首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Saksala  Timo 《Acta Geotechnica》2022,17(6):2079-2099

Inherent microcrack populations have a significant effect on the fracture behaviour of natural rocks. The present study addresses this topic in numerical simulations of uniaxial tension and three-point bending tests. For this end, a rock fracture model based on multiple intersecting embedded discontinuity finite elements is developed. The inherent (pre-existing) microcrack populations are represented by pre-embedded randomly oriented discontinuity populations. Crack shielding (through spurious locking) is prevented by allowing a new crack to be introduced, upon violation of the Rankine criterion, in an element with an initial crack unfavourably oriented to the loading direction. Rock heterogeneity is accounted for by random clusters of triangular finite elements representing different minerals of granitic numerical rock. Numerical simulations demonstrate the strength lowering effect of initial microcrack populations. This effect is substantially stronger under uniaxial tension, due to the uniform stress state, than in semicircular three-point bending having a non-uniform stress state with a clear local maximum of tensile stress.

  相似文献   

2.
A micromechanics-based approach is proposed to predict the shear failure of brittle rocks under compression. Formulation of this approach is based on an improved wing microcrack model, the Mohr-Coulomb failure criterion, and a micro-macro damage model. The improved wing microcrack model considers the effects of crack inclination angle on mechanical behaviors of rocks. The micro-macro damage model describes the relation between crack growth and axial strain. Furthermore, comparing experimental and theoretical relations between crack initiation stress and confining pressure, model parameters (i.e., μ, a, β, and φ) hardly measured by test are solved. Effects of crack inclination angle, crack size, and friction coefficient on stress-strain relation, compressive strength, internal friction angle, cohesion, shear failure plane angle, and shear strength are discussed in details. A most disadvantaged crack angle is found, which is corresponding to the smallest compressive strength, cohesion, internal friction angle, and shear strength of rocks. Rationality of the theoretical results is verified by the published experimental results. This approach provides a theoretical prediction for effects of microcrack geometry on macroscopic shear properties in brittle rocks under compression.  相似文献   

3.
The life time or time to failure of rocks under load is governed by microstructural defects, like microcracks, voids etc. The life time can be predicted either by empirical exponential laws or physical laws based on damage and fracture mechanics. The proposed numerical model is based on subcritical crack growth using the linear elastic fracture mechanical approach and is implemented as a numerical cellular automate. The algorithm considers both tensile and shear fracturing. Each cell contains a microcrack of random length according to a given probability function. Fracture growth is controlled by the Charles equation. Macroscopic cracks are the results of the coalescence of growing microcracks. Within the numerical approach elasto-plastic stress redistributions take place. If the stress intensity factors have reached the critical values or the microcrack has reached the zone dimension, the zone is considered as fractured and residual strength values are assigned. The proposed approach was applied to rock samples under uniaxial compressive and tensile loads (creep tests). Successful results were obtained in respect to the predicted life time, damage evolution and the fracture pattern. Conclusions for further improvements and extensions of this methodology were drawn.  相似文献   

4.
This paper deals with numerical modeling of dynamic failure phenomena in rate‐sensitive quasi‐brittle materials, such as rocks, with initial microcrack populations. To this end, a continuum viscodamage‐embedded discontinuity model is developed and tested in full 3D setting. The model describes the pre‐peak nonlinear and rate‐sensitive hardening response of the material behavior, representing the fracture‐process zone creation, by a rate‐dependent continuum damage model. The post‐peak response, involving the macrocrack creation accompanied by exponential softening, is formulated by using an embedded displacement discontinuity model. The finite element implementation of this model relies upon the linear tetrahedral element, which seems appropriate for explicit dynamic analyses involving stress wave propagation. The problems of crack locking and spreading typical of embedded discontinuity models are addressed in this paper. A combination of two remedies, the inclusion of viscosity in the spirit of Wang's viscoplastic consistency approach and introduction of isotropic damaging into the embedded discontinuity model, is shown to be effective in the present explicit dynamics setting. The model performance is illustrated by several numerical simulations. In particular, the dynamic Brazilian disc test and the Kalthoff–Winkler experiment show that the present model provides realistic predictions with the correct failure modes and rate‐dependent tensile strengths of rock at different loading rates. The ability of initial embedded discontinuity populations to model the initial microcrack populations in rocks is also successfully tested. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Mathematical concepts of statistical mechanics are use here to formulate the problem of microcrack kinetics. A stochastic distribution function is defined to characterize some modelling parameters of microcracks. This formalism results in an integral–differential equation of the Boltzmann type. A functional form for the microcrack production rate is imposed to model dilatancy and failure under shear-loading histories. This simple model illustrates some concepts of this theoretical approach.  相似文献   

6.
Zhang  Yulong  Shao  Jianfu  Liu  Zaobao  Shi  Chong  De Saxcé  Géry 《Acta Geotechnica》2019,14(2):443-460

This paper is devoted to numerical analysis of strength and deformation of cohesive granular materials. The emphasis is put on the study of effects of confining pressure and loading path. To this end, the three-dimensional discrete element method is used. A nonlinear failure criterion for inter-granular interface bonding is proposed, and it is able to account for both tensile and shear failure for a large range of normal stress. This criterion is implemented in the particles flow code. The proposed failure model is calibrated from triaxial compression tests performed on representative sandstone. Numerical results are in good agreement with experimental data. In particular, the effect of confining pressure on compressive strength and failure pattern is well described by the proposed model. Furthermore, numerical predictions are studied, respectively, for compression and extension tests with a constant mean stress. It is shown that the failure strength and deformation process are clearly affected by loading path. Finally, a series of numerical simulations are performed on cubic samples with three independent principal stresses. It is found that the strength and failure mode are strongly influenced by the intermediate principal stress.

  相似文献   

7.
花岗岩宏观尺度疲劳破坏是由于细观尺度微裂纹的萌生、发育和贯通引起的,所以对处于细观尺度的微裂纹特征进行量化分析,对于理解花岗岩的动力特性有一定的意义。首先利用RMT-150B多功能全自动刚性岩石伺服试验机,采用振幅为10 MPa,频率分别为0.01、0.02、0.05、0.10、0.20、0.50、1.00 Hz的正弦循环荷载作为动力扰动,对海南昌江花岗岩试样进行单轴循环荷载试验。然后,利用扫描电镜(SEM)拍摄得到花岗岩的大量细观结构图片,运用数字图像技术获取微裂纹的细观几何信息,从方位角、长度、宽度和面积对不同荷载频率相应的花岗岩细观尺度微裂纹特征进行量化分析。研究结果表明,随着循环荷载频率的增加,微裂纹方位角发育离散性增加,而其统计均值则在某一区间内波动;微裂纹长度的发育则较快,而仅当荷载频率达到1 Hz时,宽度才有一定的发展,同时,能量耗散的方式也发生一定的变化。  相似文献   

8.
Liu  Yang  Feng  Yongneng  Xu  Mo  Zhang  Yunhui  Long  Haitao  Zhu  Haiming 《Natural Hazards》2019,98(2):343-377

Tunnel water inrush disaster is a serious problem in karst tunnel construction and occurs extensively in southwestern China. To prevent water inrush, hydraulic lining has been utilized extensively in karst tunnel construction. The failure of the hydraulic lining in the Tongxi tunnel is an example of a typical failure case that has yet to be fully analyzed. In this paper, the failure of the waterproof liner was studied by theoretical and numerical methods. By field investigation, the failure of the tunnel lining was attributed to a high hydraulic pressure head converging in the large karst caves behind the lining. The corresponding mechanical model can be simplified as a “karst cave water pressure” model. The key to the mechanical model was to determine the water pressure of the karst caves produced by the lining. The variation in water pressure was directly related to the cave’ reservoir volume, catchment flow and catchment time. Thus, volume calculation formulas for two types of karst caves (strike and oblique caves) in the studied tunnel were constructed based on the engineering geological conditions. Considering the precipitation, the flow rate in the karst caves was regarded as nearly constant during the catchment period. Hence, reservoir volumes during different periods can be calculated and converted to the stress boundary conditions of the lining. Then, the mechanical response of the tunnel under different water levels was calculated by numerical simulation. Combining the field investigation and monitoring data, the tunnel lining failure was mainly believed to be triggered by hydraulic fracturing failure due to a high-pressure head. Finally, prevention measures were proposed based on the results of this study.

  相似文献   

9.
The paper presents a synthesis of analytical modeling and computational simulations of the intrinsic permeability of microcracks, embedded in porous materials taking into account the interaction of the fluid flow in the microcrack with the surrounding porous material. In the first part of the paper, using the DARCY , STOKES , BRINKMAN , and the BEAVERS–JOSEPH approximations, we derive the intrinsic permeability of a plain non‐rough microcrack in terms of the microcrack geometry and the permeability of the porous material surrounding the microcrack. In the second part of the paper, the intrinsic permeability of a microcrack is determined by means of computational simulations using the framework of the lattice Boltzmann method with partial bounceback conditions. The comparison of predictions from the analytical model and the numerical simulations show an excellent agreement. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.

Foundation scour can have a detrimental effect on the performance of bridge piers, inducing a significant reduction of the lateral capacity of the footing and accumulation of permanent settlement and rotation. Although the hydraulic processes responsible for foundation scour are nowadays well known, predicting their mechanical consequences is still challenging. Indeed, its impact on the failure mechanisms developing around the foundation has not been fully investigated. In this paper, numerical simulations are performed to study the vertical and lateral response of a scoured bridge pier founded on a cylindrical caisson foundation embedded in a layer of dense sand. The sand stress–strain behaviour is reproduced by employing the Severn-Trent model. The constitutive model is firstly calibrated on a set of soil element tests, including drained and undrained monotonic triaxial tests and resonant column tests. The calibration procedure is implemented considering the stress and strain nonuniformities within the samples, by simulating the laboratory tests as boundary value problems. The numerical model is then validated against the results of centrifuge tests. The results of the simulations are in good agreement with the experimental results in terms of foundation capacity and settlement accumulation. Moreover, the model can predict the effects of local and general scour. The numerical analyses also highlight the impact of scouring on the failure mechanisms, revealing that the soil resistance depends on the hydraulic scenario.

  相似文献   

11.
Liao  Jianxing  Gou  Yang  Feng  Wentao  Mehmood  Faisal  Xie  Yachen  Hou  Zhengmeng 《Acta Geotechnica》2020,15(2):279-295

Although hydraulic fracturing has been massively studied and applied as a key technique to enhance the gas production from tight formations, some problems and uncertainties exist to accurately predict and analyze the fracture behavior in complex reservoirs, especially in the naturally fractured reservoirs like shale reservoirs. This paper presents a full 3D numerical model (FLAC3D) to study hydraulic fracturing behavior under the impact of preexisting orthogonal natural fractures. In this numerical model, the hydraulic fracture propagation direction is assumed perpendicular to the minimum principal stress and activated only by tensile failure, whereas the preexisting natural fractures can be activated by tensile or shear failure or a combination of them, and only tensile failure can open the natural fracture as well. The newly developed model was used to study the impact of preexisting orthogonal natural fractures on hydraulic fracturing behavior, based on a multistage hydraulic fracturing operation in a naturally fractured reservoir from the Barnett Shale formation, northwest of Texas in USA. In this multistage operation, two more representative stages, i.e., stage 1 with a relatively large horizontal stress anisotropy of 3.3 MPa and stage 4 with a comparatively small one of 1.3 MPa, were selected to conduct the simulation. Based on the numerical results, one can observe that the interaction between hydraulic and natural fracture is driven mainly by induced stress around fracture tip. Besides, the horizontal stress anisotropy plays a key role in opening the natural fracture. Thus, no significant opened fracture is activated on natural fracture in stage 1, while in stage 4 an opened fracture invades to about 90 m into the first natural fracture. Conversely, the hydraulic fracture length in stage 1 is much longer than in stage 4, as some fluid volume is stored in the opened natural fracture in stage 4. In this work, the shear failure on natural fractures is treated as the main factor for inducing the seismic events. And the simulated seismic events, i.e., shear failure on natural fractures, are very comparable with the measured seismic events.

  相似文献   

12.
Ice is a component of frozen grounds that determines their rheological properties. Deformation and failure of ice under load are regarded by the authors as a single process due to the kinetics of defect development in the crystalline structure of ice.

Results of experimental investigations into the regularities of ice strain and failure under the conditions of short-time creep are given in this paper. The experiments were to test ice for creep under a uniaxial compressive stress, using the emission—acoustic method of recording the microcrack formation.

It is shown experimentally that the ultimate strength of ice signifying a maximum stress after which ice deforms plastically, without passing into the stage of accelerated flow, is consistent with the stress under which the process of microcrack formation begins. It has been found that this limit is independent of temperature.

As a result of the study, an analytical relationship has been determined between defect number, stress and time, and an equation of ice strain has been deduced on the basis of statistical methods. This equation estimates temporal creep strain development, depending on stress, structural characteristics of ice and its temperature.  相似文献   


13.
Zhou  Peng  Liu  Hanlong  Zhou  Hang  Cao  Guangwei  Ding  Xuanming 《Acta Geotechnica》2022,17(10):4681-4697

In this paper, a series of well-calibrated finite-element analyses are performed to quantify the influence of the geometry of cross section on the load transfer mechanism of X-section Cast-in-place Concrete (XCC) pile under lateral load, aiming to propose a lateral soil resistance model for XCC pile in soft clay. Based on the results of the numerical parametric analysis, the failure mechanism of soil flow and the ultimate lateral soil pressure are investigated to reveal the underlying mechanism that controls the cross-section geometry-dependency response. Finally, a general p-y formula for XCC pile, which can well capture the lateral behavior of XCC pile considering the various cross section geometries, is developed. In addition, compared with the traditional circular cross section pile with the same area, the XCC pile is more effective in terms of resistance to lateral load.

  相似文献   

14.
Rotisciani  G. M.  Desideri  A.  Amorosi  A. 《Acta Geotechnica》2021,16(11):3355-3380

The paper presents a new single-surface elasto-plastic model for unsaturated cemented soils, formulated within the critical state soil mechanics framework, which should be considered as an extension to unsaturated conditions of a recently proposed constitutive law for saturated structured soils. The model has been developed with the main purpose of inspecting the mechanical instabilities induced in natural soils by bond degradation resulting from the accumulation of plastic strains and/or the changes in pore saturation. At this scope, the constitutive equations are used to simulate typical geotechnical testing conditions, whose results are then analysed in light of the controllability theory. The results of triaxial tests on an ideal fully saturated cemented soil and on the corresponding unsaturated uncemented one are first discussed, aiming at detecting the evidence of potentially unstable conditions throughout the numerical simulations. This is followed by similar analyses considering the combined effects of both the above features. For each analysed case, a simple analytical stability criterion is proposed and validated against the numerical results, generalizing the results, and highlighting the crucial role of state variables and model parameters on the possible occurrence of failure conditions.

  相似文献   

15.
李晓照  邵珠山  戚承志 《岩土力学》2019,40(11):4249-4258
岩石内部细观裂纹的存在,对压缩作用下岩石剪切断裂的宏观现象有着重要的影响。然而,能够通过解析解阐释细观裂纹几何特性、围压等影响因素对压缩作用下剪切断裂面角度变化趋势的研究很少。基于Ashby模型中提出的裂纹尖端应力强度因子,提出了一种改进的考虑裂纹角度影响的应力强度因子表达式。利用该改进的应力强度因子表达式,推出了一个可以预测岩石峰值强度的裂纹扩展、应变与应力之间的本构关系。结合本构关系的峰值强度与摩尔-库仑失效准则,得到了岩石损伤与内摩擦角、黏聚力、剪切强度及失效断裂面角度之间的理论关系;讨论了围压、裂纹尺寸、角度及摩擦系数对岩石宏观剪切断裂面角度的影响,通过试验结果验证了模型合理性。结果表明:随着损伤增大,内摩擦角、黏聚力及剪切强度不断减小;随着围压增大、摩擦系数增大和初始裂纹尺寸减小,剪切断裂面角度不断增大;随着裂纹角度增大,剪切断裂纹面角度先减小后增大。  相似文献   

16.
Wang  Yun-Teng  Zhou  Xiao-Ping  Kou  Miao-Miao 《Acta Geotechnica》2019,14(4):1161-1193

A 3-D conjugated bond-pair-based peridynamic model is developed to comprehensively investigate failure characteristics of rock-like materials with intermittent fissures in the compressive-shear loading tests. Rock-like specimens containing one single central fissure are first simulated. Numerical results indicate that the 3-D conjugated bond-pair-based peridynamic model can faithfully reproduce failure characteristics of rock-like materials under compressive-shear loads. Then, the failure characteristics of rock-like specimens containing two parallel central intermittent fissures are numerically investigated. Effects of fissure inclination angle, fissure ligament length and rock bridge angle on fracturing behaviors, such as crack coalescence patterns, are also studied as well as crack initiation stress and coalescence stress.

  相似文献   

17.

Most natural rock masses contain a large number of random joints and fissures, and most of the rock masses at the rock engineering are commonly in both compression and shear stress environment. However, the research on the failure characteristics of complex random jointed rock mass under compressive-shear loading is still limited. To address this gap, this paper uses the particle flow code 2D to establish a discrete fractured rock mass model and carry out a series of numerical tests with different compressive-shear angles (α) and different joint geometric parameters. The effects of compressive-shear angle and joint geometric parameters on the strength and failure characteristics of fractured rock masses are studied. The results indicate that with the increase of α, the peak strength of the specimen decreases gradually, and the failure mode changes from the composite shear failure mode (Mode-I) to a plane shear failure mode (Mode-II) and then to intact shear failure mode (Mode-III). Specifically, the three failure modes occur in the specimens with α?=?15°, 30° or 45°, 60°, respectively. The existence of joints affects stress distribution on rock mass during the loading process. Furthermore, the stress at the joint tip is relatively concentrated, while on both sides of the joint is smaller. Three kinds of crack coalescence patterns are observed: tensile, shear, and tensile-shear mixed coalescence. The inclination angle of the rock bridge between adjacent joints affects the specific type of coalescence.

  相似文献   

18.
Deformation within the Earth's lithosphere is largely controlled by the rheology of the rock. Fracture and faulting are characterized by elastic rheologies with brittle mechanisms, while folding and flow are characterized by plastic and/or viscous rheologies due to ductile mechanisms. However, it has been recognized that deformation that resembles ductile behavior can be produced within the confines of the brittle lithosphere. Specific examples are folds that form in the shallow crust, steep hinges at subduction zones that are accompanied by seismicity, and large-scale deformation at plate boundaries. In these cases, the brittle lithosphere behaves elastically with fracture and faulting yet produces ductile behavior. In this paper, we attempt to simulate such ductile behavior in elastic materials using continuum damage mechanics. Engineers utilize damage mechanics to model the continuum deformation of brittle materials. We utilize a modified form of damage mechanics that represents a reduction in frictional strength of preexisting fractures and faults. We use this empirical approach to simulate the bending of the lithosphere under the application of a constant moment.We use numerical simulations to obtain elastostatic solutions for plate bending and where the longitudinal stress at a particular node exceeds a yield stress, we apply damage to reduce Young's modulus at the node. Damage is calculated at each time step by a power-law relationship of the ratio of the yield stress to the longitudinal stress and the yield strain to the longitudinal strain. This results in the relaxation of the material due to increasing damage. To test our method, we apply our damage rheology to an infinite plate deforming under a constant bending moment. We simulate a wide range of behaviors from slow relaxation to instantaneous failure, over timescales that span six orders of magnitude. Using this method, stress relaxation produces elastic-perfectly plastic behavior in cases where failure does not occur. For cases of failure, we observe a rapid increase in damage leading to failure, analogous to the acceleration of microcrack formation and acoustic emissions prior to failure. The changes in the rate of damage accumulation in failure cases are similar to the changes in b-values of acoustic emissions observed in triaxial compression tests of fractured rock and b-value changes prior to some large earthquakes. Thus continuum damage mechanics can simulate the phenomenon of ductile behavior due to brittle mechanisms as well as observations of laboratory experiments and seismicity.  相似文献   

19.
压缩作用下岩石内部细观裂纹扩展导致岩石产生损伤,其对岩石变形、强度等力学特性有着重要影响;然而,岩石内部裂纹扩展与剪切特性(黏聚力、内摩擦角及剪切应力)动态演化关系很少被研究。基于裂纹扩展机制推出的岩石应力-应变本构模型,并结合摩尔-库仑失效准则,推出了在岩石应力-应变关系峰值应力(对应岩石压缩强度)状态时,本构模型细观力学参数与岩石黏聚力、内摩擦角及剪切强度之间的状态关系。然后,引入岩石应力-应变本构关系塑性变形阶段服从摩尔-库仑屈服准则的力学流动规律,进而将已推出的应力-应变关系峰值状态点所满足的细观力学参数与黏聚力、内摩擦角关系,推广到岩石进入塑性变形后,岩石内部裂纹扩展(或应变)与黏聚力、内摩擦角及剪切应力动态演化的理论关系。随着裂纹扩展或应变增加,黏聚力、内摩擦角及剪切应力先增大,达到一个峰值点后减小,该结果与应力-应变本构曲线变化趋势相对应。通过试验结果验证了所提出理论结果的合理性。并讨论了初始裂纹之间摩擦系数对黏聚力、内摩擦角及剪切应力随裂纹扩展或应变演化规律的影响。  相似文献   

20.
Wei  Tonghui  Zuo  Wenjie  Zheng  Hongwei  Li  Feng 《Natural Hazards》2021,105(1):565-586

A reliability model is proposed to solve the problem of hybrid uncertainty with both random and interval variables in slope engineering. A hybrid uncertainty model based on the dimension reduction method and Taylor expansion is constructed to approximate the limit state function. Using the polynomial theorem and variable transformation method, the origin and center moments’ interval of the limit state function are calculated. Moment information is applied to the expansion of a three-parameter Weibull distribution, and the cumulative distribution function and probability density function of limit state function are determined. As a result, the failure probability interval of the slope is calculated. The interval uncertainty problem is transformed into an interval certainty problem using Taylor expansion without solving for the statistical moment of limit state function using multiple integrals and iteratively searching for the most probable failure points. The numerical results from two slopes show that the proposed method is effective and feasible.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号