首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have correlated the longitudinal unit conductance CL obtained from interpreted vertical electrical sounding data with the formation resistivity Rt and the formation resistivity factor F, obtained by carrying out electrical borehole logging. Interpreted geophysical data of eleven soundings and two electrical borehole log records are used for the analysis. The geophysical data used were acquired in a sedimentary basin. The study area is called Lower Maner Basin located in the province of Andhra Pradesh, India. Vertical electrical soundings were carried out using a Schlumberger configuration with half current electrode separation varying from 600–1000 m. For logging the two boreholes, a Widco logger‐model 3200 PLS was used. True formation resistivity Rt was calculated from a resistivity log. Formation resistivity factor F was also calculated at various depths using Rt values. An appreciable inverse relation exists between the correlated parameters. The borehole resistivity Rt and the formation resistivity factor F decrease with the increase in the longitudinal unit conductance CL. We have shown the use of such a relation in computing borehole resistivity Rt and formation resistivity factor F at sites that posses only vertical electrical sounding data, with a fair degree of accuracy. Validation of the correlation is satisfactory. Scope for updating the correlation is discussed. Significance and applications of the relation for exploration of groundwater, namely to update the vertical electrical sounding data interpretation by translating the vertical electrical sounding data into electrical borehole log parameters, to facilitate correlations studies and to estimate the porosity (φ), permeability (K) and water saturation Sw of water bearing zones are discussed.  相似文献   

2.
Conventional processes of extracting magnetotelluric signals from noisy records are reviewed: instrument noises and noises that are generated close to the detectors can be eliminated by the usual auto- and crosscorrelation processes. Identification of coherent noises, such as pulses due to field sources that are not uniform over at least 100 km in oil exploration or 1000 km in crustal studies, is much more tedious. The 5 components Hx, Hy, Hz, Ex, Ey, of the magnetotelluric field have been recorded in many areas in France at different periods of the year, (a) in non-uniform field sources in the vicinity of electric railways and of 50 cycle power lines, and (b) in areas of strong inhomogeneity at depth on the flanks of steep structures and near the sea shore. Means for detecting non-uniformity are reviewed. Measuring the vertical component of magnetic pulses is a good way of estimating field uniformity: if H vertical/H horizontal <10%, the uniform field assumption is valid, and the classical restitution formulas can be used; if H vertical/H horizontal > 10%, uniformity can not be assumed and there is some difficulty in deciding whether non-uniformity is due to the field source or to anisotropy or inhomogeneities at depth. Several ways to solve this difficulty are described. The reliability of calculation of actual resistivity at various depths is examined as a function of the precision of apparent resistivity measurements.  相似文献   

3.
This paper presents some results on the following subjects obtained from in-situ forced vibration tests and earthquake observations. (1) The characteristics of the radiation damping of soil-foundation interaction systems vs. non-dimensional frequency a0 (=ωr/Vs) were experimentally estimated by the equivalent damping ratios hH ( = KH/2KH) and hR ( = KR/2KR), which were defined by complex stiffnesses 1KH (= KH + iKH) and 1KR (= KR + iKR) of soil. The results for hH and hR of base rock were compared with those of soft soil. (2) A comparative study of experimental and theoretical results was made. The theoretical results were obtained from elastic half-space theory. (3) A semi-empirical equation to estimate the equivalent S-wave velocity for the elastic half-space model is proposed here, considering the effects of layered media. (4) Various comparisons of the results of 1 KH, 1 KR, hH and hR of forced vibration tests and earthquake observations were made.  相似文献   

4.
5.
The source parameters of the Bohai Sea earthquake, July 18, 1969 and Yongshan, Yunnan earthquake, May 11, 1974 were determined by full — wave theory synthetic seismograms of teleseismic P waves. P+pP+sP wereform were calculated with WKBJ approximation and real integral paths. One — dimensional unilateral, finite propagation source was also considered. By trail — and — error in comparing the theoretical seismograms with the observational ones of WWSSN stations, the source parameters were obtained as follow: for Bohai earthquake, φ=195°, δ=85°, λ=65°,M o=0.9×1019Nm,L=59.9km.V R=3.5km/s, ∧ R =160°; for Yongshan earthquake, φ=240°, δ=80°, ∧=150°,M o=1.3×1018Nm,L=48.8km,V R=3km/s, ∧ R =−10°, where φ is strike, δ dip angle, λ slip angle,M o seismic moment,L rupture length,V R rupture propagation speed. As III type fractures the faulting propagated along the fault planes, and ∧ R is the angle from the strike to the propagation direction. Yongshan earthquake showed complexity in its focal process, having four sub—ruptures during the first 60 seconds. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 1–8, 1991.  相似文献   

6.
Calculationoftheparametersofgeoresistivi┐tyanisotropyandcasehistoryofearthquakeprecursorsFU-YEQIAN1)(钱复业),YU-LINZHAO1)(赵玉林)a...  相似文献   

7.
江苏地电阻率预测指标研究   总被引:1,自引:1,他引:0  
结合地电阻率的前兆机理和实际观测结果,给出构造活动作用下地电阻率的两类前兆异常变化:一是与观测场地周围应力场变化相关的长趋势变化;二是与震源岩石裂隙破裂相关的大幅下降变化。针对地电阻率的两类前兆异常变化,以江苏5个地电阻率场地的历史观测数据为例,采用一年窗长的归一化速率进行分析,提出将归一化速率值的二倍方差作为地电阻率的异常指标,并对预测指标进行R值检验,得到R=0.513,对应R0=0. 277,R/R0=1. 9,预测结果较理想。  相似文献   

8.
A technique allowing inversion of the shale stiffness tensor from standard logging data: sonic velocities, density, porosity and clay content is developed. The inversion is based on the effective medium theory. The testing of the technique on laboratory measurements of the elastic wave velocities in shale samples shows that the inversion makes it possible to predict the elastic wave velocities VP, VS1 and VS2 in any direction within an error of a few per cent. The technique has been applied for the stiffness tensor inversion along a well penetrating a shale formation of the Mississippian age altered by thin layers of limestone. It is demonstrated that the symmetry of a stiffness tensor inverted at the sonic frequency (2 kHz) is slightly orthorhombic and taking into account the experimental errors, can be related to the vertical transverse isotropy symmetry. For the productive interval of the shale formation, the Thomsen parameters ?, γ, and δ average, respectively, 0.32, 0.25 and 0.21, which indicate anelliptic behaviour of the velocities in this shale. The coefficients of anisotropy of this shale interval are around 24% and 20% for the compressional and shear waves, respectively. The values of the inverted velocities in the bedding plane for this interval are in good agreement with the laboratory measurements. The technique also allows inversion of the water saturation of the formation (Sw) and the inverted values are in agreement with the Sw values available for this formation. A Backus‐like upscaling of the inverted stiffness tensors is carried out for the lower and upper bounds of the frequency band used in the crosswell tomography (100 Hz and 500 Hz). These results can serve as an initial velocity model for the microearthquake location during hydrofracking of the shale formation.  相似文献   

9.
本文根据Aki等人提出的尾波理论,导出了地方震尾波水平分量与垂直分量的持续时间比的具体表达式: τ_H/τ_V=I_H/I_V(Q_H/Q_V)~(1/4)·B_H/B_V。该式表明,τ_H/τ_V的变化主要反映了震源体一定范围内,由于介质的各向异性而引起的尾波在不同方向上的激发及衰减能力的差异。本文还讨论了地震前τ_H/τ_V短临异常的物理机制,认为异常的产生与孕震期间介质内裂隙的出现和闭合有关。1986年门源6.4级地震和1975年海城7.3级地震前,τ_H/τ_V都有不同程度的短期低值异常及临震高值突跳。门源地震前后门源台记录的直达S波的最大振幅比A_(mH)/A_(mv)也有与尾波持续时间比类似的异常。最后通过对一些震例的分析,初步得到震级与异常时间的关系为M=0.657lnT+3.44。  相似文献   

10.
The scattering of shear-waves in the crust   总被引:2,自引:0,他引:2  
The two major sources of scattering for shear-waves in the crust, interactions with the topography at the surface and the effective anisotropy of aligned cracks throughout the rockmass, introduce first-order changes to the shear-wave particle-motion. At the surface, shear-waves are scattered by the topography within a wavelength or two of the recording site so that, unless the effective incidence angle is less than the critical angle sin–1 V S/V P, the recorded waveforms may bear little relationship to the waveforms of the incident wave. Within the rockmass, shear-waves are scattered by extensive-dilatancy anisotropy (EDA), the distribution of stress-aligned fluid-filled cracks, microcracks, and preferentially oriented pore-space pervading most rocks in the crust. Analysis of this shear-wave splitting yields new information about the internal structure of thein situ rockmass which is not otherwise available.  相似文献   

11.
Converted-wave imaging in anisotropic media: theory and case studies   总被引:1,自引:0,他引:1  
Common‐conversion‐point binning associated with converted‐wave (C‐wave) processing complicates the task of parameter estimation, especially in anisotropic media. To overcome this problem, we derive new expressions for converted‐wave prestack time migration (PSTM) in anisotropic media and illustrate their applications using both 2D and 3D data examples. The converted‐wave kinematic response in inhomogeneous media with vertical transverse isotropy is separated into two parts: the response in horizontally layered vertical transverse isotrophy media and the response from a point‐scatterer. The former controls the stacking process and the latter controls the process of PSTM. The C‐wave traveltime in horizontally layered vertical transverse isotrophy media is determined by four parameters: the C‐wave stacking velocity VC2, the vertical and effective velocity ratios γ0 and γeff, and the C‐wave anisotropic parameter χeff. These four parameters are referred to as the C‐wave stacking velocity model. In contrast, the C‐wave diffraction time from a point‐scatterer is determined by five parameters: γ0, VP2, VS2, ηeff and ζeff, where ηeff and ζeff are, respectively, the P‐ and S‐wave anisotropic parameters, and VP2 and VS2 are the corresponding stacking velocities. VP2, VS2, ηeff and ζeff are referred to as the C‐wave PSTM velocity model. There is a one‐to‐one analytical link between the stacking velocity model and the PSTM velocity model. There is also a simple analytical link between the C‐wave stacking velocities VC2 and the migration velocity VCmig, which is in turn linked to VP2 and VS2. Based on the above, we have developed an interactive processing scheme to build the stacking and PSTM velocity models and to perform 2D and 3D C‐wave anisotropic PSTM. Real data applications show that the PSTM scheme substantially improves the quality of C‐wave imaging compared with the dip‐moveout scheme, and these improvements have been confirmed by drilling.  相似文献   

12.
Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold‐and‐thrust belts) and in subsalt exploration. Here, we introduce a methodology for P‐wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters ε and δ and linearly varying symmetry‐direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P‐wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters ε and δ in the layer‐stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry‐axis direction is fixed and VP0 is known, the parameters kz, kx, ε and δ can be resolved from reflection data. It should be emphasized that estimation of ε in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas.  相似文献   

13.
Pore-pressure depletion causes changes in the triaxial stress state. Pore-pressure depletion in a flat reservoir, for example, can be reasonably approximated as uniaxial compaction, in which the horizontal effective stress change is smaller than the vertical effective stress. Furthermore, the stress sensitivity of velocities can be angle-dependent. Therefore, time-lapse changes in reservoir elastic anisotropy are expected as a consequence of production, which can complicate the interpretation of the 4D seismic response. The anisotropic 4D seismic response caused by pore-pressure depletion was investigated using existing core velocity measurements. To make a direct comparison between the anisotropic 4D seismic response and the isotropic response based only on vertical velocities, pseudoisotropic elastic properties were utilized, and the two responses were compared in terms of a dynamic rock physics template. A comparison of the dynamic rock physics templates indicates that time-lapse changes in reservoir elastic anisotropy have a noticeable impact on the interpretation of 4D seismic data. Changes in anisotropy as a result of pore-pressure depletion cause a time-lapse amplitude variation with offset response as if there is a reduction in VP/VS (i.e., pseudoisotropic VP/VS decreases), although the vertical VP/VS increases. The impact of time-lapse changes in anisotropy on the amplitude variation with offset gradient was also investigated, and the time-lapse anisotropy was found to enhance changes in the amplitude variation with offset gradient for a given case.  相似文献   

14.
Experiments and numerical model studies have shown that heterogeneities of the Earth’s crust distort the spectrum of the low frequency microseismic field, decreasing spectral amplitudes of a specific frequency f at the Earth’s surface over high velocity heterogeneities and increasing them above low velocity heterogeneities. The frequency f is connected with the depth of a heterogeneity H and the velocity of the fundamental mode of Rayleigh waves V R (f) through the relation H = 0.5 V R (f)/f. The low frequency microseismic field is considered as the superposition of trains of Rayleigh fundamental modes with different frequency spectra. The paper proposes an experimentally tested technology enabling the determination of the deep structure of complex geological objects using data on the microseismic background field.  相似文献   

15.
The exact localization of subterranean cavities and the determination of their dimensions is very important for the planning of geotechnical and mining activities. It is a complicated geophysical task often at the limit of detection. Nevertheless geophysical investigation is the only alternative to a dense and expensive grid of boreholes. This report tests the usefulness of geoelectrical resistivity methods for cavity detection under some new aspects. The basis for evaluation was a theoretical analysis of different conventional and focussing measuring arrays and of special arrays for a geoelectrical research between two boreholes. The limit of detectability of a cylindrical cavity of defined cross-section and depth was calculated for the different measuring arrays on the basis of computation of the apparent resistivity ρa. Furthermore, the influence of possible errors (current supply of the electrodes and the distance between the electrodes) is discussed for focussed systems. The second part of the article is directed at the behaviour of the apparent resistivity ρa, the disturbing potential δVd caused by the cavity and the normal potential δV0 of the measuring array all in relation to a homogeneous earth. Some new results are presented. In the last part of the article theoretical results are compared with some field measurements.  相似文献   

16.
We present a numerical solution for the momentum equation of the magnetosheath particles that describes the distribution of the pressure anisotropy of the magnetosheath plasma in the midday meridian plane. The pressure anisotropy is a maximum near the magnetopause subsolar point (p/p\Vert\cong10). The pressure anisotropy is caused by two factors: particles with small pitch angles (V\Vert>V) which travel along the magnetic field lines away from the equatorial plane of the magnetosheath; and particles, after crossing the bowshock, which reach the bulk velocity component directed along the magnetic field lines again, away from the magnetosheath equatorial plane. This velocity increases with increasing distance from the subsolar point of the bowshock, and does not permit particles with large pitch angles (V>V\Vert) to move toward the equatorial plane.  相似文献   

17.
It has been shown in the past that the interval-NMO velocity and the non-ellipticity parameter largely control the P-wave reflection time moveout of VTI media. To invert for these two parameters, one needs either reasonably large offsets, or some structure in the subsurface in combination with relatively mild lateral velocity variation.This paper deals with a simulation of an inversion approach, building on the assumption that accurately measured V NMO, as defined by small offset asymptotics for a particular reflector, were available. Instead of such measurements we take synthetically computed data. First, an isotropic model is constructed which explains these V NMO. Subsequently, residual moveout in common image gathers is modelled by ray tracing (replacing real data), along with its sensitivity for changes in the interval-NMO velocity and the non-ellipticity parameter under the constraint that V NMO is preserved. This enables iterative updating of the non-ellipticity parameter and the interval-NMO velocity in a layer that can be laterally inhomogeneous.This approach is successfully applied for a mildly dipping reflector at the bottom of a layer with laterally varying medium parameters. With the exact V NMO assumed to be given, lateral inhomogeneity and anisotropy can be distinguished for such a situation. However, for another example with a homogeneous VTI layer overlying a curved reflector with dip up to 30°, there appears to be an ambiguity which can be understood by theoretical analysis. Consistently with existing theory using the NMO-ellipse, the presented approach is successfully applied to the latter example if V NMO in the strike direction is combined with residual moveout in dip direction.  相似文献   

18.

In the process of water displacing oil, the relationship between resistivity and water saturation is the fundament of the quantitative research on the waterflooded grade and the remaining oil saturation with well logging data. A large number of core analysis data and production data are cumulated in the process of oil field exploitation, which offers the basis for the above research. This paper educed two methods from the Archie equation and material balance theory to calculate the quantitative relationships between R z and S w, and between R t and S w. The relationships set up by the two methods are similar to those set up by the real core measurements. The results can be used to analyze influencing factors and determine saturation quantitatively.

  相似文献   

19.
In this study, the removal of nitrate ions from aqueous solutions with liquid membrane technique has been investigated for different organic solvent types in which solubilized tetradecyl trimethyl ammonium bromide (TDTMABr) as carrier. n-butyl alcohol, chloroform, and mixture of chloroform + n-hexane (n-hexane 85% + chloroform 15%) were used as organic solvent. Kinetic parameters (k 1d, k 2m, k 2a, t max, R mmax, J mmax, J amax) were calculated from obtained data. time R a values of mixture, butyl alcohol, and chloroform are 0.81, 0.78, and 0.55, respectively. Similarly R d, R m, and t max values of the mixture equal to 0.14, 0.04, and 87.92 min, respectively. This behavior of the system shows the organic solvent type is an effective parameter on separation yield. It can be concluded that the mixture is the most effective organic solvent type among the investigated ones, because liquid membrane systems should be operated within the range of having the R m, R d, and t max values are minimum while R a values are maximum.  相似文献   

20.
InversionofbreakoutdatafrominclinedboreholesforstressstateoftheuppercrustinJizhong depressionYAN-XIANGYU(俞言祥)andZHONG-HUAIXU(...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号