首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文利用海洋观测资料和全球海洋环流模式数据(Estimating the Circulation and Climate of the Ocean, ECCO)研究了赤道印度洋上层海洋盐度的年际变化及其相关的海洋动力过程。研究结果表明,上层海洋盐度年际变化主要受印度洋偶极子事件影响,且盐度变化在正、负印度洋偶极子事件中存在不对称特征,其在偶极子正事件中表现更强烈。进一步研究表明,赤道印度洋上层盐度变化主要受纬向平流输运调控,尤其是Wyrtki急流对盐度变化有重要影响。在正印度洋偶极子事件期间,Wyrkti急流减弱甚至消失,流场负异常的强度明显较负偶极子事件期间的流场正异常强度强。印度洋偶极子存在正偏度是造成盐度和流场在正、负印度洋偶极子事件中存在不对称性的主要原因。  相似文献   

2.
热带印度洋偶极子发生和演变机制的数值研究   总被引:5,自引:0,他引:5  
对中国科学院大气物理研究所(IAP)大气科学和地球流体力学数值模拟国家重点实验室(LASG)发展的第三代海洋模式(L30T63 OGCM)进行了改进。分析了该模式1959年1月—1998年12月的40a积分结果,以此研究热带印度洋偶极子发生、发展和消亡的物理机制。对数值模拟结果的分析表明,赤道印度洋表面异常东风引起的异常环流结构是偶极子发生、发展的主要动力学原因,其表面异常东风转换为异常西风所引起的异常环流结构调整是偶极子消亡的主要动力学原因;海气界面热通量异常的交换对热带印度洋海表温度距平偶极子模态的形成和演变起着重要的作用;垂直输送作用是热带印度洋次表层海温偶极子模态发生和演变的主要物理机制。  相似文献   

3.
We describe the space-and-time structure of large-scale thermal anomalies in the upper layer in the tropical zone of the Indian Ocean and study the mechanism of their formation. It is shown that the critical layer in which the phase velocities of propagation of disturbances coincide with the mean velocity of the zonal current can be formed in the central part of equatorial zone of the Indian Ocean (between 9° and 12°S). In this layer, the formation of growing disturbances is possible due to the barotropic-baroclinic instability of the system of zonal currents.  相似文献   

4.
Temperature data at different layers of the past 45 years were studied and we found adiploe mode in the thermocline layer (DMT): anomalously cold sea temperature off the coast of Sumatra and warm sea temperature in the western Indian Ocean. First, we analyzed the temperature and the temperature anomaly (TA) along the equatorial Indian Ocean in different layers. This shows that stronger cold and warm TA signals appeared at subsurface than at the surface in the tropical Indian O-cean. This result shows that there may be a strong dipole mode pattern in the subsurface tropical Indian Ocean. Secondly we used Empirical Orthogonal Functions (EOF) to analyze the TA at thermocline layer. The first EOF pattern was a dipole mode pattern. Finally we analyzed the correlations between DMT and surface tropical dipole mode (SDM), DMT and Nino 3 SSTA, etc. and these correlations are strong.  相似文献   

5.
热带印度洋偶极子事件和副热带印度洋偶极子事件的联系   总被引:6,自引:0,他引:6  
分别对热带印度洋偶极子事件和副热带印度洋偶极子事件的时间序列进行了周期分析。结果表明,热带印度洋偶极子事件的主要振荡周期为2 a和4 a,而副热带偶极子事件的主要振荡周期为8 a;对整个印度洋海区的海表温度距平进行2~8 a的带通滤波,发现未滤波之前,2个事件的相关性很低,而在进行了滤波之后,2个事件的相关性有很大的提高,并且当副热带印度洋偶极子事件超前热带印度洋偶极子事件9个月时,二者具有很强的相关性。通过对温度场和风场的分析,从物理上解释了2个事件之间的相互联系。  相似文献   

6.
A current meter mooring was deployed for one year in December 1995 in Ombai Strait, one of the deep connections between the Pacific Ocean and the Indian Ocean. Depending on the horizontal extrapolation, the mean transport was estimated to be between 4 and 6 Sv towards the Savu Sea. Succession of intense events of one or two months duration nearly hides the expected annual variability with maximum in August–September. Although the mean currents in the upper 200 m were five times higher than that below, the deep and wide strait section leads to a significant deep transport. Analysis of the hydrological characteristics of the concerned water masses corroborates the circulation given by the current measurements. The east-north-east current in December in the upper layer is thought to be related to the arrival of a Kelvin wave originating in the equatorial Indian Ocean and trapped along the coasts of the Sunda Islands before entering the Savu Sea between Sumba and Flores Islands.  相似文献   

7.
热带印度洋上层水温的年循环特征   总被引:1,自引:0,他引:1  
通过分析多年气候月平均的Levitus水温资料,结合多年气候月平均海表面风场资料以及观测的热带印度洋上层海流的分布状况,探讨热带印度洋上层水温的时空分布特征,剖析了热带印度洋混合层深度及印度洋暖水的季节变化规律。分析表明:热带印度洋的海表面温度低值区始终位于大洋的南部,而高值区呈现明显的季节变化,冬季位于赤道附近,在夏季则处于大洋的东北部;在热带印度洋的中西部、赤道偏南海域的次表层终年存在一冷心结构;热带印度洋表面风场的季节变化是影响该海域混合层深度季节性变化的主要因素;印度洋暖水在冬、春季范围较大,与西太平洋暖池相连,而在夏、秋季范围较小,并与西太平洋暖池分开。  相似文献   

8.
The variation in the Indian Ocean is investigated using Hadley center sea surface temperature(SST)data during the period 1958–2010.All the first empirical orthogonal function(EOF)modes of the SST anomalies(SSTA)in different domains represent the basin-wide warming and are closely related to the Pacific El Ni o–Southern Oscillation(ENSO)phenomenon.Further examination suggests that the impact of ENSO on the tropical Indian Ocean is stronger than that on the southern Indian Ocean.The second EOF modes in different domains show different features.It shows a clear east-west SSTA dipole pattern in the tropical Indian Ocean(Indian Ocean dipole,IOD),and a southwest-northeast SSTA dipole in the southern Indian Ocean(Indian Ocean subtropical dipole,IOSD).It is further revealed that the IOSD is also the main structure of the second EOF mode on the whole basin-scale,in which the IOD pattern does not appear.A correlation analysis indicates that an IOSD event observed during the austral summer is highly correlated to the IOD event peaking about 9 months later.One of the possible physical mechanisms underlying this highly significant statistical relationship is proposed.The IOSD and the IOD can occur in sequence with the help of the Mascarene high.The SSTA in the southwestern Indian Ocean persists for several seasons after the mature phase of the IOSD event,likely due to the positive wind–evaporation–SST feedback mechanism.The Mascarene high will be weakened or intensified by this SSTA,which can affect the atmosphere in the tropical region by teleconnection.The pressure gradient between the Mascarene high and the monsoon trough in the tropical Indian Ocean increases(decreases).Hence,an anticyclone(cyclone)circulation appears over the Arabian Sea-India continent.The easterly or westerly anomalies appear in the equatorial Indian Ocean,inducing the onset stage of the IOD.This study shows that the SSTA associated with the IOSD can lead to the onset of IOD with the aid of atmosphere circulation and also explains why some IOD events in the tropical tend to be followed by IOSD in the southern Indian Ocean.  相似文献   

9.
The sea surface height data from 1992 through 2012 in the Eastern Indian Ocean, the 6 sets of hydrographic data sparsely spanning 1990–2001 in water south of Java–Bali, and the 24 shipboard acoustic Doppler current profiler (ADCP) data across the Ombai Strait during 1997–2000 were used as a combined dataset to understand sea level and current variability along the southern coast of Java and Lesser Sunda Islands. The first two dominant empirical orthogonal function (EOF) modes capture combined seasonal with interannual and seasonal variability that account for 44.5 and 19.9 % of the total variances caused by El Niño Southern Oscillation and Indian Ocean Dipole events, and by the seasonal change of the Asian monsoon, respectively. The geostrophic current and ADCP data show that the eastward and westward currents are distinguishable via the vertical profiles of current velocity. The eastward-flowing South Java Current (SJC) is characterized by a large vertical shear and shallower diminishing depth of about 150 m and it is increased to 300 m in the presence of the Indian Ocean Kelvin Waves (IOKWs). In contrast, the westward current is dominated by the Indonesian Throughflow (ITF) with no vertical shear and has uniform current in the upper 300 m layer. The coastally trapped SJC and IOKWs are responsible for the eastward current. The SJC is not observed in the westward current because of non-existence of coastally trapped modes. The ITF and SJC generate persistent cyclonic (cold) and anticyclonic (warm) mesoscale eddies, respectively, in waters south of eastern Java.  相似文献   

10.
Mixed layer depth (MLD) variability in the Eastern Equatorial Indian Ocean (EEIO) from a hindcast run of an Ocean General Circulation Model (OGCM) forced by daily winds and radiative fluxes from NCEP-NCAR reanalysis from 2004 to 2006 is investigated. Model MLD compares well with the ~20,000 observations from Argo floats and a TRITON buoy (1.5°S and 90°E) in the Indian Ocean. Tests with a one-dimensional upper ocean model were conducted to assess the impact on the MLD simulations that would result from the lack of the diurnal cycle in the forcing applied to the OGCM. The error was of the order of ~12 m. MLD at the TRITON buoy location shows a bimodal pattern with deep MLD during May–June and December–January. MLD pattern during fall 2006 was significantly different from the climatology and was rather shallow during December–January both in the model and observation. An examination of mixed layer heat and salt budget suggested salinity freshening caused by the advective and vertical diffusive mixing to be the cause of shallow MLD.  相似文献   

11.
热带印度洋降水的年际变化特征分析   总被引:1,自引:0,他引:1  
对热带印度洋海区逐月降水资料的分析表明,热带印度洋海区降水年际变化的主要特征表现为东、西方向反位相的偶极子模态,该模态与热带印度洋海区低空纬向风场异常有较强的相关,并且与太平洋ENSO事件存在显著相关。另外对偶极子型降水主要模态的周期分析表明,偶极子型降水距平还存在1.5 a和4 a左右的变化周期。  相似文献   

12.
Property structure and variability of the Indonesian Throughflow Water in the major outflow straits (Lombok, Ombai and Timor) are revised from newly available data sets and output from a numerical model. Emphasis is put on the upper layers of the Indonesian Throughflow that impacts the heat and freshwater fluxes of the South Equatorial Current in the Indian Ocean. During the April–June monsoon transition the salinity maximum signature of the North Pacific thermocline water is strongly attenuated. This freshening of the thermocline layer is more intense in Ombai and is related to the supply of fresh near-surface Java Sea water that is drawn eastward by surface monsoon currents and subject to strong diapycnal mixing. The freshwater exits to the Indian Ocean first through Lombok Strait and later through Ombai and Timor, with an advective phase lag of between one and five months. Because of these phase lags, the fresher surface and thermocline water is found in the southeast Indian Ocean from the beginning of the monsoon transition period in April through until the end of the southeast monsoon in September, a much longer time period than previously estimated.  相似文献   

13.
海洋盐度在水循环、海洋环流、海洋生态系统、全球天气和气候变化等方面起着至关重要的作用。然而,受观测的限制,以往对海洋盐度的研究相对匮乏,对其进行预报的工作更为少见。本文采用线性马尔可夫模型对印度洋海表面盐度(sea surface salinity,SSS)开展初步的预报工作。根据混合层盐度收支方程,选择海表面高度(sea surface height,SSH)、海表面温度(sea surface temperature,SST)、SSS等物理量的异常值作为模型的组成部分,对印度洋SSS开展预报工作。结果表明,马尔可夫模型可提前9个月对印度洋SSS进行较好的预报。此外,南太平洋海表面温度异常(sea surface temperature anomaly,SSTA),海表面高度异常(sea surface height anomaly,SSHA)和印度洋偶极子(Indian Ocean dipole,IOD)系数等遥相关因素的加入可将线性马尔可夫预报对印度洋SSS的预报效果(相关系数)平均提高10%。利用改进的模型对印度洋SSS进行提前1~11个月的“实时”预测,得出预报的SSS时空变...  相似文献   

14.
刘雨  徐康  王卫强  谢强  王玉国 《海洋与湖沼》2021,52(5):1104-1114
上层经向翻转环流(shallow meridional overturning circulation, SMOC)主导热带-副热带上层海洋水体交换,对海洋物质输运和热量交换具有重要意义。基于7套海洋再分析数据产品,本文主要探讨了印度洋SMOC的冬夏季节变化及其差异的原因。结果显示,印度洋SMOC主要由南半球副热带环流圈(southern subtropical cell, SSTC)和跨赤道环流(cross-equatorial cell, CEC)组成,并且具有显著的季节差异。夏季风期间, SSTC和CEC均为表层南向输运,表层以下北向输运的逆时针环流结构。冬季风盛行时, SSTC仍维持逆时针结构,但环流中心南移且深度加深,强度弱于夏季;然而, CEC却转向为表层北向输运,表层以下向南输运的顺时针环流结构,其环流中心位置与夏季接近,环流强度与夏季相当。这种印度洋SMOC冬夏结构差异究其原因主要由风生环流主导, CEC冬夏季节环流方向反转是北印度洋冬夏季风转向的结果,而南印度洋信风的季节性位移和强度变化是SSTC强度和位置季节差异的主要原因。  相似文献   

15.
Based on the satellite altimetry dataset of sea level anomalies, the climatic hydrological database World Ocean Atlas-2009, ocean reanalysis ECMWF ORA-S3, and wind velocity components from NCEP/NCAR reanalysis, the interannual variability of Antarctic Circumpolar Current (ACC) transport in the ocean upper layer is investigated for the period 1959–2008, and estimations of correlative connections between ACC transport and wind velocity components are performed. It has been revealed that the maximum (by absolute value) linear trends of ACC transport over the last 50 years are observed in the date-line region, in the Western and Eastern Atlantic and the western part of the Indian Ocean. The greatest increase in wind velocity for this period for the zonal component is observed in Drake Passage, at Greenwich meridian, in the Indian Ocean near 90° E, and in the date-line region; for the meridional component, it is in the Western and Eastern Pacific, in Drake Passage, and to the south of Africa. It has been shown that the basic energy-carrying frequencies of interannual variability of ACC transport and wind velocity components, as well as their correlative connections, correspond to the periods of basic large-scale modes of atmospheric circulation: multidecadal and interdecadal oscillations, Antarctic Circumpolar Wave, Southern Annual Mode, and Southern Oscillation. A significant influence of the wind field on the interannual variability of ACC transport is observed in the Western Pacific (140° E–160° W) and Eastern Pacific; Drake Passage and Western Atlantic (90°–30° W); in the Eastern Atlantic and Western Indian Ocean (10°–70° E). It has been shown in the Pacific Ocean that the ACC transport responds to changes of the meridional wind more promptly than to changes of the zonal wind.  相似文献   

16.
Understanding of the temporal variation of oceanic heat content(OHC) is of fundamental importance to the prediction of climate change and associated global meteorological phenomena. However, OHC characteristics in the Pacific and Indian oceans are not well understood. Based on in situ ocean temperature and salinity profiles mainly from the Argo program, we estimated the upper layer(0–750 m) OHC in the Indo-Pacific Ocean(40°S–40°N, 30°E–80°W). Spatial and temporal variability of OHC and its likely physical mechanisms are also analyzed. Climatic distributions of upper-layer OHC in the Indian and Pacific oceans have a similar saddle pattern in the subtropics, and the highest OHC value was in the northern Arabian Sea. However, OHC variabilities in the two oceans were different. OHC in the Pacific has an east-west see-saw pattern, which does not appear in the Indian Ocean. In the Indian Ocean, the largest change was around 10°S. The most interesting phenomenon is that, there was a long-term shift of OHC in the Indo-Pacific Ocean during 2001–2012. Such variation coincided with modulation of subsurface temperature/salinity. During 2001–2007, there was subsurface cooling(freshening)nearly the entire upper 400 m layer in the western Pacific and warming(salting) in the eastern Pacific. During2008–2012, the thermocline deepened in the western Pacific but shoaled in the east. In the Indian Ocean, there was only cooling(upper 150 m only) and freshening(almost the entire upper 400 m) during 2001–2007. The thermocline deepened during 2008–2012 in the Indian Ocean. Such change appeared from the equator to off the equator and even to the subtropics(about 20°N/S) in the two oceans. This long-term change of subsurface temperature/salinity may have been caused by change of the wind field over the two oceans during 2001–2012, in turn modifying OHC.  相似文献   

17.
18.
邢会斌  陈昇  徐康  王卫强 《海洋学报》2021,43(12):26-37
本文采用SODA3.4.2再分析数据和POP2海洋模式研究了季风转换期间(春季和秋季)热带印度洋经向热输运异常(Meridional Heat Transport Anomaly, MHTA)的年际变异特征。春季MHTA存在两个主要模态,即一致模态和辐合辐散模态:一致模态表现为热带印度洋上层一致的向北输运,受热带印度洋海温一致模相关的赤道反对称风场(赤道以北/南为东北风/西北风异常)调控;辐合辐散模态则呈现关于赤道对称的表层辐散次表层辐合特征,受控于赤道以南的热带西南印度洋和副热带东南印度洋海温偶极子。然而,秋季MHTA仅表现为辐合辐散模态,受到印度洋偶极子期间赤道东风和赤道外反气旋式风应力异常影响。此外,POP2敏感性试验也验证了印度洋海温模态影响下异常风场对MHTA的调控作用,即反对称的风引起一致向北的MHTA,赤道东风异常引起MHTA表层辐散、次表层辐合现象。因此,热带印度洋海气耦合模态年际变化对印度洋上层热量再分配有着重要的意义。  相似文献   

19.
印度洋赤道潜流(equatorial undercurrent,EUC)是赤道流系的重要组成部分,对印度洋物质输运和能量交换有着重要意义.基于SODA 3.4.2海洋再分析数据,对印度洋EUC的三维空间结构和年际变化特征进行分析,并揭示其年际变率与印度洋偶极子(Indian Ocean dipole,IOD)的联系.结...  相似文献   

20.
董岳  滕辉  邱云  林新宇 《海洋学报》2022,44(6):37-47
本文主要利用1958–2016年GECCO2等资料通过超前/滞后相关分析方法,分析了南印度洋海表温度距平(SSTA)冬季?冬季重现的时空特征,并探讨了海洋和大气强迫对其形成的贡献。结果显示,SSTA冬季?冬季重现主要发生在南印度洋15oS以南海域,特别是在马达加斯加岛至澳大利亚西南部之间的海域(15o~45oS,70o~100oE)重现信号最为显著。重现信号除了主要发生在次年冬季外,在部分海域重现信号发生较早,可在次年秋季发生并持续至随后的冬季。进一步分析表明,混合层深度冬深夏浅的变化(即海洋重现机制)是研究海域SSTA冬季重现的主因。另外,在马达加斯加岛南部海域和澳大利亚西南部海域海面净热通量对SSTA的重现也有直接的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号