首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

2.
The impact of milkfish fish pens on the distribution of the alpheid shrimp Alpheus macellarius was studied in the Bolinao area, Philippines. In addition, the impact of the alpheid shrimp on sediment biogeochemistry, including organic matter mineralization, nutrient and sulfur cycling was compared in sediments affected and unaffected by fish farming. The fish farming activity had negative impact on the distribution of shrimps by reducing the abundance up to 60% in the vicinity of the net pens, and to almost absence inside the net pens. At a farm site abandoned seven month prior to sampling the abundance of shrimps was still low and sediment pools of reduced sulfur high, indicating a slow benthic recovery. The shrimp had large physical impact on the sediments, and the mineralization rates were stimulated by the presence of the shrimp in pristine sediments, whereas the fish farm impacted sites showed high mineralization rates both in sediments with and without the presence of the shrimp suggesting that the organic matter enrichment stimulated the mineralization in these low-organic sediments, whereas the shrimp had less impact. Sulfate reduction rates and in particular pools of sulfides increased in the farm impacted sediments, and sulfate reduction was an important process for organic matter mineralization (>67%) in all sediments. Although the shrimp had minor effect on the organic matter mineralization and nutrient fluxes in the farm impacted sediments, they appeared to increase the oxidation of sulfides by increasing the zone of oxidized surface sediment and thereby improving the sediment conditions for recolonization after fish farming has ceased.  相似文献   

3.
Macrofauna, nutrient fluxes, porewater chemistry and sediment characteristics were measured at six intertidal mudflat sites in the Humber Estuary, U.K., during the different seasons. Nereis diversicolor , Macoma balthica and Corophium volutator were found to be the dominant macrofauna. Salinity was the baseline control on macrofauna distribution but this was overprinted by periodic impoverishment due to sediment mobilization. High resolution gel probe porewater samplers provided direct evidence for the impact of burrows on porewater chemistry. The macrofauna modified nutrient fluxes during periods of mud flat stability. Nereis caused a decrease in silicate and phosphate effluxes but enhanced ammonia release and nitrate uptake. Macoma enhanced ammonia and nitrite release. The impact of Corophium was not possible to discern. The Humber is a large, highly dynamic macrotidal estuary in which sediment resuspension has a large impact on porewater profiles, nutrient fluxes and macrofaunal communities. Simple patterns and inter-relationships which are seen in small sheltered estuaries are not observed in the Humber.  相似文献   

4.
The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u∗), and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u∗ were found to correlate according to the following empirical formula: DBL=76.18(u∗)−0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m−2 day−1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.  相似文献   

5.
The flux of ammonia, phosphate, silica and radon-222 from Potomac tidal river and estuary sediments is controlled by processes occurring at the sediment-water interface and within surficial sediment. Calculated diffusive fluxes range between 0·6 and 6·5 mmol m?2 day?1 for ammonia, 0·020 and 0·30 mmol m?2 day?1 for phosphate, and 1·3 and 3·8 mmol m?2 day?1 for silica. Measured in situ fluxes range between 1 and 21 mmol m?2 day?1 for ammonia, 0·1 and 2·0 mmol m?2 day?1 for phosphate, and 2 and 19 mmol m?2 day?1 for silica. The ratio of in situ fluxes to diffusive fluxes (flux enhancement) varied between 1·6 and 5·2 in the tidal river, between 2·0 and 20 in the transition zone, and from 1·3 to 5·1 in the lower estuary. The large flux enhancements from transition zone sediments are attributed to macrofaunal irrigation. Nutrient flux enhancements are correlated with radon flux enhancements, suggesting that fluxes may originate from a common region and that nutrients are regenerated within the upper 10–20 cm of the sediment column.The low fluxes of phosphate from tidal viver sediments reflect the control benthic sediment exerts on phosphorus through sorption by sedimentary iron oxyhydroxides. In the tidal river, benthic fluxes of ammonia and phosphate equal one-half and one-third of the nutrient input of the Blue Plains sewage treatment plant. In the tidal Potomac River, benthic sediment regeneration supplies a significant fraction of the nutrients utilized by primary producers in the water column during the summer months.  相似文献   

6.
In situ benthic flux measurements, pore water nutrient profiles, water column nutrient distributions, sediment grain size distributions and side-scan sonar observations suggest that advective transport of pore waters may be a major input pathway of nutrients into the Satilla River Estuary (coastal Georgia, USA). In situ benthic chamber incubations demonstrate the occurrence of highly variable, but occasionally very large sea floor fluxes of silicate, phosphate, and ammonium. Locally occurring benthic microbial mineralization of organic matter, as estimated by S35-sulphate reduction rate measurements, is insufficient to support these large fluxes. We hypothesize that the observed interlayering of permeable, sandy sediments with fine-grained, organic-rich sediments in the estuary provides conduits for advective transport of pore water constituents out of the sediments. Because permeable layers may extend significant distances beneath the salt marsh, the large fluxes observed may be supported by remineralization occurring over large areas adjacent to the estuary. Advective transport may be induced by pressure gradients generated by a variety of processes, including landward recharge by meteoric or rain waters if sand layers extend far enough into the maritime coastal lands. Alternatively, tidal variations across the salt marsh sediment surface may hydraulically pump water through the sediment system. Because these fluxes appear to be concentrated into small layers, this source may be a significant input of nutrients to the estuary even if permeable, sandy layers comprise a very small proportion of the seabed.  相似文献   

7.
The role of deep sediment in supporting nutrient budget in the Gulf of Aqaba has been investigated by estimating the flux of inorganic nitrogen, phosphate and silicate. Fluxes were calculated directly by pore water profiles and indirectly by chamber incubations carried out onboard the RV Meteor cruise. The results showed that maximum potential fluxes calculated by chamber incubations were higher than those calculated by porewater profiles for all nutrients (6.4–28.5 fold). This has been attributed to the additional flux due to bioturbation and flux from advective porewater exchange in the case of chamber incubation, while porewater fluxes represent diffusive ones. Using a rough estimation considering flux results in addition to the sediment area and water mass of the Gulf of Aqaba, we estimate that 3.3 × 105, 6.4 × 104 and 6.5 × 106 kg year−1 of inorganic nitrogen, phosphate and silicate respectively are effused from deep sediments to the water column. This quanitity would certainly support the primary productivity in the oligotrophic water in the Gulf of Aqaba.  相似文献   

8.
Silicic acid (DSi) benthic fluxes play a major role in the benthic–pelagic coupling of coastal ecosystems. They can sustain microphytobenthos (MPB) development at the water–sediment interface and support pelagic diatoms when river DSi inputs decrease. DSi benthic fluxes have been studied at the seasonal scale but little is known about their dial variations. This study measured the amplitude of such variations in an intertidal area over an entire tidal cycle by following the alteration of DSi pore water concentrations at regular intervals over the flood/ebb period. Furthermore we independently estimated the potential DSi uptake by benthic diatoms and compared it to the variations of DSi pore water concentrations and fluxes. The microphytobenthos DSi demand was estimated from primary production measurements on cells extracted from the sediment. There were large changes in DSi pore water concentration and a prominent effect of tidal pumping: the DSi flushed out from the sediment at rising tide, occurs in a very short period of time, but plays a far more important role in fueling the ecosystem (800 μmol-Si m−2 d−1), than diffusive fluxes occurring throughout the rest of the tidal cycle (2 μmol-Si m−2 d−1). This process is not, to our knowledge, currently considered when describing the DSi cycling of intertidal sediments. Moreover, there was a large potential MPB requirement for DSi (812 μmol-Si m−2 d−1), similar to the advective flow periodically pumped by the incoming tide, and largely exceeded benthic diffusive fluxes. However, this DSi uptake by benthic diatoms is almost undetectable given the variation of DSi concentration profiles within the sediment.  相似文献   

9.
The effect of benthic oxygenic photosynthesis on sediment-water fluxes of manganese and iron was studied for an intertidal sediment. Undisturbed sediments were incubated at an incident surface irradiance of 250 μE m−2 s−1at 26 °C. Oxygenic photosynthesis was selectively inhibited by adding [3-(3,4-dichloro)-1,1-dimethyl-urea] (DCMU). Benthic fluxes were determined experimentally from the change in manganese and iron concentrations in the overlying water, and were predicted from the pore water concentration gradients at the sediment-water interface assuming molecular diffusion as the transport mechanism. The experimental fluxes of manganese and iron in DCMU-treated cores amounted to −0·84 and −0·59 mmol m−2day−1, respectively, and were directed from the sediment towards the overlying water. In the control cores, showing high rates of benthic oxygenic photosynthesis, the fluxes of manganese and iron were directed towards the sediment, 0·06 and 0·01 mmol m−2day−1, respectively. Mass balances for the 0·1–0·14 cm thick oxic zone, calculated from the experimental fluxes and the predicted fluxes, suggest a minimum areal reoxidation of 0·6 mmol m−2day−1for manganese and of 0·48 mmol m−2day−1for iron in cores showing benthic photosynthesis. The estimated turnover times for dissolved Mn2+and dissolved Fe2+in the oxic surface layer during benthic photosynthesis were 0·8 and 0·25 h, respectively. Sediment oxygen microprofiles and the sediment pH profiles suggest that chemical precipitation and reoxidation dominates the retention of manganese and iron during benthic oxygenic photosynthesis in shallow intertidal sediments.  相似文献   

10.
The response of benthic organisms to organic carbon fluxes in a continental margin region was studied by investigating the diet of the suprabenthic isopod Munnopsurus atlanticus, which is well represented on the southern margin of the Cap-Ferret Canyon (Bay of Biscay). The grain-size distribution, foraminiferal assemblages, particulate organic carbon and pigments found in the sediment and in the gut of the isopods were analyzed. These results suggest that M. atlanticus feeds on benthic agglutinated foraminifers which are in a high “nourishment state” and represent a link between primary and secondary producers.  相似文献   

11.
12.
Box and gravity cores recovered from the Håkon Mosby mud volcano (HMMV) during cruise 15 of the R/V Professor Logachev were analyzed for bacterial activity and benthic fauna distribution. The high bacterium number (up to 9.6×109 cells cm-3 of the sediment) and marked rates of sulfate reduction (up to 0.155?mg?S?dm-3?day-1) and methane oxidation (up to 9.9?μg?C?dm-3?day-1) were shown for the upper horizons of the sediments of the HMMV peripheral zone. The benthic community is characterized by the presence of two pogonophoran species, Oligobrachia sp. and Sclerolinum sp., harboring symbiotic methanotrophic bacteria.  相似文献   

13.
The ventilation of burrows by tube-dwelling benthos is understood to be important in determining rates of exchange of solutes between the sediment and overlying water. However, few models have attempted to link the burrow ventilation behavior of tube-dwelling organisms with their geochemical consequences. The classic cylinder model of bioirrigation in muddy sediments (Aller, R.C., 1980. Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochimica et Cosmochimica Acta 44, 1955–1965) links pore-water processes and burrow sizes and distributions in the sediment by assuming that burrows are fully flushed. The equivalence between the cylinder model and the more commonly used one-dimensional non-local exchange model depends upon this assumption. However, this assumption has seldom been tested in the field. We have extended the cylinder model of bioirrigation to include burrow ventilation activities of organisms. Burrow ventilation is modeled as a simple non-local exchange of burrow water with overlying water. Model simulations indicate that burrow ventilation has a large effect on vertical profiles and fluxes of solute tracers. We collected data on burrow geometry in the field by CT-scanning freshly collected sediment cores. At the same study sites, we measured activity profiles of 222Rn, a naturally occurring radionuclide tracer of pore-water transport. With model geometry independently constrained, we tested the model by comparing our model-predicted profiles with measured profiles. Our results demonstrate that burrows in the field are not fully flushed. Our estimated burrow ventilation rates compare favorably with previous laboratory measurements. The inclusion of realistic burrow ventilation in this pore-water transport model strongly affects modeled solute profiles and fluxes. We demonstrate how model parameters can be determined from field samples and present a model that more realistically simulates pore-water transport processes in muddy sediments.  相似文献   

14.
Laboratory and in situ experiments were performed to assess the use of bromide as a tracer forin situ studies of benthic solute exchange. Bromide was used in the benthic chamber lander ‘ Elinor ’ for flux measurements in coastal sediments of the German Bight, Kiel Bight and Skagerrak (28–700 m water depth). Tracer and total oxygen uptake were monitored simultaneously in the same chamber incubation. Concurrently, in situ oxygen micro-profiles were recorded at the same locations by the profiling lander ‘ Profilur ’. Deployment in an anoxic silt (Kiel Bight) confirmed that in the absence of bioturbation and advection, tracer transport into the sediment was driven solely by molecular diffusion. This flux could be well described by a simple box model accounting for molecular diffusion only. In oxic sediments (German Bight and Skagerrak) enhanced exchange of bromide tracer due to bioirrigation parallelled enhanced oxygen uptake equivalent to a 4-fold molecular diffusive flux. Our experiments showed that incubations can be short. Depending on irrigation activity of the fauna, however, incubation length should exceed 3 h in order to provide a useful data base for flux calculations. The method demonstrating caveats is discussed and indicate possible improvements. The results show how the bromide tracer addition can be used as a tool for determining solute fluxes exceeding diffusive flux in benthic chamber incubations.  相似文献   

15.
C. Rocha  J. Ibanhez  C. Leote   《Marine Chemistry》2009,115(1-2):43-58
To investigate both the role of tides on the timing and magnitude of Submarine Groundwater Discharge (SGD), and the effect on benthic nitrogen biogeochemistry of nitrate-enriched brackish water percolating upwards at the seepage face, we conducted a study of SGD rates measured simultaneously with seepage meters and mini-piezometers, combined with sets (n = 39) of high resolution in-situ porewater profiles describing NH4+, NO3, Si(OH)4 and salinity distribution with depth (0–20 cm). Sampling took place during two consecutive spring tidal cycles in four different months (November 2005, March, April and August 2006) at a backbarrier beach face in the Ria Formosa lagoon, southern Portugal. Our results show that the tide is one of the major agents controlling the timing and magnitude of SGD into the Ria Formosa. Intermittent pumping of brackish, nitrate-bearing water at the beach face through surface sediments changed both the magnitudes and depth distributions of porewater NH4+ and NO3 concentrations. The most significant changes in nitrate and ammonium concentrations were observed in near-surface sediment horizons coinciding with increased fraction of N in benthic organic matter, as shown by the organic C:N ratio. On the basis of mass balance calculations executed on available benthic profiles, providing ratios of net Ammonium Production Rate (APR) to Nitrate Reduction Rate (NRR), coupled to stoichiometric calculations based on the composition of organic matter, potential pathways of nitrogen transformation were speculated upon. Although the seepage face occasionally contributes to reduce the groundwater-borne DIN loading of the lagoon, mass balance analysis suggests that a relatively high proportion of the SGD-borne nitrogen flowing into the lagoon may be enhanced by nitrification at the shallow (1–3 cm) subsurface and modulated by dissimilatory nitrate reduction to ammonium (DNRA).  相似文献   

16.
Benthic fluxes of copper, copper complexing ligands and thiol compounds in the shallow waters of Venice Lagoon (Italy) were determined using benthic chambers and compared to porewater concentrations to confirm their origin. Benthic copper fluxes were small due to small concentration differences between the porewaters and the overlying water, and the equilibrium concentration was the same at both sites, suggesting that the sediments acted to buffer the copper concentration. Thiol fluxes were ~10 × greater at 50–60 pmol cm?2 h?1, at the two sites. Porewater measurements demonstrated that the sediments were an important source of the thiols to the overlying waters. The overlying waters were found to contain at least two ligands, a strong one, L1 (log K′CuL1 = 14.2) and a weaker one, L2 (log K′CuL2 = 12.5). The concentration of L1 remained relatively constant during the incubation and similar to that of copper, whereas that of L2 was in great excess of copper, its concentration balanced by porewater releases and breakdown, probably due to uptake by microorganisms, similar to that of the thiol compounds. Similarity of the thiol and L2 concentrations and similar complex stability with copper suggest that L2 was dominated by the thiols. The free copper concentration ([Cu´]) in the Lagoon waters was lowered by a factor of 105 as a result of the organic complexation.  相似文献   

17.
2013年5月、8月和11月调查了象山港大黄鱼网箱养殖区及附近沉积物中总有机氮(TON)、总有机碳(TOC)和总磷(TP)含量,并采用实验室模拟法研究了底泥耗氧率(SOCs)和沉积物-水界面营养盐(NH+4、NO-2+NO-3和PO3-4)通量。结果表明:养殖区(YZ)沉积物中的TON和TP含量显著高于距离养殖区50 m(F1)和100 m(F2)的区域(P<0.05)。底泥释放NH+4到上覆水中,但是从上覆水中吸收NO-2+NO-3和PO3-4。沉积物-水界面营养盐通量表现出明显的季节性变化,在8月,NH+4及PO3-4的释放量达到最大值。上覆水中NH+4、NO-2+NO-3和PO3-4的质量浓度随着沉积物-水界面营养盐通量的变化而变化。研究表明,象山港大黄鱼养殖活动对养殖区底泥造成了一定污染,且通过影响沉积物-水界面营养盐通量影响上覆水中营养盐分布,最终给整个养殖系统造成生态负担。  相似文献   

18.
Abstract

Particle fluxes were measured 7 m above the sea bottom during the predisturbance, disturbance, and postdisturbance periods by using time series sediment traps attached to seven deep-sea moorings deployed in the INDEX experiment site in the Central Indian Basin. The predisturbance particle fluxes varied between 22.3 to 55.1 mg m?2 day?1. Increased and variable particle fluxes were recorded by the sediment traps during the disturbance period. The increase observed was 0.5 to 4 times more than the background predisturbance fluxes. The increases in particle fluxes (~4 times) recorded by the sediment trap located in the southwestern direction (DMS-1) were the greatest, which could be the result of preferential movement of resuspended particles generated during the deep-sea benthic disturbance along the general current direction prevailing in this area during the experimental period. Also, the traps located closer to the disturbance area recorded greater fluxes than did the traps far away, across the Deep Sea Sediment Resuspension System path. This variability in recorded particle fluxes by the traps around the disturbance area clearly indicates that physical characteristics such as grain size and density of the resuspended particles produced during the disturbance had an important effect on particle movement. The postdisturbance measurements during ~5 days showed a reduction in particle fluxes of ~50%, indicating rapid particle settlement.  相似文献   

19.
Benthic Nutrient Recycling in Port Phillip Bay, Australia   总被引:8,自引:0,他引:8  
Benthic chamber measurements of the reactants and products involved with biogenic matter remineralization (oxygen, ammonium, nitrate, nitrite, phosphate, silicate, TCO2and alkalinity) were used to define solute exchange rates between the sediment and overlying water column of Port Phillip Bay, Australia. Measurements at various sites throughout the bay, conducted during the summers of 1994 and 1995, indicate that the variability in flux values within a site is comparable to year-to-year variability (±50%). Four regions of the bay were distinguished by sediment properties and the northern region was identified as having 3–30 times greater nutrient regeneration rates than the other regions. Benthic recycling accounted for 63 and 72% of the annualized N and P input, respectively, to the entire bay as determined by summing benthic, dissolved riverine, atmospheric and dissolved effluent sources. However, bay-wide sedimentary denitrification accounted for a loss of 63% of the potentially recyclable N. This fraction is higher than many other coastal regions with comparable carbon loading. Denitrification efficiency is apparently not enhanced by benthic productivity nor by bio-irrigation. The rate of bio-irrigation is negatively correlated with denitrification efficiency. Bio-irrigation was studied using radon-222 and CsCl spike injection chamber measurements. Radon fluxes from sediments in Port Phillip Bay were enhanced over the diffusive flux by 3–16 times. The modelled rate of loss of Cs from chamber water was positively correlated with radon flux enhancement results. Both methods identify regions within Port Phillip Bay that have particularly high rates of non-diffusive pore-water overlying water solute exchange.  相似文献   

20.
Evaluation of the N2 flux approach for measuring sediment denitrification   总被引:1,自引:0,他引:1  
Direct gas chromatographic measurement of denitrification rates via N2 fluxes from aquatic sediments can avoid some of the artifacts and complexities associated with indirect approaches and tracer techniques. However, measurement protocols have typically been determined based upon initial results or previous studies. We present a process-level study and simulation model for evaluating and optimizing N2 gas flux approaches in closed chamber incubations. Experimental manipulations and simulations of both artificial and natural sediments were used to conduct sensitivity analyses of key design parameters in N2 flux measurements. Experimental results indicated that depletion of labile organic matter during the long incubations required by common protocols (for diffusive off-gassing of porewater N2) may result in underestimates of denitrification rates in some systems. Simulations showed that the required incubation time was primarily a function of sediment thickness. The best approach found to minimize incubation time and reduce errors was to select the minimum sediment thickness necessary to include the entire depth distribution of nitrification–denitrification for a particular sediment system. Attempts to increase measurement sensitivity and shorten incubation times by reducing the headspace thickness to 1–2 cm generally cause denitrification to be underestimated by 3–13% for gas headspaces, and up to 80% for water headspaces. However, errors were negligible with gas and water headspace thicknesses of 10 cm and 15 cm, respectively. Anaerobic cores to control for non-denitrification N2 fluxes shortened incubation time, but introduced artifacts in sediments with extensive macrofaunal irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号