首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Starting with the assumption that the micron-sized particles which make up the bright Jovian ring are fragments of erosive collisions between micrometeoroid projectiles and large parent bodies, a physical model of the ring is calculated. The physics of high-velocity impacts leads to a well-defined size distribution for the ejecta, the optical properties of which can be compared with observation. This gives information on the ejecta material (very likely silicates) and on the maximum size of the projectiles, which turns out to be about 0.1 μm. The origin of these projectiles is discussed, and it is concluded that dust particles ejected in volcanic activity from Io are the most likely source. The impact model leads quite naturally to a distribution in ejecta sizes, which in turn determines the structure of the ring. The largest ejecta form the bright ring, medium-sized ejecta form a disk extending all the way to the Jovian atmosphere, and the small ejecta form a faint halo, the structure of which is dominated by electromagnetic forces. In addition to the Io particles, interaction with interplanetary micrometeoroids is also considered. It is concluded that μm-sized ejecta from this source have ejection velocities which are several orders of magnitude too large, and thus cannot contribute significantly to the observed bright ring. However, the total mass ejection rate is significant. Destruction of these ejecta by the Io particles may provide additional particles for the halo.  相似文献   

2.
We analyze density waves in the Cassini Division of Saturn's rings revealed by multiple stellar occultations by Saturn's rings observed with the Cassini Ultraviolet Imaging Spectrograph. The dispersion and damping of density waves provide information on the local ring surface mass density and viscosity. Several waves in the Cassini Division are on gradients in the background optical depth, and we find that the dispersion of the wave reflects a change in the underlying surface mass density. We find that over most of the Cassini Division the ring opacity (the ratio of optical depth to surface mass density) is nearly constant and is ∼5 times higher than the opacity in the A ring where most density waves are found. However, the Cassini Division ramp, a 1100-km-wide, nearly featureless region of low optical depth that connects the Cassini Division to the inner edge of the A ring, has an opacity like that of the A ring and significantly less than that in the rest of the Cassini Division. This is consistent with particles in the ramp originating in the A ring and being transported into the Cassini Division through ballistic transport processes. Damping of the waves in the Cassini Division suggests a vertical thickness of 3–6 m. Using a mean opacity of 0.1 cm2/g we find the mass of the Cassini Division, excluding the ramp, is 3.1×1016 kg while the mass of the Cassini Division ramp, with an opacity of 0.015 cm2/g, is 1.1×1017 kg. Assuming a power-law size distribution for the ring particles, the larger opacity of the main Cassini Division is consistent with the largest ring particles there being ∼5 times smaller than the largest particles in the ramp and A ring.  相似文献   

3.
Multiple-scattering computations are carried out to explain the variation of the observed brightness of the A and B rings of Saturn with declination of the Earth and Sun. These computations are performed by a doubling scheme for a homogeneous plane-parallel scattering medium. We test a range of choices for the phase function, albedo for single scattering, and optical depth of both the rings. Isotropic scattering and several other simple phase functions are ruled out, and we find that the phase function must be moderately peaked in both the forward and backward directions. The tilt effect can be explained by multiple scattering in a homogeneous layer, but, for ring B, this requires a single-scattering albedo in excess of 0.8. The brightest part of ring B must have an optical depth greater than 0.9. We find that the tilt effect for ring A can be reproduced by particles having the same properties as those in ring B with the optical depth for the A ring in the range 0.4 to 0.6.  相似文献   

4.
The depth and duration of energy and momentum coupling in an impact shapes the formation of the crater. The earliest stages of crater growth (when the projectile transfers its energy and momentum to the target) are unrecoverable when the event is described by late stage parameters, which collapse the initial conditions of the impact into a singular point in time and space. During the coupling phase, the details of the impact are mapped into the ejecta flow field. In this experimental study, we present new experimental and computational measurements of the ejecta distribution and crater growth extending from early times into main-stage ballistic flow for hypervelocity impacts over a range of projectile densities. Specifically, we assess the effect of projectile density on coupling depth and location in porous particulate (sand) targets. A non-invasive high-speed imaging technique is employed to capture the velocity of individual ejecta particles very early in the cratering event as a function of both time and launch position. These data reveal that the effects of early-stage coupling, such as non-constant ejection angles, manifest not only in early-time behavior but also extend to main-stage crater growth. Time-resolved comparisons with hydrocode calculations provide both benchmarking and insight into the parameters controlling the ejection process. Measurements of the launch position and metrics for the transient diameter to depth ratio as a function of time demonstrate non-proportional crater growth throughout much of excavation. Low-density projectiles couple closer to the surface, thereby leading to lower ejection angles and larger effective diameter to depth ratios. These results have implications for the ballistic emplacement of ejecta on planetary surfaces, and are essential to interpreting temporally resolved data from impact missions.  相似文献   

5.
《Planetary and Space Science》2006,54(9-10):1014-1023
Faint rings of micrometre-sized dust particles embrace many planets in the Solar system. As a rule, they are replenished by ejecta from embedded atmosphereless moons. On a number of occasions, the ejecta are generated by hypervelocity meteoroid impacts into the moons. Small ejecta fragments are then swiftly shifted into rings by an array of non-gravitational forces, e.g. radiation pressure or plasma drag. A significant fraction of ejecta mass, however, is contained in relatively big, multi-micrometre fragments which are subject to gravity only. Having escaped from the satellite, they stay close to its orbit and form a belt around planet. This belt is itself a source of ring dust through collisional disruption of its particles. Here the contributions of belts to the respective rings are estimated for selected satellites of Jupiter and Saturn. The belts under review could supply substantially more dust to rings than the direct ejecta from satellites and should be taken into account when estimating ring dust budgets. The belts are very difficult to observe, however, and some of them remain a theoretical proposition. We find an appealing evidence for the belts due to Amalthea and Thebe around Jupiter, and for the belt due to Enceladus around Saturn.  相似文献   

6.
In late 2004 and 2005 the Cassini composite infrared spectrometer (CIRS) obtained spatially resolved thermal infrared radial scans of Saturn's main rings (A, B and C, and Cassini Division) that show ring temperatures decreasing with increasing solar phase angle, α, on both the lit and unlit faces of the ring plane. These temperature differences suggest that Saturn's main rings include a population of ring particles that spin slowly, with a spin period greater than 3.6 h, given their low thermal inertia. The A ring shows the smallest temperature variation with α, and this variation decreases with distance from the planet. This suggests an increasing number of smaller, and/or more rapidly rotating ring particles with more uniform temperatures, resulting perhaps from stirring by the density waves in the outer A ring and/or self-gravity wakes.The temperatures of the A and B rings are correlated with their optical depth, τ, when viewed from the lit face, and anti-correlated when viewed from the unlit face. On the unlit face of the B ring, not only do the lowest temperatures correlate with the largest τ, these temperatures are also the same at both low and high α, suggesting that little sunlight is penetrating these regions.The temperature differential from the lit to the unlit side of the rings is a strong, nearly linear, function of optical depth. This is consistent with the expectation that little sunlight penetrates to the dark side of the densest rings, but also suggests that little vertical mixing of ring particles is taking place in the A and B rings.  相似文献   

7.
We analyze stellar occultations by Saturn's rings observed with the Cassini Ultraviolet Imaging Spectrograph and find large variations in the apparent normal optical depth of the B ring with viewing angle. The line-of-sight optical depth is roughly independent of the viewing angle out of the ring plane so that optical depth is independent of the path length of the line-of-sight. This suggests the ring is composed of virtually opaque clumps separated by nearly transparent gaps, with the relative abundance of clumps and gaps controlling the observed optical depth. The observations can be explained with a model of self-gravity wakes like those observed in the A ring. These trailing spiral density enhancements are due to the competing processes of self-gravitational accretion of ring particles and Kepler shear. The B ring wakes are flatter and more closely packed than their neighbors in the A ring, with height-to-width ratios <0.1 for most of the ring. The self-gravity wakes are seen in all regions of the B ring that are not opaque. The observed variation in total B ring optical depth is explained by the amount of relatively empty space between the self-gravity wakes. Wakes are more tightly packed in regions where the apparent normal optical depth is high, and the wakes are more widely spaced in lower optical depth regions. The normal optical depth of the gaps between the wakes is typically less than 0.5 and shows no correlation with position or overall optical depth in the ring. The wake height-to-width ratio varies with the overall optical depth, with flatter, more tightly packed wakes as the overall optical depth increases. The highly flattened profile of the wakes suggests that the self-gravity wakes in Saturn's B ring correspond to a monolayer of the largest particles in the ring. The wakes are canted to the orbital direction in the trailing sense, with a trend of decreasing cant angle with increasing orbital radius in the B ring. We present self-gravity wake properties across the B ring that can be used in radiative transfer modeling of the ring. A high radial resolution (∼10 m) scan of one part of the B ring during a grazing occultation shows a dominant wavelength of 160 m due to structures that have zero cant angle. These structures are seen at the same radial wavelength on both ingress and egress, but the individual peaks and troughs in optical depth do not match between ingress and egress. The structures are therefore not continuous ringlets and may be a manifestation of viscous overstability.  相似文献   

8.
Abstract— We have developed a quantitative model for predicting characteristics of ejecta deposits that result from basin‐sized cratering events. This model is based on impact crater scaling equations (Housen, Schmitt, and Holsapple 1983; Holsapple 1993) and the concept of ballistic sedimentation (Oberbeck 1975), and takes into account the size distribution of the individual fragments ejected from the primary crater. Using the model, we can estimate, for an area centered at the chosen location of interest, the average distribution of thicknesses of basin ejecta deposits within the area and the fraction of primary ejecta contained within the deposits. Model estimates of ejecta deposit thicknesses are calibrated using those of the Orientale Basin (Moore, Hodges, and Scott 1974) and of the Ries Basin (Hörz, Ostertag, and Rainey 1983). Observed densities of secondary craters surrounding the Imbrium and Orientale Basins are much lower than the modeled densities. Similarly, crater counts for part of the northern half of the Copernicus secondary cratering field are much lower than the model predicts, and variation in crater densities with distance from Copernicus is less than expected. These results suggest that mutual obliteration erases essentially all secondary craters associated with the debris surge that arises from the impacting primary fragments during ballistic sedimentation; if so, a process other than ballistic sedimentation is needed to produce observable secondary craters. Regardless, our ejecta deposit model can be useful for suggesting provenances of sampled lunar materials, providing information complementary to photogeological and remote sensing interpretations, and as a tool for planning rover traverses (e.g., Haskin et al. 1995, 2002).  相似文献   

9.
A dust cloud of Ganymede has been detected by in situ measurements with the dust detector onboard the Galileo spacecraft. The dust grains have been sensed at altitudes below five Ganymede radii (Ganymede radius=2635 km). Our analysis identifies the particles in the dust cloud surrounding Ganymede by their impact direction, impact velocity, and mass distribution and implies that they have been kicked up by hypervelocity impacts of micrometeoroids onto the satellite's surface. We calculate the radial density profile of the particles ejected from the satellite by interplanetary dust grains. We assume the yields, mass and velocity distributions of the ejecta obtained from laboratory impact experiments onto icy targets and consider the dynamics of the ejected grains in ballistic and escaping trajectories near Ganymede. The spatial dust density profile calculated with interplanetary particles as impactors is consistent with the profile derived from the Galileo measurements. The contribution of interstellar grains as projectiles is negligible. Dust measurements in the vicinities of satellites by spacecraft detectors are suggested as a beneficial tool to obtain more knowledge about the satellite surfaces, as well as dusty planetary rings maintained by satellites through the impact ejecta mechanism.  相似文献   

10.
The sizes, composition, and number of particles comprising the rings of Saturn may be meaningfully constrained by a combination of radar- and radio-astronomical observations. In a previous paper, we have discussed constraints obtained from radar observations. In this paper, we discuss the constraints imposed by complementary “passive” radio observations at similar wavelengths. First, we present theoretical models of the brightness of Saturn's rings at microwave wavelengths (0.34–21.0 cm), including both intrinsic ring emission and diffuse scattering by the rings of the planetary emission. The models are accurate simulations of the behavior of realistic ring particles and are parameterized only by particle composition and size distribution, and ring optical depth. Second, we have reanalyzed several previously existing sets of interferometric observations of the Saturn system at 0.83-, 3.71-, 6.0-, 11.1-, and 21.0-cm wavelengths. These observations all have spatial resolution sufficient to resolve the rings and planetary disk, and most have resolution sufficient to resolve the ring-occulted region of the disk as well. Using our ring models and a realistic model of the planetary brightness distribution, we are able to establish improved constraints on the properties of the rings. In particular, we find that: (a) the maximum optical depth in the rings is ~ 1.5 ± 0.3 referred to visible wavelengths; (b) a significant decrease in ring optical depth from λ3.7 to λ21.0 cm allows us to rule out the possibility that more than ~30% of the cross section of the rings is composed of particles larger than a meter or so; this assertion is essentially independent of uncertainties in particle adsorption coefficient; and (c) the ring particles cannot be primarily of silicate composition, independently of particle size, and the particles cannot be primarily smaller than ~0.1 cm, independently of composition.  相似文献   

11.
Stellar occultations by Saturn’s rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87 μm. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100 μm across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ∼30 μm across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring’s particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion.  相似文献   

12.
Jack J. Lissauer 《Icarus》1984,57(1):63-71
Ejecta from impacts of micrometeoroids on Saturn's ring particles will, in most cases, remain in orbit about Saturn and eventually be reaccreted by the rings, possibly at a different radial location. The resulting mass transport has been suggested as the cause of some of the features observed in Saturn's rings. Previous attempts to model this transport have used numerical simulations which have not included the effects of the angular momentum transport coincident with mass transport. An analytical model for ballistic mass transport in Saturn's rings is developed. The model includes the effects of angular momentum advection and shows that the net material movement due to angular momentum advection is comparable to that caused by direct ballistic mass transport.  相似文献   

13.
The variation in infrared equilibrium brightness temperature of Saturn's A, B, and C rings is modeled as a function of solar elevation B′ with respect to the ring plane. The basic model includes estimates of minimum and maximum interparticle shadowing in a monolayer approximation. Simple laboratory observations of random particle distributions at various illumination angles provide more realistic shadowing functions. Radiation balance calculations yield the physical (kinetic) temperature of particles in equilibrium with radiation from the Sun, Saturn, and neighboring particles. Infrared brightness temperatures as a function of B′ are then computed and compared to the available 20-μm data (Pioneer results are also briefly discussed). The A and B rings are well modeled by an optically thick monolayer, or equivalently, a flat sheet, radiating from one side only. This points to a temperature contrast between the two sides, possibly due to particles with low thermal inertia. Other existing models for the B ring are discussed. The good fit for the monolayer model does not rule out the possibility that the A and B rings are many particles thick. It could well be that a multilayer ring produces an infrared behavior (as a function of tilt angle) similar to that of a monolayer. The C ring brightness increases as B′ decreases. This contrast in behavior can be understood simply in terms of the low C ring optical depth and small amount of interparticle shadowing. High-albedo particles (A?0.5) can fit the C ring infrared data if they radiate mostly from one hemisphere due to slow rotation or low thermal inertia (or both). Alternatively, particles isothermal over their surface (owing to a rapid spin, high inertia, or small size), and significantly darker (A?0.3) than the A and B ring particles, can produce a similar brightness variation with ring inclination. In any case, the C ring particles have significantly hotter physical temperatures than the particles in the A and B rings, whether or not the rings form a monolayer.  相似文献   

14.
“Condensations” of light have been observed when Saturn's rings are seen almost edge on, and the Sun and the Earth are on opposite sides of the ring plane. These condensations are associated with ring C and Cassini's division. If the relative brightness between the two condensations and the optical thickness of ring C are known, we can calculate the optical thickness of Cassini's division, τCASS. Using Barnard's and Sekiguchi's measurements, we have obtained 0.01 ? τCASS ? 0.05. A brightness profile of the condensations which agrees well with visual observations is also presented.We are able to set an upper limit of about 0.01 for the optical thickness of any hypothetical outer ring. This rules out a ring observed by C. Cragg in 1954, but does not eliminate the D′ ring observed by Feibelman in 1967.It is known that the outer edge of ring B is almost at the position of the 1/2 resonance with Mimas. Franklin, Colombo, and Cook explained this fact in 1971, postulating a total mass of ring B of 10?6MSATURN. We have derived a formula for the mass of the rings, which is a linear function of the mean particle size. We find that 10?6MSATURN implies large particles (~70m). If the particles are small (~10cm), as currently believed, the total mass of ring B is not enough to shift the outer edge. We conclude that the above explanation and current size estimates are inconsistent.  相似文献   

15.
We present results from a large suite of simulations of Saturn’s dense A and B rings using a new model of particle sticking in local simulations (Perrine, R.P., Richardson, D.C., Scheeres, D.J. [2011]. Icarus 212, 719–735). In this model, colliding particles can be incorporated into or help fragment rigid aggregations on the basis of certain user-specified parameters that can represent van der Waals forces or interlocking surface frost layers.Our investigation is motivated by laboratory results that show that interpenetration of surface layers can allow impacting frost-covered ice spheres to stick together. In these experiments, cohesion only occurs below specific impact speeds, which happen to be characteristic of impact speeds in Saturn’s rings. Our goal is to determine if weak bonding is consistent with ring observations, to constrain cohesion parameters in light of existing ring observations, to make predictions about particle populations throughout the rings, and to discover other diagnostics that may constrain bonding parameters.We considered the effects of five parameters on the equilibrium characteristics of our ring simulations: speed-based merge and fragmentation limits, bond strength, ring surface density, and patch orbital distance (i.e., the A or B ring), some with both monodisperse and polydisperse comparison cases. In total, we present data from 95 simulations.We find that weak cohesion is consistent with observations of the A and B rings (e.g., French, R.G., Nicholson, P.D. [2000]. Icarus 145, 502–523), and we present a range of simulation parameters that reproduce the observed size distribution and maximum particle size. It turns out that the parameters that match observations differ between the A and B rings, and we discuss the potential implications of this result. We also comment on other observable consequences of cohesion for the rings, such as optical depth and scale height effects, and discuss whether very large objects (e.g., “propeller” source objects) are grown bottom-up from cohesion of smaller ring particles.  相似文献   

16.
《Icarus》1987,70(1):124-137
The sharp, about 100-km-wide, transition between Saturn's C and B rings is at the inner stability limit of small (micrometer or less) highly charged debris from micrometeorite bombardment of the main ring bodies. The latter vary from about 1 cm to 5 m in radius. In the C ring this charged debris escapes from the ring plane to Saturn along magnetic field lines because of gravitational pull, thus producing a net mass loss. But in the B ring the debris oscillates stably back and forth through the ring plane until reabsorbed by a large ring body. In this model we assume that what is now the B and C rings was initially formed as one ring with the optical thickness of the present B ring. We estimate the C ring net erosion rate and determine the ring age, assuming that the mass influx is small compared with the erosion flux. The erosion rate has been calculated with the use of presently observed micrometeorite fluxes. We also use the best present estimates of the size distribution and total mass eroded by a micrometeorite of a given size and energy. We find that the ring age is between 4.4 and 67 myr. In either case the age is much younger than the 4.5 byr of the solar system. The sharpness of the transition between the B and C rings indicates that the principal mass loss is carried by particles moving at a few meters per second with respect to the parent bodies from which they were eroded.  相似文献   

17.
Ryuji Morishima  Heikki Salo 《Icarus》2009,201(2):634-654
We present our new model for the thermal infrared emission of Saturn's rings based on a multilayer approximation. In our model, (1) the equation of classical radiative transfer is solved directly for both visible and infrared light, (2) the vertical heterogeneity of spin frequencies of ring particles is taken into account, and (3) the heat transport due to particles motion in the vertical and azimuthal directions is taken into account. We adopt a bimodal size distribution, in which rapidly spinning small particles (whose spin periods are shorter than the thermal relaxation time) with large orbital inclinations have spherically symmetric temperatures, whereas non-spinning large particles (conventionally called slow rotators) with small orbital inclinations are heated up only on their illuminated sides. The most important physical parameters, which control ring temperatures, are the albedo in visible light, the fraction of fast rotators (ffast) in the optical depth, and the thermal inertia. In the present paper, we apply the model to Earth-based observations. Our model can well reproduce the observed temperature for all the main rings (A, B, and C rings), although we cannot determine exact values of the physical parameters due to degeneracy among them. Nevertheless, the range of the estimated albedo is limited to 0-0.52±0.05, 0.55±0.07-0.74±0.03, and 0.51±0.07-0.74±0.06 for the C, B, and A rings, respectively. These lower and upper limits are obtained assuming all ring particles to be either fast and slow rotators, respectively. For the C ring, at least some fraction of slow rotators is necessary (ffast?0.9) in order for the fitted albedo to be positive. For the A and B rings, non-zero fraction of fast rotators (ffast?0.1-0.2) is favorable, since the increase of the brightness temperature with increasing solar elevation angle is enhanced with some fraction of fast rotators.  相似文献   

18.
The about 10.5 km diameter Bosumtwi impact crater is one of the youngest large impact structures on Earth. The crater rim is readily noticed on topographic maps or in satellite imagery. It defines a circular basin filled by water (Lake Bosumtwi) and lacustrine sediments. The morphology of this impact structure is also characterized by a circular plateau extending beyond the rim and up to 9–10 km from the center of the crater (about 2 crater radii). This feature comprises a shallow ring depression, also described as an annular moat, and a subdued circular ridge at its outer edge. The origin of this outermost feature could so far not be elucidated based on remote sensing data only. Our approach combines detailed topographic analysis, including roughness mapping, with airborne radiometric surveys (mapping near‐surface K, Th, U concentrations) and field observations. This provides evidence that the moat and outer ring are features inherited from the impact event and represent the partially eroded ejecta layer of the Bosumtwi impact structure. The characteristics of the outer ridge indicate that ejecta emplacement was not purely ballistic but requires ejecta fluidization and surface flow. The setting of Bosumtwi ejecta can therefore be considered as a terrestrial analog for rampart craters, which are common on Mars and Venus, and also found on icy bodies of the outer solar system (e.g., Ganymede, Europa, Dione, Tethys, and Charon). Future studies at Bosumtwi may therefore help to elucidate the mechanism of formation of rampart craters.  相似文献   

19.
In this paper we investigate the formation of the Cretaceous-Paleogene (K-Pg) boundary layer through numerical modeling. The K-Pg layer is widely agreed to be composed of meteoritic material and target rock from the Chicxulub impact site, that has been ejected around the globe and mixed with local material during final deposition. The observed composition and thickness of the K-Pg boundary layer changes with azimuth and distance from the impact site. We have run a suite of numerical simulations to investigate whether we can replicate the observational data, with a focus on the distal K-Pg layer and the impact glasses at proximal sites such as Beloc, Haiti. Previous models of the K-Pg ejecta have assumed an initial velocity distribution and tracked the ejecta to its final destination. Here, we attempt to model the entire process, from impact to the arrival of the ejecta around the globe. Our models replicate the observed ejecta thickness at proximal sites, and the modeled ejecta is composed of sediments and silicate basement rocks, in agreement with observational data. Models that use a 45° impact angle are able to replicate the total ejecta and iridium volume at distal sites, and the majority of the ejecta is composed of meteorite and target sediments. Sub-vertical impacts generate too little iridium, and oblique impacts of ?30 degrees generate too much. However, in contrast to observations, models that involve ballistic transport of ejecta lead to ejecta thickness decreasing with increasing distance, and are unable to transport shocked minerals (quartz and zircon) from the Chicxulub basement rocks around the globe. We suggest that much of the K-Pg ejecta is transported non-ballistically, and that the most plausible mechanism is through re-distribution from a hot, expanding atmosphere. The results are important for future investigations of the environmental effects of the Chicxulub impact.  相似文献   

20.
Using a Markov chain model, we consider the regolith growth on a small body in orbit around Saturn, subject to meteoritic bombardment, and assuming all impact ejecta are re-collected. We calculate the growth of regolith and the fractional pollution, assuming an initial pure ice body and amorphous carbon as a pollutant. We extend the meteorite flux of Cuzzi and Estrada (Cuzzi, J., Estrada, P. [1998]. Icarus 132, 1-35) to larger sizes to consider the effect of disruption of the moonlet on other moonlets in the ensemble. This is a relatively small effect, completely negligible for moonlets of 1 m radius. For the given impact model, fractional pollution reaches 22% for 1 m bodies, but only 3% for 10 m bodies, 1.7% for 20 m bodies, and 1% for 30 m bodies after 4 byr. By considering an ensemble of moonlets, which have identical cross-sections for releasing and capturing ejecta, this analysis can be extended to a model of particles in Saturn’s rings, where the calculated spectra can be compared to observed ring spectra. The measured spectral reflectance of Saturn’s rings from Cassini observations therefore constrains the size and age of the ring particles. The comparison between 1 m, 10 m, 20 m, and 30 m particles confirms that for larger ring mass, the current rings would be less polluted; for the largest particles, we expect negligible changes in the UV spectrum after 4 byr of meteoritic bombardment. We consider two end members for mixing of the meteoritic material: areal and intimate. Given the uncertainties in the actual mixing of the meteoritic infall and in its composition (as a worst case, we assume the meteoritic material is 100% amorphous carbon, intimately mixed) initially pure ice 30 m ring particles would darken after 4 byr of exposure by 15%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号