首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A spectrum of the disk of Jupiter was obtained in January 1978 from the Kuiper Airborne Observatory, covering the 100- to 300-cm?1 spectral range at a resolution corresponding to 1.65 cm?1. Although taken more than a year before the Voyager 1 Jupiter encounter, this spectrum serves to extend the Voyager IRIS experiment coverage down from its lower limit of 200 cm?1. Analysis of the spectrum provides information on global mean properties of ammonia gas and an ammonia ice haze. A vertical distribution indistinguishable from saturation equilibrium, with a sharp depletion near the temperature minimum, matches the observed shape of the rotational line absorption best. Constraints on the total optical thickness of the ammonia ice haze can be made, but other properties, such as particle size or vertical scale height, cannot be distinguished clearly from our data in this spectral region. Nevertheless, all models of the haze produce a “continuum” thermal emission between the NH3 line manifolds which is much lower than that produced by the H2 collision-induced dipole opacity.  相似文献   

2.
Ground-based observations of Venus were made with a 5-cm drive Michelson interferometer during December 1970 and December 1973. The thermal emission spectrum of the central portion of the apparent disk was recorded from 450–1250 cm?1 with an apodized spectral resolution of 0.25 cm?1. All statistically significant sharp line absorption features in the spectrum have been identified with gaseous CO2. Comparison between the observed spectrum and a synthetic spectrum computed from a model atmosphere, assuming gaseous CO2 and a sulfuric acid haze as opacity sources, indicates good agreement. A broad diffuse absorption feature associated with the sulfuric acid haze is evident in the 870- to 930 cm?1 region. With the exception of the rotational lines of the 927-cm?1 CO2 band, the above feature appears as a continuum down to 0.25 cm?1 resolution. In the 750- to 1250-cm?1 range, the spectrum exhibits moderate thermal contrast with maximum brightness temperatures of 234–238°K occurring near 825 cm?1. These temperatures are in general agreement with previous measurements.  相似文献   

3.
High-resolution (∼0.22 Å) spectra of the north jovian aurora were obtained in the 905-1180 Å window with the Far Ultraviolet Spectroscopic Explorer (FUSE) on October 28, 2000. The FUSE instrument resolves the rotational structure of the H2 spectra and the spectral range allows the study of self-absorption. Below 1100 Å, transitions connecting to the v?2 levels of the H2 ground state are partially or totally absorbed by the overlying H2 molecules. The FUSE spectra provide information on the overlying H2 column and on the vibrational distribution of H2. Transitions from high-energy H2 Rydberg states and treatment of self-absorption are considered in our synthetic spectral generator. We show comparisons between synthetic and observed spectra in the 920-970, 1030-1080, and 1090-1180 Å spectral windows. In a first approach (single-layer model ), the synthetic spectra are generated in a thin emitting layer and the emerging photons are absorbed by a layer located above the source. It is found that the parameters of the single-layer model best fitting the three spectral windows are 850, 800, and 800 K respectively for the H2 gas temperature and 1.3×1018, 1.5×1020, and 1.3×1020 cm−2 for the H2 self-absorbing vertical column respectively. Comparison between the H2 column and a 1-D atmospheric model indicates that the short-wavelength FUV auroral emission originates from just above the homopause. This is confirmed by the high H2 rovibrational temperatures, close to those deduced from spectral analyses of H+3 auroral emission. In a second approach, the synthetic spectral generator is coupled with a vertically distributed energy degradation model, where the only input is the energy distribution of incoming electrons (multi-layer model ). The model that best fits globally the three FUSE spectra is a sum of Maxwellian functions, with characteristic energies ranging from 1 to 100 keV, giving rise to an emission peak located at 5 μbar, that is ∼100 km below the methane homopause. This multi-layer model is also applied to a re-analysis of the Hopkins Ultraviolet Telescope (HUT) auroral spectrum and accounts for the H2 self-absorption as well as the methane absorption. It is found that no additional discrete soft electron precipitation is necessary to fit either the FUSE or the HUT observations.  相似文献   

4.
The abundances of PH3, CH3D, and GeH4 are derived from the 2100- to 2250-cm?1 region of the Voyager 1 IRIS spectra. No evidence is seen for large-scale variations of the phosphine abundance over Jovian latitudes between ?30 and +30°. In the atmospheric regions corresponding to 170–200°K, the derived PH3/H2 value is (4.5 ± 1.5) × 10?7 or 0.75 ± 0.25 times the solar value. This result, compared with other PH3 determinations at 10 μm, suggests than the PH3/H2 ratio on Jupiter decreases with atmospheric pressure. In the 200–250°K region, we derive, within a factor of 2, CH3D/H2 and GeH4/H2 ratios of 2.0 × 10?7 and 1.0 × 10?9, respectively. Assuming a C/H value of 1.0 × 10?3, as derived from Voyager, our CH3D/H2 ratio implies a D/H ratio of 1.8 × 10?5, in reasonable agreement with the interstellar medium value.  相似文献   

5.
P. Drossart  T. Encrenaz 《Icarus》1982,52(3):483-491
The abundance of H2O is derived from the 1900- to 2100-cm?1 region of the Voyager 1 IRIS spectra. Scale variations of about a factor of 2 are seen in the water abundance between the North and South Equatorial Belts. Averaged over the full disk, the mixing ratio is H2OH2=(4.0±1.0) × 10?6, if H2O is uniformly mixed in the atmospheric region having temperatures of 230 to 270°K; this result implies a solar depletion by a factor of 100 in this region. In the belts, the best agreement is obtained for a H2O/H2 mixing ratio of 4.0 × 10?6 in the NEB and 7.2 × 10?6 in the SEB, assuming a constant mixing ratio.  相似文献   

6.
We examine the effects of NH3 ice particle clouds in the atmosphere of Jupiter on outgoing thermal radiances. The cloud models are characterized by a number density at the cloud base, by the ratio of the scale height of the vertical distribution of particles (Hp) to the gas scale height (Hg), and by an effective particle radius. NH3 ice particle-scattering properties are scaled from laboratory measurements. The number density for the various particle radius and scale height models is inferred from the observed disk average radiance at 246 cm?1, and preliminary lower limits on particle sizes are inferred from the lack of apparent NH3 absorption features in the observed spectral radiances as well as the observed minimum flux near 2100 cm?1. We find lower limits on the particle size of 3 μm if Hp/Hg = 0.15, or 10μmif Hp/Hg = 0.50 or 0.05. NH3 ice particles are relatively dark near the far-infrared and 8.5-μm atmospheric windows, and the outgoing thermal radiances are not very sensitive to various assumptions about the particle-scattering function as opposed to radiances at 5 μm, where particles are relatively brighter. We examined observations in these three different spectral window regions which provide, in principle, complementary constraints on cloud parameters. Characterization of the cloud scale height is difficult, but a promising approach is the examination of radiances and their center-to-limb variation in spectral regions where there is significant opacity provided by gases of known vertical distribution. A blackbody cloud top model can reduce systematic errors due to clouds in temperature sounding to the level of 1K or less. The NH3 clouds provide a substantial influence on the internal infrared flux field near the 600-mbar level.  相似文献   

7.
The atmospheric transmission window at 2.7 μm in Jupiter's atmosphere was observed at a spectral resolution of 0.1 cm?1 from the Kuiper Airborne Observatory. From analysis of the CH4 abundance (~80m-am) and the H2O abundance (<0.0125cm-am) it was determined that the penetration depth of solar flux at 2.7 μm is near the base of the NH3 cloud layer. The upper limit to H2O at 2.7 μm and other recent results suggest that photolytic reactions in Jupiter's lower troposphere may not be as significant as was previously thought. The search for H2S in Jupiter's atmosphere yielded an upper limit of ~0.1cm-am. The corresponding limit to the elemental abundance ratio [S]/[H] was ~1.7 × 10?8, about 10?3 times the solar value. Upon modeling the abundance and distribution of H2S in Jupiter's atmosphere it was concluded that, contrary to expectations, sulfur-bearing chromophores are not present in significant amounts in Jupiter's visible clouds. Rather, it appears that most of Jupiter's sulfur is locked up as NH4SH in a lower cloud layer. Alternatively, the global abundance of sulfur in Jupiter may be significantly depleted.  相似文献   

8.
We have analyzed the continuum emission of limb spectra acquired by the Cassini/CIRS infrared spectrometer in order to derive information on haze extinction in the 3–0.02 mbar range (∼150–350 km). We focused on the 600–1420 cm−1 spectral range and studied nine different limb observations acquired during the Cassini nominal mission at 55°S, 20°S, 5°N, 30°N, 40°N, 45°N, 55°N, 70°N and 80°N. By means of an inversion algorithm solving the radiative transfer equation, we derived the vertical profiles of haze extinction coefficients from 17 spectral ranges of 20-cm−1 wide at each of the nine latitudes. At a given latitude, all extinction vertical profiles retrieved from various spectral intervals between 600 and 1120 cm−1 display similar vertical slopes implying similar spectral characteristics of the material at all altitudes. We calculated a mean vertical extinction profile for each latitude and derived the ratio of the haze scale height (Hhaze) to the pressure scale height (Hgas) as a function of altitude. We inferred Hhaze/Hgas values varying from 0.8 to 2.4. The aerosol scale height varies with altitude and also with latitude. Overall, the haze extinction does not show strong latitudinal variations but, at 1 mbar, an increase by a factor of 1.5 is observed at the north pole compared to high southern latitudes. The vertical optical depths at 0.5 and 1.7 mbar increase from 55°S to 5°N, remain constant between 5°N and 30°N and display little variation at higher latitudes, except the presence of a slight local maximum at 45°N. The spectral dependence of the haze vertical optical depth is uniform with latitude and displays three main spectral features centered at 630 cm−1, 745 cm−1 and 1390 cm−1, the latter showing a wide tail extending down to ∼1000 cm−1. From 600 to 750 cm−1, the optical depth increases by a factor of 3 in contrast with the absorbance of laboratory tholins, which is generally constant. We derived the mass mixing ratio profiles of haze at the nine latitudes. Below the 0.4-mbar level all mass mixing ratio profiles increase with height. Above this pressure level, the profiles at 40°N, 45°N, 55°N, at the edge of the polar vortex, display a decrease-with-height whereas the other profiles increase. The global increase with height of the haze mass mixing ratio suggest a source at high altitudes and a sink at low altitudes. An enrichment of haze is observed at 0.1 mbar around the equator, which could be due to a more efficient photochemistry because of the strongest insolation there or an accumulation of haze due to a balance between sedimentation and upward vertical drag.  相似文献   

9.
Ten-micrometer spectra of the North Tropical Zone, North Equatorial Belt, and Great Red Spot at a spectral resolution of 1.1 cm?1 are compared to synthetic spectra. These ground-based spectra were obtained simultaneously with the Voyager 1 encounter with Jupiter in March, 1979. The NH3 vertical distribution is found to decrease with altitude significantly faster than the saturated vapor pressure curve and is different for the three observed regions. Spatial variability in the NH3 mixing ratio could be caused by changes in the amount of NH3 condensation or in the degree of the NH3 photolysis. The C2H6 emission at 12 μm has approximately the same strength at the North Tropical Zone and North Equatorial Belt, but it is 30% weaker at the Great Red Spot. A cooler temperature inversion or a smaller abundance of C2H6 could explain the lower C2H6 emission over the Great Red Spot.  相似文献   

10.
Limb spectra recorded by the Composite InfraRed Spectrometer (CIRS) on Cassini provide information on abundance vertical profiles of C2H2, C2H4, C2H6, CH3C2H, C3H8, C4H2, C6H6 and HCN, along with the temperature profiles in Titan's atmosphere. We analyzed two sets of spectra, one at 15° S (Tb flyby) and the other one at 80° N (T3 flyby). The spectral range 600-1400 cm−1, recorded at a resolution of 0.5 cm−1, was used to determine molecular abundances and temperatures in the stratosphere in the altitude range 100-460 km for Tb and 170-495 km for T3. Both temperature profiles show a well defined stratopause, at around 310 km (0.07 mbar) and 183 K at 13° S, and 380 km (0.01 mbar) with 207 K at 80° N. Near the north pole, stratospheric temperatures are colder and mesospheric temperatures are warmer than near the equator. C2H2, C2H6, C3H8 and HCN display vertical mixing ratio profiles that increase with height at 15° S and 80° N, consistent with their formation in the upper atmosphere, diffusion downwards and condensation in the lower stratosphere, as expected from photochemical models. The CH3C2H and C4H2 mixing ratios also increase with height at 15° S. But near the north pole, their profiles present an unexpected minimum around 300 km, observed for the first time thanks to the high vertical resolution of the CIRS limb data. C2H4 is the only molecule having a vertical abundance profile that decreases with height at 15° S. At 80° N, it also displays a minimum of its mixing ratio around the 0.1-mbar level. For C6H6, an upper limit of 1.1 ppb (in the 0.3-10 mbar range) is derived at 15° S, whereas a constant mixing ratio profile of is inferred near the north pole. At 15° S, the vertical profile of HCN exhibits a steeper gradient than other molecules, which suggests that a sink for this molecule exists in the stratosphere, possibly due to haze formation. All molecules display a more or less pronounced enrichment towards the north pole, probably due, in part, to subsidence of air at the north (winter) pole that brings air enriched in photochemical compounds from the upper atmosphere to lower levels.  相似文献   

11.
G.S. Orton  H.H. Aumann 《Icarus》1977,32(4):431-436
The Q and R branches of the C2H2 ν5 fundamental, observed in emission in an aircraft spectrum of Jupiter near 750 cm?1, have been analyzed with the help of an improved line listing for this band. The line parameters have been certified in the laboratory with the same interferometer used in the Jovian observations. The maximum mixing ratio of C2H2 is found to be between 5 × 10?8 and 6 × 10?9, depending on the form of its vertical distribution and the temperature structure assumed for the lower stratosphere. Most consistent with observations of both Q and R branches are: (1) distributions of C2H2 with a constant mixing ratio in the stratosphere and a cutoff at a total pressure of 100 mbar or less, and (2) the assumption of a temperature at 10?2 bar which is near 155°K.  相似文献   

12.
Spectra of Jupiter recorded in the 1900- to 2300-cm?1 range at the IRTF in Hawaii, July 1982, provide tentative evidence for variability of the Jovian atmosphere between zones and belts. It is concluded from analysis of the ν1and ν3 bands of PH3 that there is a possible enhancement of the PH3/H2 ratio in the belts when compared to the zones. There is an apparent reduction of the PH3 abundance between the IRIS Voyager 1 determinations and these spectra, implying temporal or spatial variability of PH3 on Jupiter. Interpretation of this variability in the troposphere could involve both dynamical and thermochemical processes.  相似文献   

13.
Measuring the spatial distribution of chemical compounds in Saturn’s stratosphere is critical to better understand the planet’s photochemistry and dynamics. Here we present an analysis of infrared spectra in the range 600-1400 cm−1 acquired in limb geometry by the Cassini spacecraft between March 2005 and January 2008. We first determine the vertical temperature profiles from 3 to 0.01 hPa, at latitudes ranging from 70°N to 80°S. We infer a similar meridional temperature gradient at 1-2 hPa as in recent previous studies [Fletcher, L.N., Irwin, P.G.J., Teanby, N.A., Orton, G.S., Parrish, P.D., de Kok, R., Howett, C., Calcutt, S.B., Bowles, N., Taylor, F.W., 2007. Icarus 189, 457-478; Howett, C.J.A., Irwin, P.G.J., Teanby, N.A., Simon-Miller, A., Calcutt, S.B., Fletcher, L.N., de Kok, R., 2007. Icarus 190, 556-572]. We then retrieve the vertical profiles of C2H6 and C2H2 from 3 to 0.01 hPa and of C3H8 around 1 hPa. At 1 hPa, the meridional variation of C2H2 is found to follow the yearly averaged solar insolation, except for a strong equatorial mole fraction of 8×10-7, nearly two times higher than expected. This enhancement in abundance can be explained by the descent of hydrocarbon-rich air, with a vertical wind speed at the equator of 0.25±0.1 mm/s at 1 hPa and 0.4±0.15 mm/s at 0.1 hPa. The ethane distribution is relatively uniform at 1 hPa, with only a moderate 25% increase from 35°S to 80°S. Propane is found to increase from north to south by a factor of 1.9, suggesting that its lifetime may be shorter than Saturn’s year at 1 hPa. At high altitudes (1 Pa), C2H2 and C2H6 abundances depart significantly from the photochemical model predictions of Moses and Greathouse [Moses, J.I., Greathouse, T.K., 2005. J. Geophys. Res. 110, 9007], except at high southern latitudes (62, 70 and 80°S) and near the equator. The observed abundances are found strongly depleted in the 20-40°S region and enhanced in the 20-30°N region, the latter coinciding with the ring’s shadow. We favor a dynamical explanation for these anomalies.  相似文献   

14.
Andrew T. Young 《Icarus》1977,32(1):1-26
A simple radiative-transfer theory that allows for the change in the absorptions of sulfur and carbon dioxide with depth in the atmosphere of Venus can account simultaneously for (1) the spectral reflectance of Venus; (2) the wavelength dependence of contrast in uv cloud features; (3) the CO2 line profile; (4) the change in slope of the curve of growth from the 7820- to the 10488-Å CO2 bands; and (5) the rotational temperature near 246°K found for all CO2 bands. The model cloud consists of 1-μm sulfuric-acid particles, which are well mixed between about 64 km and the 49-km cloud base found by Veneras 9 and 10, plus an overlapping cloud of much larger sulfur particles that extends down to the 35-km cloud base found by Venera 8. The mixing ratios (by number of molecules) below about 64 km are: H2O, 2 × 10?4; H2SO4, 10?5; and sulfur, 10?4. Although the cloud contains an order of magnitude more sulfur than sulfuric acid, the sulfur particles are an order of magnitude larger, and so have only about 1% of the number density of the acid droplets. The “black-white” radiative-transfer model assumes perfectly conservative scattering above the level (which depends on wavelength) where an absorber becomes “black” due to the local temperature and pressure. So-called homogeneous scattering models are inherently self-contradictory, and are inapplicable to planetary atmospheres; the vertical inhomogeneity is an essential feature that must be modeled correctly. The pressure of CO2 line formation is about half the pressure in the region where uv markings occur.  相似文献   

15.
The spectral window of Jupiter at 3 μm is analyzed and compared with previously published spectra. The two components of the spectrum, the thermal and the solar reflected contributions, are calculated at low resolution (30 cm?1) between 3300 and 3800 cm?1 for preparing the interpretation of the Galileo Near Infrared Mapping Spectrometer experiment. The calculations yield to the following conclusions: (1) NH3 is the main absorber between 3300 and 3600 cm?1 for both the thermal spectrum and the solar reflected spectrum; H2O appears only in the thermal component above 3600 cm?1. (2) The thermal component can be seen only on the dark side of Jupiter; the atmosphere is sounded down to temperature levels of about 210°K. (3) The solar reflected component can be modelized by a reflecting layer between 135 and 140°K with an albedo of 0.3; high spatial resolution maps of Jupiter at 3 μm should give access to the NH3 spatial distribution on Jupiter.  相似文献   

16.
A radiative seasonal model which incorporates a multilayer radiative transfer treatment at wave-lengths longward of 7 μm is presented and applied to Saturn's stratosphere. Opacities due to H2-He, CH4, C2H2, and C2H6 are included. Season-dependent insolation is shown to produce a strong hemispheric asymmetry decreasing with depth at the Voyager encounter times, and seasonal amplitudes of 30°K at the poles are predicted in the high stratosphere. The ring-modulated dependence of the insolation and the orbital eccentricity are shown to have a significant effect. Calculations agree closely with the Voyager 1 and 2 radio occultation ingress profiles recorded at 76°S and 36.5°S for CH4/H2 = 3.5 + 1.4/? 1.0 × 10?3;the estimated errors include modeling systematic errors and uncertainties in the occultations profiles. The possible role of aerosols in the stratospheric heating is analyzed. The Voyager 2 egress profile recorded at 31°S cannot be reproduced by calculations. Some constraints on the C2H2 and C2H6 abundances are derived. The upper portion of the occultation profiles (p < 3mbar) can be matched for C2H2/H2 = 1.0 + 1.3/?0.6 × 10?7, C2H6/H2 = 1.5 + 1.8/?0.9 × 10?6 at 76°S and C2H2/H2 = 4 + 6/?4 × 10?8, C2H6/H2 = 6 + 9/?6 × 10?7 at 36.5°N. At the northern occultation latitude, the discrepancy with the concentrations derived from analysis of IRIS spectra by R. Courtin, D. Gautier, A. Marten, B. Bézard, and R. Hanel (1984, Astrophys. J.287) can be explained by a sharp variation of the mixing ratios of these gases with altitude in the upper stratosphere. Other interpretations are discussed.  相似文献   

17.
We obtained spatially-resolved ultraviolet spectra of Saturn in 1994 with the Faint Object Spectrometer and Goddard High Resolution Spectrograph of the Hubble Space Telescope. We observed four areas on the planet at 15° N, 33° S, 41° S, and 52° S, with a field-of-view of less than 2 × 2 arcsec2, compared to the 16-arcsec planet diameter. The wavelength range, 1550-2300 Å, encompasses absorption from major hydrocarbons (C2H6, C2H4, C2H2, CH3C2H, C4H2) and water. We find global hydrocarbon abundances and a C2H2 vertical distribution compatible with infrared observations, in contrast with previous analyses of ultraviolet spectra. The stratospheric haze opacity decreases from polar region to the equator. Saturn mid-latitudes are photochemically distinct from the rest of the planet. At 33° S, the spectrum requires either (1) a distinctly different C2H2 vertical distribution or (2) a locally enhanced water abundance. At 41° S, the hydrocarbon abundance exhibits a local minimum, within a global trend of increasing abundance from equator to pole. This global trend may result from an increased abundance of short-lived hydrocarbons such as C4H2. Photochemical models predict a depletion of hydrocarbon molecules in the presence of stratospheric water [Moses et al., 2000. Icarus 143, 166-202]. These results are consistent with a localized influx of water, in the form of high charge to mass ratio particles, flowing into Saturn's atmosphere at latitudes magnetically linked to the rings.  相似文献   

18.
Models are developed to describe the spatial distribution of gases emitted by Io and are applied to recent observations which indicate extensive gas clouds of hydrogen and sodium in orbit around Jupiter. Hydrogen and sodium atoms are emitted from Io with velocities in the range 2 to 3 km sec?1, with fluxes of about 1010 and 108cm?2sec?1 for hydrogen and sodium respectively. Hydrogen atoms may be formed by photodecomposition of gases such as NH3 or H2S released from the satellite surface and may escape thermally from an exosphere whose temperature is about 500 K. Sodium may be ejected from the surface by energetic particles or by ultraviolet radiation and it appears that a non-thermal mechanism drawing energy from Jupiter's magnetic field is required in order to account for its release to space.  相似文献   

19.
Michael J. Price 《Icarus》1973,20(4):455-464
New measurements of the equivalent widths of the 4-0 S(0) and S(1) H2 quadrupole lines in the Uranian spectrum have been obtained using high dispersion (4.12 Å/mm) image-tube spectrography. The measured equivalent widths are 62 ± 19mA?and 58 ± 13 mA? for the S(0) and S(1) lines, respectively. Curve-of-growth analysis in terms of a reflecting layer model yields an H2 column-density of 780?330+940km amagat and a temperature of 78?24+80°K. Interpretation using a semi-infinite, homogeneous, isotropically scattering model for line formation yields a scattering mean free path at λ6400 Å of 550 ± 250 km amagat. Quoted errors for both the H2 column-density and the scattering mean free path include the effect of uncertainty in the choice of atmospheric temperature. The results are discussed in terms of current models for the Uranian atmosphere.  相似文献   

20.
Models are developed to describe the photochemistry of ozone on Mars. Catalytic reactions involving H, OH and HO2 play a major role at low latitudes where they ensure a vertical column density for O3 of less than 2 × 10?4 cm atm. The source for odd hydrogen (H + OH + HO2) is relatively smaller at high latitudes in winter due to the small concentrations of H2O present there at that time. Odd hydrogen is also efficiently removed from the high-latitude winter atmosphere by condensation of H2O2. The role of catalytic chemistry is reduced accordingly and the vertical column density of O3 may be as large as 5.7 × 10?3 cm atm in accord with earlier observations carried out by Barth and co-workers with instruments on Mariner 9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号