首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nineteen new lightcurves of 16 Psyche are presented along with a pole orientation derived using two independent methods, namely, photometric astrometry (PA) and magnitude-amplitude-shape-aspect (MASA). The pole orientations found using these two methods agree to within 4°. The results from applying photometric astrometry were prograde rotation, a sidereal period of 0ddot1748143 ± 0ddot0000003, and a pole at longitude 223° and latitude +37°, with an uncertainty of 10°; and, from applying magnitude-amplitude-shape-aspect a pole at 220 ± 1°, +40 ± 4°, and a modeled triaxial ellipsoid shape (a > b > c) with a/b = 1.33 ± 0.02 and b/c = 1.33 ± 0.07. The discrepancy between the high pole latitude found here and the low latitudes reported by others is discussed.  相似文献   

2.
《Icarus》1987,69(2):354-369
Photoelectric lightcurves of 532 Herculina in 1984 show two maxima and two minima with a synodic rotation period of 0.39185 ± 0.00002 day (1σ). During some other oppositions the Herculina lightcurve has only one maximum and one minimum over that same rotation period. The absolute magnitude in V is 6.13 ± 0.02 mag, the phase coefficient in V is 0.037 ± 0.002, and the mean colors are BV = +0.86 ± 0.04 and UB = +0.43 ± 0.02. We applied photometric astrometry and the results indicate a sideral period of 0.3918711 ± 0.0000001 day with retrograde rotation for a north pole at 276° long and +1° lat. The uncertainty of the pole is ±1°. A model of Herculina is presented that generates lightcurves consistent with both the observed amplitudes and the timings of extrema over precisely 28,630 sideral rotations during 30 years. The model is a sphere with two dark regions that are each about 0.13 times the brightness of the surrounding surface. The regions are at 0° asterocentric longitude, +15° lat, with a radius of 30°, and 170° long, −38° lat, with a radius of 26°. With the photometric astrometry pole and the model with two dark regions, predicted lightcurves are shown for the next four oppositions.  相似文献   

3.
Ronald C. Taylor 《Icarus》1985,61(3):490-496
Refinements to the pole-determination method photometric astrometry (PA) were completed in 1983 (R. C. Taylor and E. F. Tedesco, 1983, Icarus54, 13–22). A goal is to redo the pole analysis for every asteroid whose pole had been determined from earlier versions of PA: Previous PA poles are reviewed in this paper. Asteroid 433 Eros is in that collection and has redone. The result are prograde rotation; a sidereal period of 0.219588 ± 0.000005 day; and a north pole at 22° longitude, +9° latitude. The uncertainty of the pole is 10°. The pole position of Eros determined by C.D. Vesely (1971, In Physical Studies of Minor Planets (T. Gehrels, Ed.), pp. 133–140, NASA SP-267) and Dunlap (1976, Icarus28, 69–78), using earlier versions of photometric astrometry, were within 21 and 7°, respectively, of the present result.  相似文献   

4.
Fourteen photometric lightcurves of 433 Eros were made at the Astronomical Observatory of Torino during the 1974–75 close passage. The absolute magnitude of the primary maximum (10m78), the phase coefficient (0.023 mag/degree), the synodic and sidereal period of rotation (0d.21956 and 0d.21959, respectively) and the ecliptic coordinates of the pole (λ = 17°, β = 10°) were deduced.  相似文献   

5.
By means of new photoelectric observations made in 1974 an attempt to determine the poles of asteroids 9 and 44 was made. Following a method based upon the magnitude-aspect and amplitude-aspect relations, the coordinates of the poles for 9 and 44 were found to be, respectively, λ0 = 191° ± 5°, β0 = 56° ± 6° and λ0 = 100° ± 10°, β0 = 50° ± 10°. The previously published pole for asteroid 22, λ0 = 215° ± 10°, β0 = 45° ± 15°, was confirmed. From its phase relation we determined the phase coefficient of 44 Nysa, a very high albedo object (pv = 0.377). The very low phase coefficient obtained (βv = 0.018 mag/deg) agrees very well with an inverse relation between geometrical albedo and phase coefficient. The results are summarized in a table.  相似文献   

6.
Ben Zellner 《Icarus》1976,28(1):149-153
Newly available photometric, polarimetric, spectroscopic, thermal-radiometric, radar, and occultation results are synthesized in order to derive a coherent model for Eros. The geometric albedo is 0.19±0.01 at the visual wavelength, and the overall dimensions are approximately 13 × 15 × 36km. The rotation is about the short axis, in the direct sense, with a sidereal period of 5h16m13s.4. The pole of rotation lies within a few degrees of ecliptic coordinates λ = 16° and β = + 11°.Eros is uniformly coated with a particulate surface layer several millimeters thick. It has an iron-bearing silicate composition, similar to that of a minority of main-belt asteroids, and probably identifiable with H-type ordinary chondrites.  相似文献   

7.
《Planetary and Space Science》1999,47(3-4):327-330
The asteroid 85 Io has been observed using CCD and photoelectric photometry on 18 nights during its 1995–96 and 1997 apparitions. We present the observed lightcurves, determined colour indices and modelling of the asteroid spin vector and shape. The colour indices (U-B = 0.35±0.02, B-V = 0.66±0.02, V-R = 0.34±0.02, R-I = 0.36±0.02) are as expected for a C-type asteroid. The allowed spin vector solutions have the pole co-ordinates λ0 = 285±4°, β0 = −52±9° or λ0 = 108±10°, β0 = −46±10° and λ0 = 290±10°, β0 = −16±10° with a retrograde sense of rotation and a sidereal period Psid = 0d.286463±0d.000001. During the 1995–96 apparition the International Occultation Time Association (IOTA) observed an occultation event by 85 Io. The observations and modelling presented here were analysed together with the occultation data to develop improved constraints on the size of the asteroid. The derived value of 164 km is about 5% larger than the IRAS diameter. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

8.
J.L. Dunlap 《Icarus》1976,28(1):69-78
Ten lightcurves and UBV photometry of 433 Eros were obtained between August 1972 and May 1975. The absolute magnitude of the lightcurve maximum is 10.75 and the phase coefficient is 0.025 mag/deg. There may be a small difference in B-V color between the northern and southern hemispheres. The pole of the axis of rotation is directed toward λ0 = 16°, β0 = 12°, ecliptic longitude and latitude, respectively, and the rotation is direct with a sidereal period of 0.d219599 or 5h16m13s4 ± 0.s2. The dimensions derived from the polarimetric albedo and the lightcurve amplitudes are 12km × 12km × 31km for a smooth cylinder with hemispherical ends.  相似文献   

9.
《Icarus》1986,67(2):251-263
511 Davida was observed with the technique of speckle interferometry at Steward Observatory's 2.3-m telescope on May 3, 1982. Assuming Davida to be a featureless triaxial ellipsoid, based on five 7-min observations its triaxial ellipsoid dimensions and standard deviations were found to be (465 ± 90) × (358 ± 58) × (258 ± 356) km. This shape is close to an equilibrium figure (a gravitationally shaped “rubble pile?”) suggesting a density of 1.4 ± 0.4 g/cm3. Simultaneously with the triaxial solution for the size and shape of Davida, we found its north rotational pole to lie within 29° of RA = 19h08m, Dec = +15° (λ = 291°, β = +37°). If Davida is assumed to be a prolate biaxial ellipsoid, then its dimensions were found to be (512 ± 100) × (334 ± 39) km, with a north pole within 16° of RA = 10h52m, Dec = +16° (λ = 322°, β = +32°). We derive and apply to Davida a new simultaneous amplitude-magnitude (SAM)-aspect method, finding, from photometric data only, axial ratios of a/b = 1.25 ± .02, b/c = 1.14 ± .03, and a rotational pole within 4° of λ = 307°, β = +32°. We also derive a (weighted) linearized form of the amplitude-aspect relation to obtain axial ratios and a pole. However, amplitudes must be known to better than .01 if the b/c or a/c ratios are desired to better than 10%. Combining the speckle and SAM results, we find for the Gehrels and Tedesco phase function a geometric albedo of .033 ± .009 and for the Lumme and Bowell function .041 ± .011, for a unified model of 437 × 350 × 307 km. Differences between the photometric and speckle axial ratios and poles are probably due to the effects of albedo structure over the asteroid; details on individual lightcurves support this conclusion.  相似文献   

10.
We have redetermined the kinematic parameters of the Gould Belt using currently available data on the motion of nearby young (log t < 7.91) open clusters, OB associations, and moving stellar groups. Our modeling shows that the residual velocities reach their maximum values of ?4 km s?1 for rotation (in the direction of Galactic rotation) and +4 km s?1 for expansion at a distance from the kinematic center of ≈300 pc. We have taken the following parameters of the Gould Belt center: R 0 = 150 pc and l 0 = 128°. The whole structure is shown to move relative to the local standard of rest at a velocity of 10.7 ± 0.7 km s?1 in the direction l = 274° ± 4° and b = ?1° ± 3°. Using the derived rotation velocity, we have estimated the virial mass of the Gould Belt to be 1.5 × 106 M .  相似文献   

11.
UBV observations of asteroid 433 Eros were conducted on 17 nights during the winter of 1974/75. The peak-to-peak amplitude of the lightcurve varied from about 0.3 mag to nearly 1.4mmag. The absolute V mag at maximum light, extrapolated to zero phase, is 10.85. Phase coefficients of 0.0233 mag/degree, 0.0009 mag/degree and 0.0004 mag/degree were derived for V, B-V, and U-B, respectively. The zero-phase color of Eros (B?V = 0.88, U?B = 0.50) is representative of an S (silicaceous) compositional type asteroid. The color does not vary with rotation. The photometric behavior of Eros can be modeled by a cylinder with rounded ends having an axial ratio of about 2.3:1. The asteroid is rotating about a short axis with the north pole at λ0 = 15° and β0 = 9°.  相似文献   

12.
《Icarus》1987,70(2):246-256
Photoelectric lightcurves of the asteroid 1862 Apollo were obtained in November–December 1980 and in April–May 1982. The period of rotation is unambiguously determined to be 3.0655 ± 0.0008 hr. The 1980 observations span a range of solar phase angle from 30° to 90°, and the 1982 observations, 0.°2 to 90°. The Lumme-Bowell-Harris phase relation can be fit to the absolute magnitudes at maximum light with an RMS scatter of 0.06 magnitude over the entire range of phase angle. The constants of the solution are absolute V magnitude at zero phase angle and at maximum light, 16.23 ± 0.02; slope parameter, 0.23 ± 0.01. These constant corresponds to values in the linear phase coefficient system of V(1, 0) = 16.50 ± 0.02 and a phase coefficient of βv = 0.0305 ± 0.0012 mag/degree in the phase range 10°–20°. The slope of the phase curve is typical for a moderate albedo asteroid. The absolute magnitudes observed in 1980 and 1982 fall along a common phase curve. That is, Apollo was not intrinsically brighter at one apparition than the other. This is not surprising, since the two apparitions were almost exactly opposite one another in the sky. A pole position was calculated from the observed deviation of the lightcurve from constant periodicity (synodic-sidereal difference) during both apparitions. The computed 1950 ecliptic coordinates of the pole are: longitude = 56°, latitude = −26°. This is the “north” pole with respect to right-handed (counter-clockwise) rotation. The formal uncertainty of the solution for the pole position is less than 10°, but realistically may be several times that, or even completely wrong. The sidereal period of rotation asscociated with this pole solution is 3.065436 ± 0.000012 hr.  相似文献   

13.
We used observations at 4 oppositions to calculate the rotation of the asteroid (16) Psyche. Our results are 1) the pole is λ 225°, β = +5° (1950.0), 2) the rotation is direct, and 3) the sidereal period is 4h 11m 45s.42 ± 0s.01.At the three oppositions of 1955, 1965 and 1980, the relative positions of the Sun, the Earth and the asteroids were almost the same, and the observed light curves were also nearly the same. Therefore, this asteroid may be said to have shown no precession over the 20 years observed.  相似文献   

14.
Based on kinematic data on masers with known trigonometric parallaxes and measurements of the velocities of HI clouds at tangential points in the inner Galaxy, we have refined the parameters of the Allen-Santillan model Galactic potential and constructed the Galactic rotation curve in a wide range of Galactocentric distances, from 0 to 20 kpc. The circular rotation velocity of the Sun for the adopted Galactocentric distance R 0 = 8 kpc is V 0 = 239 ± 16 km s?1. We have obtained the series of residual tangential, ΔV θ , and radial, V R , velocities for 73 masers. Based on these series, we have determined the parameters of the Galactic spiral density wave satisfying the linear Lin-Shu model using the method of periodogram analysis that we proposed previously. The tangential and radial perturbation amplitudes are f θ = 7.0±1.2 km s?1 and f R = 7.8±0.7 km s?1, respectively, the perturbation wave length is λ = 2.3±0.4 kpc, and the pitch angle of the spiral pattern in a two-armed model is i = ?5.2° ±0.7°. The phase of the Sun ζ in the spiral density wave is ?50° ± 15° and ?160° ± 15° from the residual tangential and radial velocities, respectively.  相似文献   

15.
Further reduction of Doppler tracking data from Mariner 9 confirms our earlier conclusion that the gravity field of Mars is considerably rougher than the fields of either the Earth or the Moon. The largest positive gravity anomaly uncovered is in the Tharsis region which is also topographically high and geologically unusual. The best determined coefficients of the harmonic expansion of the gravitational potential are: J2 = (1.96 ± 10.01) × 10?3 ; C22 = ?(5.1 ± 0.2) × 10?5; and S22 = (3.4 ± 0.2) × 10?5. The other coefficients have not been well determined on an individual basis, but the ensemble yields a useful model for the gravity field for all longitudes in the vicinity of 23° South latitude which corresponds to the periapse position for the orbiter.The value obtained for the inverse mass of Mars (3 098 720 ± 70 M?1) is in good agreement with prior determinations from Mariner flyby trajectories. The direction found for the rotational pole of Mars, referred to the mean equinox and equator of 1950.0, is characterized by α = 317°.3 ± 0°.2, δ = 52°.7 ± 0°.2. This result is in excellent agreement with Sinclair's recent value, determined from earth-based observations of Mars' satellites, but differs by about 0°.5 from the previously accepted value. Other important physical constants that have either been refined or confirmed by the Mariner 9 data include: (i) the dynamical flattening, f = (5.24 ± 0.02) × 10?3; (ii) the maximum principal moment of inertia, C = (0.375 ± 0.006) MR2; and (iii) the period of precession of Mars' pole, P ? (1.73 ± 0.03) × 105 yr, corresponding to a rate of 7.4 sec of arc per yr.  相似文献   

16.
The complex lightcurves make (51) Nemausa a good case for the study of general methods for pole determination. From six lightcurves the pole is determined to 20h24m; +53° (1950); the rotation is retrograde with period 7h.782936 ± 0h.000005. Presence of nongeometric scattering is proved by a significant 0.008 mag amplitude. Formulae and photometric elements are given for predictions of the shapes of lightcurves in future oppositions. The precision of the Fourier coefficients may be reduced below the present ±0.003 mag level by avoiding the systematic errors in the observations due to phase factor variations and discontinuities when changing comparison stars.  相似文献   

17.
In 1971 asteroid Vesta was observed in a region of the sky in which it had never been observed before. Its photometric lightcurve had two distinct maxima. Those observations have been the only strong evidence to support a rotation period of about 10 hr 41 min. Lightcurves made in 1982, when Vesta was at the same aspect as 1971, do not show two different maxima. It is concluded that there was a systematic error in the 1971 observations. At this time a definitive statement cannot be made about the true period of Vesta, although the 5 hr 20 min period does appear more plausible. Radar echoes in 1988 and 1992 should resolve the problem. The shorter rotation period was assumed and the photometric astrometry method applied. The sidereal period is 5 hr 20 min 31.68 sec 0.2225889 ± 0.0000002 days, the rotation is prograde, and the coordinates of the north pole are 103° longitude and +43° latitude with an uncertainty of abour 6°.  相似文献   

18.
We present 26 lightcurves of 16 Psyche from 1975 and 1976. The synodic period during this apparition was 4h.1958. Combining photometric data from this opposition with those from previous apparitions allowed us to derive a mean phase coefficient in V of 0.026 ± 0.002 mag/deg and to establish that Psyche's absolute V0 magnitude and rotational amplitude vary with aspect; at 90° aspect, V0(1, 0) = 6.27 ± 0.05 and the lightcurve amplitude is 0.30 mag, while at 0° or 180° aspect, V0(1, 0) = 6.02 ± 0.02 and the amplitude is ?0.03 mag. This behavior is accounted for if, to first order, Psyche's shape is that of a triaxial ellipsoid with axial ratios near 5:4:3. Colors at zero phase are U-B = 0.26 ± 0.01 and B-V = 0.71 ± 0.01. Color phase coefficients are <0.001 mag/deg in U-B and 0.0010 ± 0.0004 mag/deg in B-V.  相似文献   

19.
We report the results of photometric observations of a number of magnetic white dwarfs in order to search for photometric variability in these stars. These V-band observations revealed significant variability in the classical highly magnetized white dwarf GRW+70?8247 with a likely period from several days to several dozen days and a half-amplitude of about 0. m 04. Our observations also revealed the variability of the well-known white dwarf GD229. The half amplitude of its photometric variability is equal to about 0. m 005, and the likely period of this degenerate star lies in the 10–20 day interval. This variability is most likely due to the rotation of the stars considered.We also discuss the peculiarities of the photometric variability in a number of other white dwarfs. We present the updated “magnetic field–rotation period” diagram for the white dwarfs.  相似文献   

20.
We present the results of our photometric (BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = ?20m.81 for NGC 304 and M B = ?19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s?1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 \(\mathcal{M}_ \odot \). The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices (B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors (B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号