首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
The multifractality of energy and thermal dissipation of fully developed intermittent turbulence is investigated in the urban canopy layer under unstable conditions by the singularity spectrum for the fractal dimensions of sets of singularities characterizing multifractals. In order to obtain high-order moment properties of smallscale turbulent dissipation in the inertial range, an ultrasonic anemometer with a high sampling frequency of 100 Hz was used. The authors found that the turbulent signal could be singular everywhere. Moreover, the singular exponents of energy and thermal dissipation rates are most frequently encountered at around 0.2, which is significantly smaller than the singular exponents for a wind tunnel at a moderate Reynolds number. The evidence indicates a higher intermittency of turbulence in the urban canopy layer at a high Reynolds number, which is demonstrated by the data with high temporal resolution. Furthermore, the temperature field is more intermittent than the velocity field. In addition, a large amount of samples could be used for verification of the results.  相似文献   

2.
An investigation into high Reynolds number turbulent flow over a ridge top in New Zealand is described based on high-resolution in-situ measurements, using ultrasonic anemometers for two separate locations on the same ridge with differing upwind terrain complexity. Twelve 5-h periods during neutrally stratified and weakly stable atmospheric conditions with strong wind speeds were sampled at 20 Hz. Large (and small) turbulent length scales were recorded for both vertical and longitudinal velocity components in the range of 7–23 m (0.7–3.3 m) for the vertical direction and 628–1111 m (10.5–14.5 m) for the longitudinal direction. Large-scale eddy sizes scaled to the WRF (Weather Research and Forecasting) numerical model simulated boundary-layer thickness for both sites, while small-scale turbulent features were a function of the complexity of the upwind terrain. Evidence of a multi-scale turbulent structure was obtained at the more complex terrain site, while an assessment of the three-dimensional isotropy assumption in the inertial subrange of the spectrum showed anisotropic turbulence at the less complex site and evidence of isotropic turbulence at the more complex site, with a spectral ratio convergence deviating from the 4/3 or unity values suggested by previous theory and practice. Existing neutral spectral models can represent locations along the ridge top with simple upwind complexity, especially for the vertical wind spectra, but sites with more orographic complexity and strong vertical wind speeds are often poorly represented using these models. Measured spectra for the two sites exhibited no significant diurnal variation and very similar large-scale and small-scale turbulent length scales for each site, but the turbulence energy measured by the variances revealed a strong diurnal difference.  相似文献   

3.
We analyse single-point velocity statistics obtained in a wind tunnel within and above a model of a waving wheat crop, consisting of nylon stalks 47 mm high and 0.25 mm wide in a square array with frontal area index 0.47. The variability of turbulence measurements in the wind tunnel is illustrated by using a set of 71 vertical traverses made in different locations, all in the horizontally-homogeneous (above-canopy) part of the boundary layer. Ensemble-averaged profiles of the statistical moments up to the fourth order and profiles of Eulerian length scales are presented and discussed. They are consistent with other similar experiments and reveal the existence of large-scale turbulent coherent structures in the flow. The drag coefficient in this canopy as well as in other reported experiments is shown to exhibit a characteristic height-dependency, for which we propose an interpretation. The velocity spectra are analysed in detail; within and just above the canopy, a scaling based on fixed length and velocity scales (canopy height and mean horizontal wind speed at canopy top) is proposed. Examination of the turbulent kinetic energy and shear stress budgets confirms the role of turbulent transport in the region around the canopy top, and indicates that pressure transport may be significant in both cases. The results obtained here show that near the top of the canopy, the turbulence properties are more reminiscent of a plane mixing layer than a wall boundary layer.  相似文献   

4.
Large-Eddy Simulation of Coherent Flow Structures within a Cubical Canopy   总被引:4,自引:4,他引:0  
Instantaneous flow structures “within” a cubical canopy are investigated via large-eddy simulation. The main topics of interest are, (1) large-scale coherent flow structures within a cubical canopy, (2) how the structures are coupled with the turbulent organized structures (TOS) above them, and (3) the classification and quantification of representative instantaneous flow patterns within a street canyon in relation to the coherent structures. We use a large numerical domain (2,560 m × 2,560 m × 1,710 m) with a fine spatial resolution (2.5 m), thereby simulating a complete daytime atmospheric boundary layer (ABL), as well as explicitly resolving a regular array of cubes (40 m in height) at the surface. A typical urban ABL is numerically modelled. In this situation, the constant heat supply from roof and floor surfaces sustains a convective mixed layer as a whole, but strong wind shear near the canopy top maintains the surface layer nearly neutral. The results reveal large coherent structures in both the velocity and temperature fields “within” the canopy layer. These structures are much larger than the cubes, and their shapes and locations are shown to be closely related to the TOS above them. We classify the instantaneous flow patterns in a cavity, specifically focusing on two characteristic flow patterns: flushing and cavity-eddy events. Flushing indicates a strong upward motion, while a cavity eddy is characterized by a dominant vortical motion within a single cavity. Flushing is clearly correlated with the TOS above, occurring frequently beneath low-momentum streaks. The instantaneous momentum and heat transport within and above a cavity due to flushing and cavity-eddy events are also quantified.  相似文献   

5.
Sonic anemometer and profile mast measurements made in Wahlenbergfjorden, Svalbard Arctic archipelago, in May 2006 and April 2007 were employed to study the atmospheric boundary layer over sea-ice. The turbulent surface fluxes of momentum and sensible heat were calculated using eddy correlation and gradient methods. The results showed that the literature-based universal functions underestimated turbulent mixing in strongly stable conditions. The validity of the Monin-Obukhov similarity theory was questionable for cross-fjord flow directions and in the presence of mesoscale variability or topographic effects. The aerodynamic roughness length showed a dependence on the wind direction. The mean roughness length for along-fjord wind directions was (2.4 ± 2.6) × 10−4 m, whereas that for cross-fjord directions was (5.4 ± 2.8) × 10−3 m. The thermal stratification and turbulent fluxes were affected by the synoptic situation with large differences between the 2 years. Channelling effects and drainage flows occurred especially during a weak large-scale flow. The study periods were simulated applying the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution in the finest domain. The results for the 2-m air temperature and friction velocity were good, but the model failed to reproduce the spatial variability in wind direction between measurement sites 3 km apart. The model suggested that wind shear above the stable boundary layer provided a non-local source for the turbulence observed.  相似文献   

6.
This paper describes wind-tunnel experiments on the flow around single and multiple porous windbreaks (height H), sheltering a model plant canopy (height H/3). The mean wind is normal to the windbreaks, which span the width of the wind tunnel. The incident turbulent flow simulates the adiabatic atmospheric surface layer. Five configurations are examined: single breaks of three solidities (low, medium, high; solidity = 1 - porosity), and medium-solidity multiple breaks of streamwise spacing 12H and 6H. The experimental emphases are on the interactions of the windbreak flow with the underlying plant canopy; the effects of solidity; the differences in shelter between single and multiple windbreaks; and the scaling properties of the flow. Principal results are: (1) the "quiet zones" behind each windbreak are smaller in multiple than single arrays, because of the higher turbulence level in the very rough-wall internal boundary layer which develops over the multiple arrays. Nevertheless, the overall shelter effectiveness is higher for multiple arrays than single windbreaks because of the "nonlocal shelter" induced by the array as a whole. (2) The flow approaching the windbreak decelerates above the canopy but accelerates within the canopy, particularly when the windbreak solidity is high. (3) A strong mixing layer forms just downwind of the top of each windbreak, showing some of the turbulence and scaling properties of the classical mixing layer formed between uniform, coflowing streams. (4) No dramatic increase in turbulence levels in the canopy is evident at the point where the deepening mixing layer contacts the canopy (around x/H = 3) but the characteristic inflection in the canopy wind profile is eliminated at this point.  相似文献   

7.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   

8.
Turbulence Intensity Parameters over a Very Complex Terrain   总被引:1,自引:1,他引:0  
Detailed knowledge of turbulence structure is important for the understanding of atmospheric phenomena in the boundary layer, especially over complex terrain. In the present study, turbulence intensity parameters are analyzed for different conditions regarding stability, wind speed and wind direction over a mountainous region. The purpose of the analysis is to verify whether the observed parameters follow Monin–Obukhov similarity theory (MOST), despite the terrain heterogeneity. The dataset was collected during an experimental campaign at the Nova Roma do Sul site, in southern Brazil, with a micrometeorological tower located near a sharp slope, approximately 400 m high. The results show that the normalized standard deviations of the vertical velocity component as well as the normalized standard deviation of temperature follow Monin–Obukhov similarity for all stability regimes, regardless of the wind direction. However the normalized standard deviation of the horizontal components of the turbulent velocity obeys the similarity relationship only for a limited range of the stability parameters.  相似文献   

9.
Aircraft turbulence data from the Autonomous Ocean Sampling Network project were analyzed and compared to the Coupled Ocean–Atmosphere Response Experiment (COARE) bulk parametrization of turbulent fluxes in an ocean area near the coast of California characterized by complex atmospheric flow. Turbulent fluxes measured at about 35 m above the sea surface using the eddy-correlation method were lower than bulk estimates under unstable and stable atmospheric stratification for all but light winds. Neutral turbulent transfer coefficients were used in this comparison because they remove the effects of mean atmospheric conditions and atmospheric stability. Spectral analysis suggested that kilometre-scale longitudinal rolls affect significantly turbulence measurements even near the sea surface, depending on sampling direction. Cross-wind sampling tended to capture all the available turbulent energy. Vertical soundings showed low boundary-layer depths and high flux divergence near the sea surface in the case of sensible heat flux but minimal flux divergence for the momentum flux. Cross-wind sampling and flux divergence were found to explain most of the observed discrepancies between the measured and bulk flux estimates. At low wind speeds the drag coefficient determined with eddy correlation and an inertial dissipation method after corrections were applied still showed high values compared to bulk estimates. This discrepancy correlated with the dominance of sea swell, which was a usually observed condition under low wind speeds. Under stable atmospheric conditions measured sensible heat fluxes, which usually have low values over the ocean, were possibly affected by measurement errors and deviated significantly from bulk estimates.  相似文献   

10.
Large-scale turbulence structures in the near-neutral atmospheric boundary layer (ABL) are investigated on the basis of observations made from the 213-m tall meteorological tower at Tsukuba, Japan. Vertical profiles of wind speed and turbulent fluxes in the ABL were obtained with sonic anemometer-thermometers at six levels of the tower. From the archived data, 31 near-neutral cases are selected for the analysis of turbulence structures. For the typical case, event detection by the integral wavelet transform with a large time scale (180 s) from the streamwise velocity component (u) at the highest level (200 m) reveals a descending high-speed structure with a time scale of approximately 100 s (a spatial scale of 1 km at the 200-m height). By applying the wavelet transform to the u velocity component at each level, the intermittent appearance of large-scale high-speed structures extending also in the vertical is detected. These structures usually make a large contribution to the downward momentum transfer and induce the enhancement of turbulent kinetic energy. This behaviour is like that of “active” turbulent motions. From the analysis of the two-point space–time correlation of wavelet coefficients for the u velocity component, the vertical extent and the downward influence of large-scale structures are examined. Large fluctuations in the large-scale range (wavelet variance at the selected time scale) at the 200-m level tend to induce the large correlation between the higher and lower levels.  相似文献   

11.
Edge Flow and Canopy Structure: A Large-Eddy Simulation Study   总被引:4,自引:4,他引:0  
Sharp heterogeneities in forest structure, such as edges, are often responsible for wind damage. In order to better understand the behaviour of turbulent flow through canopy edges, large-eddy simulations (LES) have been performed at very fine scale (2 m) within and above heterogeneous vegetation canopies. A modified version of the Advanced Regional Prediction System (ARPS), previously validated in homogeneous conditions against field and wind-tunnel measurements, has been used for this purpose. Here it is validated in a simple forest-clearing-forest configuration. The model is shown to be able to reproduce accurately the main features observed in turbulent edge flow, especially the “enhanced gust zone” (EGZ) present around the canopy top at a few canopy heights downwind from the edge, and the turbulent region that develops further downstream. The EGZ is characterized by a peak in streamwise velocity skewness, which reflects the presence of intense intermittent wind gusts. A sensitivity study of the edge flow to the forest morphology shows that with increasing canopy density the flow adjusts faster and turbulent features such as the EGZ become more marked. When the canopy is characterized by a sparse trunk space the length of the adjustment region increases significantly due to the formation of a sub-canopy wind jet from the leading edge. It is shown that the position and magnitude of the EGZ are related to the mean upward motion formed around canopy top behind the leading edge, caused by the deceleration in the sub-canopy. Indeed, this mean upward motion advects low turbulence levels from the bottom of the canopy; this emphasises the passage of sudden strong wind gusts from the clearing, thereby increasing the skewness in streamwise velocity as compared with locations further downstream where ambient turbulence is stronger.  相似文献   

12.
The damage caused by windstorms to forest ecosystems is often very heterogeneous. In order to improve the stability of forested landscapes, it is of great importance to identify the factors responsible for this spatial variability. The structure of the landscape itself may play a role, through possible influences of canopy heterogeneities on the development of turbulence. For the purpose of investigating the role of landscape fragmentation on turbulence development, we used a numerical flow model with a k–ε turbulence scheme model, previously validated in simple cases with well-defined surface changes (roughness change and forest edge flow). A series of two- and three-dimensional simulations were performed over a heterogeneous urban forested park in Europe, which was severely damaged in various places by the Lothar windstorm in December 1999. The model shows the development of a region of strong turbulence, resulting from the generation of large wind shear at the top of the canopy. A sensitivity study shows how the location, extension and intensity of the region depend on canopy characteristics such as the leaf density, the nature of the edge or the presence of gaps and clearings. Simulations performed in conditions representative of the windstorm show that the location of the damaged areas corresponds very closely to the regions where the turbulent kinetic energy was above a certain threshold.  相似文献   

13.
The dependence on atmospheric stability of flow characteristics adjacent to a very rough surface was investigated in a larch forest in Japan. Micrometeorological measurements of three-dimensional wind velocity and air temperature were taken at two heights above the forest, namely 1.7 and 1.2 times the mean canopy height h. Under near-neutral and stable conditions, the observed turbulence statistics suggest that the flow was likely to be that of the atmospheric surface layer (ASL) at 1.7h, and of the roughness sublayer (RSL) at 1.2h. However, in turbulence spectra, canopy-induced large coherent motions appeared clearly at both heights. Even under strongly stable conditions, the large-scale motions were retained at 1.2h, whereas they were overwhelmed by small-scale motions at 1.7h. This phenomenon was probably due to the enhanced contribution of the ASL turbulence associated with nocturnal decay of the RSL depth, because the small-scale motions appeared at frequencies close to the peak frequencies of well-known ASL spectra. This result supports the relatively recent concept that canopy flow is a superimposition of coherent motions and the ASL turbulence. The large-scale motions were retained in temperature spectra over a wider region of stability compared to streamwise wind spectra, suggesting that a canopy effect extended higher up for temperature than wind. The streamwise spacing of dominant eddies according to the plane mixing-layer analogy was only valid in a narrow range at near neutral, and it was stabilised at nearly half its value under stable conditions.  相似文献   

14.
Direct numerical simulations of turbulent flow over regular arrays of urban-like, cubical obstacles are reported. Results are analysed in terms of a formal spatial averaging procedure to enable interpretation of the flow within the arrays as a canopy flow, and of the flow above as a rough wall boundary layer. Spatial averages of the mean velocity, turbulent stresses and pressure drag are computed. The statistics compare very well with data from wind-tunnel experiments. Within the arrays the time-averaged flow structure gives rise to significant ‘dispersive stress’ whereas above the Reynolds stress dominates. The mean flow structure and turbulence statistics depend significantly on the layout of the cubes. Unsteady effects are important, especially in the lower canopy layer where turbulent fluctuations dominate over the mean flow.  相似文献   

15.
The structure of turbulence in an inversion layer and in an homogeneous convective field of the planetary boundary layer is described. In the first part of the paper, we validate the sodar estimates of turbulent dissipation, by using measurements with an hot-wire anemometric system in situ. Limitations of an ε measurement technique using structure function calculations are given, taking account of atmospheric properties and acoustic Doppler instrumental effects. By comparison between isopleths of backscattering intensity and of turbulent dissipation rates, we observe that in the early morning, turbulence is advected by mechanical turbulence generated by wind shear. The same mechanism seems to be operating in the case of an inversion layer capping thermal instability, when the convective activity is not too greatly developed. A turbulent kinetic energy budget is examined using aircraft, sodar, and tower measurements. This indicates a constant turbulent dissipation profile through a deep convective layer.  相似文献   

16.
Impact of Sea-Spray on the Atmospheric Surface Layer   总被引:1,自引:0,他引:1  
The feedback effects of sea-spray on the heat and momentum fluxes under equilibrium conditions associated with winds of tropical cyclones are investigated using a one-dimensional coupled sea-spray and atmospheric surface-layer (ASL) model. This model is capable of simulating the microphysical aspects of the evaporation of saline water droplets of various sizes and their dynamic and thermal interaction with the turbulence mixing that is simulated by the Mellor–Yamada 1.5-order closure scheme. Sea-spray droplet generation is described by a state-of-the-art parametrization that predicts the size spectrum of sea-spray droplets for a given surface forcing. The results from a series of simulations indicate the way in which evaporating droplets of various sizes modify the turbulence mixing near the surface, which in turn affects further droplet evaporation. All these results are direct consequences of the effects of sea-spray on the balance of turbulent kinetic energy in the spray-filled surface layer. In particular, the overall impact of sea-spray droplets on the mean wind depends on the wind speed at the level of sea-spray generation. When the wind speed is below 40 m s−1, the droplets are small in size and tend to evaporate substantially and thus cool the spray-filled layer, while for wind speeds above 50 m s−1, the size of the droplets is so large that they do not have enough time to evaporate much before falling back into the sea. The sensible heat carried by the droplets is released to the ambient air, increasing the buoyancy of the surface layer and enhancing the turbulent mixing. The suspension of sea-spray droplets reduces the buoyancy and makes the surface layer more stable, decreasing the friction velocity and the downward turbulent mixing of momentum. The results from the numerical experiments also suggest that, in order not to violate the constant flux assumption critical to the Monin–Obukhov similarity theory, a displacement equal to the mean wave height should be included in the logarithmic profiles of the wind and thermal fields.  相似文献   

17.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

18.
In large-eddy simulations (LES) of the atmospheric boundary layer (ABL), near-surface models are often used to supplement subgrid-scale (SGS) turbulent stresses when a major fraction of the energetic scales within the surface layer cannot be resolved with the temporal and spatial resolution at hand. In this study, we investigate the performance of both dynamic and non-dynamic eddy viscosity models coupled with near-surface models in simulations of a neutrally stratified ABL. Two near-surface models that are commonly used in LES of the atmospheric boundary layer are considered. Additionally, a hybrid Reynolds- averaged/LES eddy viscosity model is presented, which uses Prandtl’s mixing length model in the vicinity of the surface, and blends in with the dynamic Smagorinsky model away from the surface. Present simulations show that significant portions of the modelled turbulent stresses are generated by the near-surface models, and they play a dominant role in capturing the expected logarithmic wind profile. Visualizations of the instantaneous vorticity field reveal that flow structures in the vicinity of the surface depend on the choice of the near-surface model. Among the three near-surface models studied, the hybrid eddy viscosity model gives the closest agreement with the logarithmic wind profile in the surface layer. It is also observed that high levels of resolved turbulence stresses can be maintained with the so-called canopy stress model while producing good agreement with the logarithmic wind profile.  相似文献   

19.
Progress on practical problems such as quantifying gene flow and seed dispersal by wind or turbulent fluxes over nonflat terrain now demands fundamental understanding of how topography modulates the basic properties of turbulence. In particular, the modulation by hilly terrain of the ejection-sweep cycle, which is the main coherent motion responsible for much of the turbulent transport, remains a problem that has received surprisingly little theoretical and experimental attention. Here, we investigate how boundary conditions, including canopy and gentle topography, alter the properties of the ejection-sweep cycle and whether it is possible to quantify their combined impact using simplified models. Towards this goal, we conducted two new flume experiments that explore the higher-order turbulence statistics above a train of gentle hills. The first set of experiments was conducted over a bare surface while the second set of experiments was conducted over a modelled vegetated surface composed of densely arrayed rods. Using these data, the connections between the ejection-sweep cycle and the higher-order turbulence statistics across various positions above the hill surface were investigated. We showed that ejections dominate momentum transfer for both surface covers at the top of the inner layer. However, within the canopy and near the canopy top, sweeps dominate momentum transfer irrespective of the longitudinal position; ejections remain the dominant momentum transfer mode in the whole inner region over the bare surface. These findings were well reproduced using an incomplete cumulant expansion and the measured profiles of the second moments of the flow. This result was possible because the variability in the flux-transport terms, needed in the incomplete cumulant expansion, was shown to be well modelled using “local” gradient-diffusion principles. This result suggests that, in the inner layer, the higher-order turbulence statistics appear to be much more impacted by their relaxation history towards equilibrium rather than the advection-distortion history from the mean flow. Hence, we showed that it is possible to explore how various boundary conditions, including canopy and topography, alter the properties of the ejection-sweep cycle by quantifying their impact on the gradients of the second moments only. Implications for modelling turbulence using Reynolds-averaged Navier Stokes equations and plausible definitions for the canopy sublayer depth are briefly discussed.  相似文献   

20.
In this study, a detailed model of an urban landscape has been re-constructed inthe wind tunnel and the flow structure inside and above the urban canopy has beeninvestigated. Vertical profiles of all three velocity components have been measuredwith a Laser-Doppler velocimeter, and an extensive analysis of the measured meanflow and turbulence profiles carried out. With respect to the flow structure inside thecanopy, two types of velocity profiles can be distinguished. Within street canyons,the mean wind velocities are almost zero or negative below roof level, while closeto intersections or open squares, significantly higher mean velocities are observed.In the latter case, the turbulent velocities inside the canopy also tend to be higherthan at street-canyon locations. For both types, turbulence kinetic energy and shearstress profiles show pronounced maxima in the flow region immediately above rooflevel.Based on the experimental data, a shear-stress parameterization is proposed, inwhich the velocity scale, us, and length scale, zs, are based on the level and magnitude of the shear stress peak value. In order to account for a flow region inside the canopy with negligible momentum transport, a shear stress displacement height, ds, is introduced. The proposed scaling and parameterization perform well for the measured profiles and shear-stress data published in the literature.The length scales derived from the shear-stress parameterization also allowdetermination of appropriate scales for the mean wind profile. The roughnesslength, z0, and displacement height, d0, can both be described as fractions of the distance, zs - ds, between the level of the shear-stress peak and the shear-stress displacement height. This result can be interpreted in such a way that the flow only feels the zone of depth zs - ds as the roughness layer. With respect to the lower part of the canopy (z < ds) the flow behaves as a skimming flow. Correlations between the length scales zs and ds and morphometric parameters are discussed.The mean wind profiles above the urban structure follow a logarithmic windlaw. A combination of morphometric estimation methods for d0 and z0 with wind velocity measurements at a reference height, which allow calculation of the shear-stress velocity, u*, appears to be the most reliable and easiest procedure to determine mean wind profile parameters. Inside the roughnesssublayer, a local scaling approach results in good agreement between measuredand predicted mean wind profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号