首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Resonant photo-pion production with the cosmic microwave background predicts a suppression of extragalactic protons above the famous Greisen–Zatsepin–Kuzmin cutoff at about EGZK ≈ 5 × 1010 GeV. Current cosmic ray data measured by the AGASA and HiRes Collaborations do not unambiguously confirm the GZK cutoff and leave a window for speculations about the origin and chemical composition of the highest energy cosmic rays. In this work we analyze the possibility of strongly interacting neutrino primaries and derive model-independent quantitative requirements on the neutrino–nucleon inelastic cross section for a viable explanation of the cosmic ray data. Search results on weakly interacting cosmic particles from the AGASA and RICE experiments are taken into account simultaneously. Using a flexible parameterization of the inelastic neutrino–nucleon cross section we find that a combined fit of the data does not favor the Standard Model neutrino–nucleon inelastic cross section, but requires, at 90% confidence level, a steep increase within one energy decade around EGZK by four orders of magnitude. We illustrate such an enhancement within some extensions of the Standard Model. The impact of new cosmic ray data or cosmic neutrino search results on this scenario, notably from the Pierre Auger Observatory soon, can be immediately evaluated within our approach.  相似文献   

2.
Recent direct measurements of the energy spectra of the major mass components of cosmic rays have indicated the presence of a ‘kink’ in the region of 200 GeV per nucleon. The kink, which varies in magnitude from one element to another, is much sharper than predicted by our cosmic ray origin model in which supernova remnants are responsible for cosmic ray acceleration and it appears as though a new, steeper component is responsible.The component amounts to about 20 percent of the total at 30 GeV/nucleon for protons and helium nuclei and its magnitude varies with nuclear charge; the unweighted fraction for all cosmic rays being 36%.The origin of the new component is subject to doubt but the contenders include O, B, A, supergiant and Wolf-Rayet stars, by way of their intense stellar winds. Another explanation is also in terms of these particles as the sources but then being trapped, and even further accelerated, in the Local Bubble.  相似文献   

3.
We present the spectrum of all primary cosmic-ray nucleons in the energy range 40–400 TeV reconstructed from the spectra of gamma rays recorded along with charged particles at an altitude of 30 km in the stratosphere in the RUNJOB balloon experiment. Gamma rays are produced by the interaction of primary cosmic-ray particles with atomic nuclei of the residual atmosphere and are a component whose spectrum follows the nucleon spectrum at the atmospheric boundary in the approximation of quasi-scaling models. Comparison of the nucleon spectrum with the proton spectrum indicates that the contribution of nucleons from nuclei increases toward the 100-TeV energy region compared to the 1-TeV region. This result confirms the conclusions reached in the JACEE, SOKOL, ATIC-2, and KASCADE experiments: the fraction of helium nuclei and, possibly, heavier nuclei in the primary cosmic-ray flux increases with energy.  相似文献   

4.
The presence of nearby discrete cosmic ray (CR) sources can lead to many interesting effects on the observed properties of CRs. In this paper, we study about the possible effects on the CR primary and secondary spectra and also the subsequent effects on the CR secondary-to-primary ratios. For the study, we assume that CRs undergo diffusive propagation in the Galaxy and we neglect the effect of convection, energy losses and reacceleration. In our model, we assume that there exists a uniform and continuous distribution of CR sources in the Galaxy generating a stationary CR background at the Earth. In addition, we also consider the existence of some nearby sources which inject CRs in a discrete space–time model. Assuming a constant CR source power throughout the Galaxy, our study has found that the presence of nearby supernova remnants (SNRs) produces noticeable variations in the primary fluxes mainly above ∼100 GeV n−1, if CRs are assumed to be released instantaneously after the supernova explosion. The variation reaches a value of ∼45 per cent at around 105 GeV n−1. Respect to earlier studies, the variation in the case of the secondaries is found to be almost negligible. We also discuss about the possible effects of the different particle release times from the SNRs. For the particle release time of ∼105 yr, predicted by the diffusive shock acceleration theories in SNRs, we have found that the presence of the nearby SNRs hardly produces any significant effects on the CRs at the Earth.  相似文献   

5.
Assuming that the energy gain by cosmic-ray (CR) particles is a stochastic process with stationary increments, we derive expressions for the shape of their energy spectrum up to energies E ~ 1018 eV. In the ultrarelativistic case under study, the energy is proportional to the momentum, whose time derivative is the force. According to the Fermi mechanism, a particle accelerates when it passes through a system of shock waves produced by supernova explosions. Since these random forces act on time scales much shorter than the particle lifetime, we assume them to be delta-correlated in time. In this case, due to the linear energy-momentum relationship, the mean square of the energy (increments) is proportional to the differential scale τ(E) ~ (≥E), where τ (≥E) is the cumulative time it takes for a particle to gain an energy ≥E. The probability of finding a particle with energy ≥E somewhere in the system is inversely proportional to the time it takes to gain the energy E. To estimate an upper limit for the space number density of CR particles, we use estimates of the CR volume energy density, a quantity known for our Galaxy. It is taken to be constant in the range 10 GeV ≤ E ≤ 3 × 106 GeV, where the index of the energy spectrum was found to be ?8/3 ≈ ?2.67 against its empirical value of ?2.7. In the range 3 × 106 GeV ≤ E < 109 GeV, the upper limit for the volume energy density is estimated by using the results from the previous range to be ?28/9 ≈ ?3.11 against its empirical value of ?3.1. The numerical coefficients in the suggested shapes of the spectrum can be determined by comparison with observational data. Thus, the CR energy spectrumis the result of the random walks of ultrarelativistic particles in energy/momentum space caused by the Fermi mechanism.  相似文献   

6.
This paper describes the Cosmic Ray Isotope instrument launched aboard the HEAO-3 satellite on September 20, 1979. The primary purpose of the experiment is to measure the isotopic composition of cosmic ray nuclei from Be-7 to Fe-58 over the energy range 0.5 to 7 GeV/nucleon. In addition charge spectra will be measured between beryllium and tin over the energy range 0.5 to 25 GeV/nucleon. The charge and isotope abundances measured by the experiment provide essential information needed to further our understanding of the origin and propagation of high energy cosmic rays. The instrument consists of 5 Cerenkov counters, a 4 element neon flash tube hodoscope and a time-of-flight system. The determination of charge and energy for each particle is based on the multiple Cerenkov technique and the mass determination will be based upon a statistical analysis of particle trajectories in the geomagnetic field.Representing the Saclay-Copenhagen CollaborationOriginally submitted to the journalSpace Science Instrumentation.The Saclay-Copenhangen Collaboration consists of the authors and the following members.  相似文献   

7.
The possibility of cosmic-ray (CR) acceleration to energies above 109 GeV per nucleus in extended Galactic OB associations is analyzed. A two-stage acceleration mechanism is justified: at the first stage, the acceleration by separate shock fronts from spatially and temporally correlated supernovae explosions takes place, and, at the second stage, the Fermi acceleration by supersonic turbulence in an extended, strongly perturbed region near the OB association takes place. We calculate the CR energy spectrum, the change in CR chemical composition with energy, and the energy dependence of the mean logarithm of atomic mass, ?lnA?, for the accelerated particles. The calculated values are compared with those observed near the break in the energy spectrum. We estimate the turbulence parameters, which allow the observed features of the energy spectrum and the CR enrichment with heavy elements to be explained.  相似文献   

8.
An empirical formula for the cross section for inelastic hadronic interaction of antihelium with nuclei for the projectile energy range from 0.3 GeV/n to 80 GeV/n and target atomic mass number A from 4 to 120 has been developed. It is based on the available experimental data of nucleon (antinucleon) — nucleus and helium — nucleus inelastic cross sections. Such a formula is needed by experiments designed to search for antihelium in cosmic rays. With this formula one can estimate the efficiency of antihelium detection and correct for antihelium attenuation in the atmosphere for the balloon-borne experiments. A byproduct of this work is an empirical formula for antiproton-nucleus inelastic cross.  相似文献   

9.
暗物质空间探测器BGO量能器的读出设计   总被引:2,自引:0,他引:2  
暗物质空间探测器是中国科学院紫金山天文台暗物质空间天文实验室提出的,其目的是为了探测暗物质粒子湮灭可能产生的高能电子和伽玛粒子.整个探测器主要由BGO(Bismuth germanate,锗酸铋)高能图像量能器和闪烁体径迹探测器构成.探测器的能量探测范围将覆盖10 GeV到10 TeV的高能电子和伽玛粒子,其中高能粒子的能量主要沉积在BGO量能器中.为了验证探测器方案,紫金山天文台暗物质空间天文实验室设计了暗物质空间探测器BGO量能器的读出系统原型,并对其进行了初步的测试.  相似文献   

10.
We consider the contribution to the Galactic diffuse γ-ray emission from unresolved γ-ray pulsars. Based on the thick outer gap model, Monte Carlo methods are used to simulate the properties (period, distance, magnetic field, etc.) of the Galactic population of rotation-powered pulsars the gamma-ray flux of which is lower than the threshold sensitivity of the EGRET detector on the Compton Gamma-Ray Observatory . Furthermore, the contribution to the Galactic diffuse γ-ray spectrum from the unresolved γ-ray pulsars is calculated. Our results indicate that the unresolved γ-ray pulsars contribute ∼5 to ∼10 per cent to the measured Galactic diffuse γ-ray emission if the birth rate of neutron stars in the Galaxy is 1 to 2 per century, and that these pulsars contribute significantly to the observed Galactic diffuse γ-ray emission above 1 GeV. Comparing the model spectrum with the observed spectrum, we show that the unresolved γ-ray pulsars contribute very little to the diffuse emission at lower energies but can account for ∼50 per cent of the observed spectrum above 1 GeV if the product of the birth rate of neutron stars and the γ-ray beaming fraction is about unity. Such a large pulsar contribution can explain the difference (∼60 per cent) between the intensity of the Galactic diffuse emission as measured by EGRET above 1 GeV and model predictions based on cosmic ray–matter interaction only.  相似文献   

11.
We present measurements of fragmentation cross sections of relativistic nuclei and upper limits for the production probability of nuclear fragments with fractional charge using CR39 nuclear track detectors and an automated scanning system. The measurements of the total and partial charge changing fragmentation cross sections concern 16 GeV/nucleon oxygen ions, 14.5 GeV/nucleon silicon ions and 200 GeV/nucleon sulphur ions interacting in copper and CR39 targets. No evidence for fractionally charged fragments was found requiring a minimum track length of 7 mm in CR39 detectors placed after a 14 mm copper target. The combined upper limit for the production probability of fractionally charged fragments relative to ordinary ones is at the level of 1.2–2.3 × 10–4 (90% C.L.). The charge resolution of the CR39 detectors for an average of 10 measurements of the same track is σ = 0.05e at Z = 6.  相似文献   

12.
We investigate the problem of transition from galactic cosmic rays to extragalactic ultra-high energy cosmic rays. Using the model for extragalactic ultra-high energy cosmic rays and observed all-particle cosmic ray spectrum, we calculate the galactic spectrum of iron nuclei in the energy range 108–109 GeV. The flux and spectrum predicted at lower energies agree well with the KASCADE data. The transition from galactic to extragalactic cosmic rays is distinctly seen in spectra of protons and iron nuclei, when they are measured separately. The shape of the predicted iron spectrum agrees with the Hall diffusion.  相似文献   

13.
Here we outline some recent activities in the theory and phenomenology of Galactic cosmic rays, in the light of the great precision of direct cosmic ray measurements reached in the last decade. In the energy domain of interest, ranging from a few GeV/nucleon to tens of TeV/nucleon, data have revealed some novel features requiring an explanation. We shall emphasize the importance of a more refined modeling, of achieving a better assessment of theoretical uncertainties associated to the models, and of testing key predictions specific of different models against the rich datasets available nowadays. Despite the still shaky theoretical situation, several hints have accumulated suggesting the need to go beyond the approximation of a homogeneous and non-dynamical diffusion coefficient in the Galaxy.  相似文献   

14.
Foreword     
Protons of energy 109 GeV and 104 GeV accelerating by the magnetic field of very strongly magnetized neutron stars and of extreme Kerr-Newmann black holes (respectively) may undergo instantaneous decay.  相似文献   

15.
A diffusion model for the propagation of relativistic nuclear cosmic rays in the Galaxy is developed. The model has two nonstandard features: The escape of cosmic-ray particles from the Galaxy is simulated by a term in the diffusion equations, rather than the imposition of boundary conditions on the diffusion solution at the surface of the confinement region. And an age-dependent, locally-averaged effective gas distribution is employed in the diffusion equations. The model simulates free-particle outflow at the Galactic boundary. The model is fit to chemical composition data in the 0.3–5 GeV per nucleon range. It is then consistent with the large-scale Galactic -ray data, radio halo data, energy constraints on the assumed supernova sources, and, when extended to very high energies, cosmic-ray anisotrophy data. From the fit we conclude that the cosmic rays are confined in a large flattened or quasis-pherical halo with a scale height in the range 3–6 kpc and an average Galactic escape time of 108 yr.  相似文献   

16.
An analysis is made of the fine structure in the cosmic ray energy spectrum: new facets of present observations and their interpretation and the next step. It is argued that less than about 10% of the intensity of the helium ‘peak’ at the knee at ≈5 PeV is due to just a few sources (SNR) other than the single source. The apparent concavity in the rigidity spectra of protons and helium nuclei which have maximum curvature at about 200 GV is confirmed by a joint analysis of the PAMELA, CREAM and ATIC experiments. The spectra of heavier nuclei also show remarkable structure in the form of ‘ankles’ at several hundred GeV/nucleon. Possible mechanisms are discussed. The search for ‘pulsar peaks’ has not yet proved successful.  相似文献   

17.
We have used data from five neutron monitor stations with primary rigidity (Rm) ranging from 16 GeV to 33 GeV to study the diurnal variations of cosmic rays over the period: 1965–1986 covering one 22-year solar magnetic cycle. The heliosphere interplanetary magnetic field (IMF) and plasma hourly measurements taken near Earth orbit, by a variety of spacecraft, are also used to compare with the results of solar diurnal variation. The local time of maximum of solar diurnal diurnal variations displays a 22-year cycle due to the solar polar magnetic field polarities. In general, the annual mean of solar diurnal amplitudes, magnitude of IMF and plasma parameters are found to show separte solar cycle variations. Moreover, during the declining period of the twenty and twenty-ne solar cycles, large solar diurnal amplitudes are observed which associated with high values of solar wind speed, plasma temperature and interplanetary magnetic field magnitude B3.  相似文献   

18.
Observations of the temporal behavior of energetic storm protons and alpha particles are presented for the event associated with the storm sudden commencement observed on Earth on March 8, 1970. The data are obtained on board the low altitude polar orbiting satellite GRS-A/AZUR by means of two particle telescopes. Large changes in the proton to alpha ratios for particles of equal energy and for particles of equal energy per nucleon are observed, whereas no significant change in the equal energy per charge ratio is observed. Electric fields, Fermi acceleration and cyclotron resonance are discussed as possible modulation mechanisms.  相似文献   

19.
We discuss the possibility of observing ultra high energy cosmic ray sources in high energy gamma rays. Protons propagating away from their accelerators produce secondary electrons during interactions with cosmic microwave background photons. These electrons start an electromagnetic cascade that results in a broad band gamma ray emission. We show that in a magnetized Universe (B≳10−12 G) such emission is likely to be too extended to be detected above the diffuse background. A more promising possibility comes from the detection of synchrotron photons from the extremely energetic secondary electrons. Although this emission is produced in a rather extended region of size ∼10 Mpc, it is expected to be point-like and detectable at GeV energies if the intergalactic magnetic field is at the nanogauss level.   相似文献   

20.
We argue that γ-ray sources observed in the direction of the Cygnus OB2 association in the GeV and TeV energy range are due to a pulsar that was created by a supernova a few tens of thousands of years ago. The GeV emission is produced by a middle-aged pulsar, a factor of 2 older than the Vela pulsar. The TeV emission is produced by high-energy hadrons and/or leptons accelerated in pulsar wind nebulae. We suggest, moreover, that the excess of cosmic rays at ∼1018 eV observed from the direction of the Cygnus region can also be related to the appearance of this very energetic pulsar in the Cyg OB2 association. Some of the relativistic hadrons, captured in strong magnetic fields of a high-density region of Cyg OB2, produce neutrons and γ-rays in collisions with matter. These neutrons can arrive from Cyg OB2, creating an excess of cosmic rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号