and the model parameters as fixed values, may produce misleading results. The developed stochastic method in this study provides an integrated approach for quantifying how uncertainty and biases in rock-physics models and in their associated parameters affect the estimates of reservoir parameters and therefore is a more robust method for reservoir parameter estimation.  相似文献   

11.
The National Weather Service (NWS) uses the SNOW17 model to forecast snow accumulation and ablation processes in snow-dominated watersheds nationwide. Successful application of the SNOW17 relies heavily on site-specific estimation of model parameters. The current study undertakes a comprehensive sensitivity and uncertainty analysis of SNOW17 model parameters using forcing and snow water equivalent (SWE) data from 12 sites with differing meteorological and geographic characteristics. The Generalized Sensitivity Analysis and the recently developed Differential Evolution Adaptive Metropolis (DREAM) algorithm are utilized to explore the parameter space and assess model parametric and predictive uncertainty. Results indicate that SNOW17 parameter sensitivity and uncertainty generally varies between sites. Of the six hydroclimatic characteristics studied, only air temperature shows strong correlation with the sensitivity and uncertainty ranges of two parameters, while precipitation is highly correlated with the uncertainty of one parameter. Posterior marginal distributions of two parameters are also shown to be site-dependent in terms of distribution type. The SNOW17 prediction ensembles generated by the DREAM-derived posterior parameter sets contain most of the observed SWE. The proposed uncertainty analysis provides posterior parameter information on parameter uncertainty and distribution types that can serve as a foundation for a data assimilation framework for hydrologic models.  相似文献   

12.
J. J. Yu  X. S. Qin  O. Larsen 《水文研究》2015,29(6):1267-1279
A generalized likelihood uncertainty estimation (GLUE) method incorporating moving least squares (MLS) with entropy for stochastic sampling (denoted as GLUE‐MLS‐E) was proposed for uncertainty analysis of flood inundation modelling. The MLS with entropy (MLS‐E) was established according to the pairs of parameters/likelihoods generated from a limited number of direct model executions. It was then applied to approximate the model evaluation to facilitate the target sample acceptance of GLUE during the Monte‐Carlo‐based stochastic simulation process. The results from a case study showed that the proposed GLUE‐MLS‐E method had a comparable performance as GLUE in terms of posterior parameter estimation and predicted confidence intervals; however, it could significantly reduce the computational cost. A comparison to other surrogate models, including MLS, quadratic response surface and artificial neural networks (ANN), revealed that the MLS‐E outperformed others in light of both the predicted confidence interval and the most likely value of water depths. ANN was shown to be a viable alternative, which performed slightly poorer than MLS‐E. The proposed surrogate method in stochastic sampling is of practical significance in computationally expensive problems like flood risk analysis, real‐time forecasting, and simulation‐based engineering design, and has a general applicability in many other numerical simulation fields that requires extensive efforts in uncertainty assessment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
F. Ashkar 《水文科学杂志》2013,58(6):1092-1106
Abstract

The potential is investigated of the generalized regression neural networks (GRNN) technique in modelling of reference evapotranspiration (ET0) obtained using the FAO Penman-Monteith (PM) equation. Various combinations of daily climatic data, namely solar radiation, air temperature, relative humidity and wind speed, are used as inputs to the ANN so as to evaluate the degree of effect of each of these variables on ET0. In the first part of the study, a comparison is made between the estimates provided by the GRNN and those obtained by the Penman, Hargreaves and Ritchie methods as implemented by the California Irrigation Management System (CIMIS). The empirical models were calibrated using the standard FAO PM ET0 values. The GRNN estimates are also compared with those of the calibrated models. Mean square error, mean absolute error and determination coefficient statistics are used as comparison criteria for the evaluation of the model performances. The GRNN technique (GRNN 1) whose inputs are solar radiation, air temperature, relative humidity and wind speed, gave mean square errors of 0.058 and 0.032 mm2 day?2, mean absolute errors of 0.184 and 0.127 mm day?1, and determination coefficients of 0.985 and 0.986 for the Pomona and Santa Monica stations (Los Angeles, USA), respectively. Based on the comparisons, it was found that the GRNN 1 model could be employed successfully in modelling the ET0 process. The second part of the study investigates the potential of the GRNN and the empirical methods in ET0 estimation using the nearby station data. Among the models, the calibrated Hargreaves was found to perform better than the others.  相似文献   

14.
In the last few decades hydrologists have made tremendous progress in using dynamic simulation models for the analysis and understanding of hydrologic systems. However, predictions with these models are often deterministic and as such they focus on the most probable forecast, without an explicit estimate of the associated uncertainty. This uncertainty arises from incomplete process representation, uncertainty in initial conditions, input, output and parameter error. The generalized likelihood uncertainty estimation (GLUE) framework was one of the first attempts to represent prediction uncertainty within the context of Monte Carlo (MC) analysis coupled with Bayesian estimation and propagation of uncertainty. Because of its flexibility, ease of implementation and its suitability for parallel implementation on distributed computer systems, the GLUE method has been used in a wide variety of applications. However, the MC based sampling strategy of the prior parameter space typically utilized in GLUE is not particularly efficient in finding behavioral simulations. This becomes especially problematic for high-dimensional parameter estimation problems, and in the case of complex simulation models that require significant computational time to run and produce the desired output. In this paper we improve the computational efficiency of GLUE by sampling the prior parameter space using an adaptive Markov Chain Monte Carlo scheme (the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm). Moreover, we propose an alternative strategy to determine the value of the cutoff threshold based on the appropriate coverage of the resulting uncertainty bounds. We demonstrate the superiority of this revised GLUE method with three different conceptual watershed models of increasing complexity, using both synthetic and real-world streamflow data from two catchments with different hydrologic regimes.  相似文献   

15.
A new fault classification/diagnosis method based on artificial immune system(AIS) algorithms for the structural systems is proposed. In order to improve the accuracy of the proposed method, i.e., higher success rate, Gaussian and non-Gaussian noise generating models are applied to simulate environmental noise. The identification of noise model, known as training process, is based on the estimation of the noise model parameters by genetic algorithms(GA) utilizing real experimental features. The proposed fault classification/diagnosis algorithm is applied to the noise contaminated features. Then, the results are compared to that obtained without noise modeling. The performance of the proposed method is examined using three laboratory case studies in two healthy and damaged conditions. Finally three different types of noise models are studied and it is shown experimentally that the proposed algorithm with non-Gaussian noise modeling leads to more accurate clustering of memory cells as the major part of the fault classification procedure.  相似文献   

16.
This study evaluates alternative groundwater models with different recharge and geologic components at the northern Yucca Flat area of the Death Valley Regional Flow System (DVRFS), USA. Recharge over the DVRFS has been estimated using five methods, and five geological interpretations are available at the northern Yucca Flat area. Combining the recharge and geological components together with additional modeling components that represent other hydrogeological conditions yields a total of 25 groundwater flow models. As all the models are plausible given available data and information, evaluating model uncertainty becomes inevitable. On the other hand, hydraulic parameters (e.g., hydraulic conductivity) are uncertain in each model, giving rise to parametric uncertainty. Propagation of the uncertainty in the models and model parameters through groundwater modeling causes predictive uncertainty in model predictions (e.g., hydraulic head and flow). Parametric uncertainty within each model is assessed using Monte Carlo simulation, and model uncertainty is evaluated using the model averaging method. Two model-averaging techniques (on the basis of information criteria and GLUE) are discussed. This study shows that contribution of model uncertainty to predictive uncertainty is significantly larger than that of parametric uncertainty. For the recharge and geological components, uncertainty in the geological interpretations has more significant effect on model predictions than uncertainty in the recharge estimates. In addition, weighted residuals vary more for the different geological models than for different recharge models. Most of the calibrated observations are not important for discriminating between the alternative models, because their weighted residuals vary only slightly from one model to another.  相似文献   

17.
The estimation of missing rainfall data is an important problem for data analysis and modelling studies in hydrology. This paper develops a Bayesian method to address missing rainfall estimation from runoff measurements based on a pre-calibrated conceptual rainfall–runoff model. The Bayesian method assigns posterior probability of rainfall estimates proportional to the likelihood function of measured runoff flows and prior rainfall information, which is presented by uniform distributions in the absence of rainfall data. The likelihood function of measured runoff can be determined via the test of different residual error models in the calibration phase. The application of this method to a French urban catchment indicates that the proposed Bayesian method is able to assess missing rainfall and its uncertainty based only on runoff measurements, which provides an alternative to the reverse model for missing rainfall estimates.  相似文献   

18.
Artificial neural network (ANN) has been demonstrated to be a promising modelling tool for the improved prediction/forecasting of hydrological variables. However, the quantification of uncertainty in ANN is a major issue, as high uncertainty would hinder the reliable application of these models. While several sources have been ascribed, the quantification of input uncertainty in ANN has received little attention. The reason is that each measured input quantity is likely to vary uniquely, which prevents quantification of a reliable prediction uncertainty. In this paper, an optimization method, which integrates probabilistic and ensemble simulation approaches, is proposed for the quantification of input uncertainty of ANN models. The proposed approach is demonstrated through rainfall-runoff modelling for the Leaf River watershed, USA. The results suggest that ignoring explicit quantification of input uncertainty leads to under/over estimation of model prediction uncertainty. It also facilitates identification of appropriate model parameters for better characterizing the hydrological processes.  相似文献   

19.
In many studies, the distribution of soil attributes depends on both spatial location and environmental factors, and prediction and process identification are performed using existing methods such as kriging. However, it is often too restrictive to model soil attributes as dependent on a known, parametric function of environmental factors, which kriging typically assumes. This paper investigates a semiparametric approach for identifying and modeling the nonlinear relationships of spatially dependent soil constituent levels with environmental variables and obtaining point and interval predictions over a spatial region. Frequentist and Bayesian versions of the proposed method are applied to measured soil nitrogen levels throughout Florida, USA and are compared to competing models, including frequentist and Bayesian kriging, based an array of point and interval measures of out-of-sample forecast quality. The semiparametric models outperformed competing models in all cases. Bayesian semiparametric models yielded the best predictive results and provided empirical coverage probability nearly equal to nominal.  相似文献   

20.
Watershed water quality models are increasingly used in management. However, simulations by such complex models often involve significant uncertainty, especially those for non-conventional pollutants which are often poorly monitored. This study first proposed an integrated framework for watershed water quality modeling. Within this framework, Probabilistic Collocation Method (PCM) was then applied to a WARMF model of diazinon pollution to assess the modeling uncertainty. Based on PCM, a global sensitivity analysis method named PCM-VD (VD stands for variance decomposition) was also developed, which quantifies variance contribution of all uncertain parameters. The study results validated the applicability of PCM and PCM-VD to the WARMF model. The PCM-based approach is much more efficient, regarding computational time, than conventional Monte Carlo methods. It has also been demonstrated that analysis using the PCM-based approach could provide insights into data collection, model structure improvement and management practices. It was concluded that the PCM-based approach could play an important role in watershed water quality modeling, as an alternative to conventional Monte Carlo methods to account for parametric uncertainty and uncertainty propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号