首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Numerical modeling was employed to study the performance of thermal conductive heating (TCH) in fractured shale under a variety of hydrogeological conditions. Model results show that groundwater flow in fractures does not significantly affect the minimum treatment zone temperature, except near the beginning of heating or when groundwater influx is high. However, fracture and rock matrix properties can significantly influence the time necessary to remove all liquid water (i.e., reach superheated steam conditions) in the treatment area. Low matrix permeability, high matrix porosity, and wide fracture spacing can contribute to boiling point elevation in the rock matrix. Consequently, knowledge of these properties is important for the estimation of treatment times. Because of the variability in boiling point throughout a fractured rock treatment zone and the absence of a well-defined constant temperature boiling plateau in the rock matrix, it may be difficult to monitor the progress of thermal treatment using temperature measurements alone.  相似文献   

2.
Four rock types (basalt, sandstone, granite, and chalk) are examined with respect to the maximum surface temperatures which they experience when subjected to similar conditions of exposure. Rock temperature measurements are reported for an urban environment and for two experimental situations in which an infrared lamp is used to simulate heating under cold and hot conditions. Differences in rock temperatures are discussed with reference to thermal rock properties (albedo, specific heat capacity, and thermal conductivity). Some natural situations are suggested in which thermal rock properties could conceivably play a role in determining the extent to which rocks would be affected by particular weathering processes.  相似文献   

3.
温度是影响岩石物理力学性质的重要因素,对不同温度作用后灰岩单轴压缩的碎块进行统计分析,结果表明灰岩的块度分布是个分形,分形维数D是反映高温后灰岩破碎程度恰当的特征统计量,同时D表现出随温度的增大而减小的性质。在此基础上,通过扫描电镜分析,获得温度对岩石力学性质的影响主要与组成岩石矿物性质和内部微观结构有关,而不同温度的作用会影响岩石矿物组成成分和岩石的晶格结构,在灰岩的扫描电镜结果对比中已发现微观形貌特征的差异,这可从内在机制方面解释不同温度下灰岩分维值变化特征。  相似文献   

4.
A laboratory installation has been developed together with a technique for determining thermo-physical properties (thermal conductivity and specific heat) in cylindrical rock specimens. The technique is based on iTOUGH2-EOS3 inversion modeling using temperature measurements inside specimens as a result of their short-term heating and subsequent return to the initial temperature. We estimated the thermal conductivity and specific heat for a collection of volcanogenic petrotypes that reflect the rocks that compose the Rogozhnikovskii volcanogenic oil reservoir (29 specimens). The average thermal conductivity of the dry rocks is 1.47 W/m °C and the average specific heat is 754 kJ/kg °C; the reproducibility of this estimation is 2.2% for thermal conductivity and 0.7% for specific heat.  相似文献   

5.
The effects of dyke intrusion on the magnetic properties of host sedimentary rocks are still poorly understood. Therefore, we have evaluated bulk magnetic parameters of standard palaeomagnetic samples collected along several sections across the sediments hosting the Foum Zguid dyke in southern Morocco. The study has been completed with the evaluation of the magnetic fabric after laboratory application of sequential heating experiments.The present study shows that: (1) close to Foum Zguid dykes, the variations of the bulk magnetic parameters and of the magnetic fabric is strongly related with re-crystallization and Fe-metasomatism intensity. (2) The thermal experiments on AMS of samples collected farther from the dyke and, thus, less affected by heating during dyke emplacement, indicate that 300–400 °C is the minimum experimental temperature necessary to trigger appreciable transformations of the pre-existing magnetic fabrics. For temperatures higher than ca. 580 °C, the magnetic fabric transformations are fully realized, with complete transposition of the initial fabric to a fabric similar to that of samples collected close to the dyke. Therefore, measured variations of the magnetic fabric can be used to evaluate re-crystallization temperatures experienced by the host sedimentary rock during dyke emplacement. The distinct magnetic behaviour observed along the cross-sections strongly suggests that samples collected farther from the dyke margins did not experience thermal episodes with temperatures higher than 300 °C after dyke emplacement. (3) AMS data shows a gradual variation of the magnetic fabric with distance from the dyke margin, from sub-horizontal K3 away from the dyke to vertical K3 close to the dyke. Experimental heating shows that heat alone can be responsible for this strong variation. Therefore, such orientation changes should not be unequivocally interpreted as the result of a stress field (resulting from the emplacement of the dyke, for instance). (4) Magnetic studies prove to be a very sensitive tool to assess rock magnetic transformations, thermally and chemically induced by dyke intrusion in hosting sediments.  相似文献   

6.
A nonstationary model of spreading with periodic intrusions of a molten material into an axial zone of a mid-ocean ridge (MOR) is applied to numerical analysis of the thermal state in MOR axial zones and the formation of crustal and mantle magma chambers in them. The model satisfactorily explains the positions, dimensions, and shapes of magma chambers, as well as variations in these parameters depending on the spreading rate, temperature, and composition of crustal and mantle rocks. The release and absorption of the latent heat of rock melting, hydrothermal heating of the crust, and variations in the solidus and liquidus temperatures of crustal and mantle rocks as a function of their composition are factors controlling the shape and position of crustal magma chambers.  相似文献   

7.
A mathematical model is developed for predicting the temperature distribution in an aquifer thermal energy storage (ATES) system, which consists of a confined aquifer bounded from above and below by the rocks of different geological properties. The main transfer processes of heat include the conduction and advection in the aquifer and the conduction in the rocks. The semi‐analytical solution in dimensionless form for the model is developed by Laplace transforms and its corresponding time‐domain solution is evaluated by the modified Crump method. Field geothermal property data are used to simulate the temperature distribution in an ATES system. The results show that the heat transfer in the aquifer is fast and has a vast effect on the vicinity of the wellbore. However, the aquifer temperature decreases with increasing radial and vertical distances. The temperature in the aquifer may be overestimated when ignoring the effect of thermal conductivity. The temperature distribution in an ATES system depends on the vertical thermal conduction in the rocks and the horizontal advection and thermal conduction in the aquifer. The present solution is useful in designing and simulating the heat injection facility in the ATES systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Granular disintegration has long been recognized and referred to in weathering texts from all environments, including the Antarctic. Despite this universal identification and referral, few to no data exist regarding thermal conditions at this scale and causative mechanisms remain little more than conjecture. Here, as part of a larger weathering study, thermal data of individual grains (using infrared thermometry and ultra‐fine thermocouples) composing a coarse granite, as well as the thermal gradients in the outer 10 cm (using thermistors), were collected from a north‐facing exposure. Measurements were also made regarding the surface roughness of the rock. Based on recorded temperatures, the nature of the rock surface and the properties of the minerals, an argument is made for complex stress fields that lead to granular disintegration. Mineral to mineral temperature differences found to occur were, in part, due to the changing exposure to solar radiation through the day (and through seasons). Because the thermal conductivity and the coefficient of thermal expansion of quartz are not equal in all directions, coupled with the vagaries of heating, this leads to inter‐granular stresses. Although fracture toughness increases with a decrease in temperature, it is suggested that the tensile forces resulting from falling temperatures are able to exceed this and produce granular disassociation. The lack of equality with respect to crystal axis of both thermal conductivity and expansion in quartz further exacerbates the propensity to failure. Grain size and porosity also influence the thermal stresses and may help explain why some grains are held in place despite disassociation near the surface. While the data presented here appear to beg more questions than providing answers, they do provide a basis for better, more detailed studies of this important weathering scale. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper reports the variations of strength, resistivity and thermal parameters of clay after high-temperature heating. Experiments were carried out to test the physical properties of clay heated at temperatures ranging from room temperature to 800°C in a furnace. The experiment results show that below 400°C the uniaxial compressive strength and resistivity change very little. However, above 400°C, both increase rapidly. At a temperature under 400°C, the thermal conductivity and specific heat capacity decrease significantly. The thermogravimetric analysis (TG) and differential scanning calorimeter (DSC) test indicate that a series of changes occur in kaolinite at temperatures from 400 to 600°C, which is considered the primary cause of the variation of physical and mechanical properties of clay under high temperatures.  相似文献   

10.
11.
Subsurface temperatures in rocks naturally fluctuate under the influence of local meteorological conditions. These fluctuations play a role in mechanical weathering, thus creating the environmental conditions conducive to natural hazards such as rockfalls and providing important sediment source terms for landscape evolution. However, the physics that control heat penetration into rocks are not fully understood, which makes the underground thermal state difficult to interpret when temperature measurements are available and even more difficult to estimate for unmonitored sites. This is an important lacuna given possible impacts of future climate change on mechanical weathering processes. The natural daily variations of subsurface temperatures were investigated on a bare gneiss outcrop exposed to solar radiation, where temperatures at various depths (up to 50 cm), as well as the solar radiation reaching a pyranometer, were monitored hourly for several months. This detailed times series of thermal data was used to gain insight into the heat balance at the inclined free surface of the rock mass. Attention was focused on two major contributors to the heat balance; the heat flux entering the rock mass through conduction and the incoming shortwave (solar) radiation. A Fourier decomposition of the temperature measurements provided an estimate of the in situ thermal conductivity of the rock and was used to calculate the conductive term. The shortwave radiation term was determined on the basis of the pyranometer measurements adjusted to account for the angle of incidence of the sun. It is shown that, throughout clear‐sky periods, heat exchanges at the surface are mainly controlled by direct solar radiation during the day, and by a roughly constant outgoing heat flux during the night. Subsurface temperatures can be reliably estimated with a semi‐infinite medium model whose boundary condition is derived from an analytical insolation model that takes atmospheric attenuation into account. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
双探针型海底热流计的结构优化   总被引:1,自引:0,他引:1       下载免费PDF全文
本文在现有海底热流探针制作技术条件下,首先建立了脉冲式双探针海底测量单元的有限元数值模型,模拟获得多组参数下的温度-时间数据,作为“实测”数据,再用脉冲加热有限长线热源(PFLS)模型求解待测介质热导率及其相对误差上限(REλ-UL),并以REλ-UL最小为原则,对双探针热流计的结构进行优化.结果表明:(1)在不同探针脉冲强度(q)、温度测量误差(ΔTm)和探针长度(L)组合下,都存在最佳探针间距(Best_r),使得REλ-UL降到最低;(2)随着q增大或ΔTm减小,Best_r逐渐增大;(3)当q、ΔTm及探针半径(a)都给定时,Best_r与探针长度(L)呈线性正相关;(4)当a=1.0 mm,且q、ΔTm分别取为628.0~1100.0 J·m-1、0.5~1.0 mK,若L在20.0~42.0 mm之间时,则Best_r在18.0~30.0 mm之间,此时介质热导率相对误差上限可控制在5.5%以内,同时测量温度可在6 min内达到最大值,即脉冲加热开始后,温度测量只需约7 min,便可满足介质热导率的求解,这比目前常用的Lister型热流计所需海底测量时间缩短8 min左右.  相似文献   

13.
We explore the contribution of fractures (joints) in controlling the rate of weathering advance for a low‐porosity rock by using methods of homogenization to create averaged weathering equations. The rate of advance of the weathering front can be expressed as the same rate observed in non‐fractured media (or in an individual block) divided by the volume fraction of non‐fractured blocks in the fractured parent material. In the model, the parent has fractures that are filled with a more porous material that contains only inert or completely weathered material. The low‐porosity rock weathers by reaction‐transport processes. As observed in field systems, the model shows that the weathering advance rate is greater for the fractured as compared to the analogous non‐fractured system because the volume fraction of blocks is < 1. The increase in advance rate is attributed both to the increase in weathered material that accompanies higher fracture density, and to the increase in exposure of surface of low‐porosity rock to reaction‐transport. For constant fracture aperture, the weathering advance rate increases when the fracture spacing decreases. Equations describing weathering advance rate are summarized in the ‘List of selected equations’. If erosion is imposed at a constant rate, the weathering systems with fracture‐bounded bedrock blocks attain a steady state. In the erosional transport‐limited regime, bedrock blocks no longer emerge at the air‐regolith boundary because they weather away. In the weathering‐limited (or kinetic) regime, blocks of various size become exhumed at the surface and the average size of these exposed blocks increases with the erosion rate. For convex hillslopes, the block size exposed at the surface increases downslope. This model can explain observations of exhumed rocks weathering in the Luquillo mountains of Puerto Rico. Published 2017. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

14.
Understanding how the strength of basaltic rock varies with the extrinsic conditions of stress state, pressure and temperature, and the intrinsic rock physical properties is fundamental to understanding the dynamics of volcanic systems. In particular it is essential to understand how rock strength at high temperatures is limited by fracture. We have collated and analysed laboratory data for basaltic rocks from over 500 rock deformation experiments and plotted these on principal stress failure maps. We have fitted an empirical flow law (Norton’s law) and a theoretical fracture criterion to these data. The principal stress failure map is a graphical representation of ductile and brittle experimental data together with flow and fracture envelopes under varying strain rate, temperature and pressure. We have used these maps to re-interpret the ductile–brittle transition in basaltic rocks at high temperatures and show, conceptually, how these failure maps can be applied to volcanic systems, using lava flows as an example.  相似文献   

15.
In the modeling of urban storm water runoff temperatures, the contribution of rooftops to the heating of rainfall runoff is usually neglected or not mentioned in the literature. In this paper we examine the accuracy of this assumption (a) by analyzing temperature data that we recorded on a residential rooftop, a commercial rooftop, and a concrete driveway, and (b) by simulating temperature profiles within rooftops and pavements, and estimating heat transfer amounts from these surfaces to rainfall runoff (‘heat export’). Analysis of both wet‐ and dry‐weather temperature data recorded in the Minneapolis/St. Paul metropolitan area (north‐central USA) over periods of several months leads to the conclusion that (a) a concrete driveway has a far greater capacity for heat storage and release than a shingled residential rooftop, and (b) an insulated commercial rooftop is able to store and release more heat than the residential rooftop. Unexpectedly, the rainfall events with the highest dew point (rainfall) and surface temperatures often occurred during late night or early morning hours, and not during daylight hours. The analysis of three rainfall events showed that the heat export from the commercial rooftop was roughly three times that of the residential rooftop, but only 30%–90% of the heat export from a concrete driveway. Maximum (potential) heat export was significantly higher for the driveway than for either rooftop. In conclusion, the results of the data analysis and heat export simulations support the assumption that residential rooftops contribute very little heating to runoff from rainfall, while commercial rooftops may have a thermal impact on rainfall runoff because of their greater thermal storage capacity. Commercial rooftops, in addition to asphalt and concrete pavements, should be considered when estimating water temperature of rainfall runoff from urbanized areas and the associated impact on the thermal regime of streams and fish habitat. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
采用有限元分析软件ANSYS对裂缝的双侧向测井视电阻率与裂缝孔隙度、泥浆电阻率、裂缝倾角和基岩电阻率的关系进行了计算. 在大量正演数据的基础上得出双侧向测井响应反演公式和裂缝孔隙度计算公式,提出更为精细的裂缝倾角的弹性划分模型,用双侧向视电阻率值近似估算裂缝倾角的方法,提高了利用双侧向测井求裂缝产状与裂缝孔隙度(裂缝宽度)的精度.  相似文献   

17.
In a series of field experiments, we evaluate the influence of a small water pressure change on fracture aperture during a hydraulic test. An experimental borehole is instrumented at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The target fracture for testing was found from the analyses of borehole logging and hydraulic tests. A double packer system was developed and installed in the test borehole to directly observe the aperture change due to water pressure change. Using this packer system, both aperture and flow rate are directly observed under various water pressures. Results indicate a slight change in fracture hydraulic head leads to an observable change in aperture. This suggests that aperture change should be considered when analyzing hydraulic test data from a sparsely fractured rock aquifer.  相似文献   

18.
Crack widths and rock temperatures were monitored on an andestic bedrock cliff in the summit area of the Daisetsu Mountains, Hokkaido, northern Japan. Sequential data recorded the gradual widening of a crack to the point of critical crack extension, which resulted in catastrophic rock breakage. The data indicate that a combination of liquid water in?ltration into crack tip and subsequent freezing is the most signi?cant factor contributing to critical crack extension. The recorded sub‐critical crack movements involved a number of minor crack extensions and contractions, the timing of which correlates well with the magnitude of the reconstructed thermal stresses at the crack tip derived from thermal deformation of the plate‐shaped rock fragment. Larger crack extensions occurred when stress at the crack tip exceeded a threshold value, possibly re?ecting the control of rock fracture mechanics by which cracks are thought to propagate when the stress intensity factor at the crack tip exceeds the threshold values for stress corrosion cracking and the fracture toughness of the material. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
Broadly speaking, there is, at least within geomorphic circles, a general acceptance that rocks with low albedos will warm both faster and to higher temperatures than rocks with high albedos, reflectivity influencing radiative warming. Upon this foundation are built notions of weathering in respect of the resulting thermal differences, both at the grain scale and at the scale of rock masses. Here, a series of paving bricks painted in 20 per cent reflectivity intervals from black through to white were used to monitor albedo‐influenced temperatures at a site in northern Canada in an attempt to test this premise. Temperatures were collected, for five months, for the rock surface and the base of the rock, the blocks being set within a mass of local sediment. Resulting thermal data did indeed show that the dark bricks were warmer than the white but only when their temperatures were equal to or cooler than the air temperature. As brick temperature exceeded that of the air, so the dark and light bricks moved to parity; indeed, the white bricks frequently became warmer than the dark. It is argued that this ‘negating’ of the albedo influence on heating is a result of the necessity of the bricks, both white and black, to convect heat away to the surrounding cooler air; the darker brick, being hotter, initially convects faster than the white as a product of the temperature difference between the two media. Thus, where the bricks become significantly hotter than the air, they lose energy to that air and so their respective temperatures become closer, the albedo influence being superceded by the requirement to equilibrate with the surrounding air. It is argued that this finding will have importance to our understanding of weathering in general and to our perceptions of weathering differences between different lithologies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Thermal expansion during the first heating cycle at atmospheric pressure was measured in several directions in seven igneous rocks between 25° and 400°C at slow heating rates. The coefficient of thermal expansion measured under these conditions increases more rapidly as temperature is increased than the average thermal expansion coefficient of the constituent minerals. The “extra” expansion is attributed to the formation of cracks by differential expansion of mineral grains. The presence of such cracks in the rocks during the cooling part of the cycle and during any subsequent heating and cooling cycles will result in a substantial decrease in the coefficient of thermal expansion as compared to that measured during the first heating cycles. The effect of cracks initially present in a rock was studied by measuring the full tensor of the coefficient of thermal expansion on two rocks with anisotropic crack distributions. In these two rocks the coefficient of thermal expansion is least in the direction perpendicular to the plane of greatest crack concentration. The implication of our data is that thermal expansion depends greatly on the fracture state of the rock. Both the fractures in the rock and the boundary conditions on the rock are significant for the interpretation of thermal expansion measurements and for their application to other problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号