首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have computed the ejection of a massive envelope by a star during a type II supernova explosion in the presence of a compact remnant (a neutron star or black hole). This problem is of interest because of the possible presence of a compact remnant following the SN 1987A explosion. The computations demonstrate that a fairly large amount of matter is left in the neighborhood of the compact gravitating body. We present computations of the accretion rate onto the surface of the compact remnant. The estimated luminosity exceeds that observed for SN 1987A in various frequency ranges by several orders of magnitude.  相似文献   

2.
Supernovae and gamma-ray bursts (GRBs) are among the brightest events in the universe. Excluding Type Ia supernovae and short GRBs, they are the result of the core collapse of a massive star with material being ejectedwith speeds of several 1000 km/s to nearly the speed of light, and with a neutron star or a black hole left over as the compact remnant of the explosion. Synchrotron radiation in the radio is generated in a shell when the ejecta interact with the surrounding medium and possibly also in the central region near the compact remnant itself. VLBI has allowed resolving some of these sources and monitoring their expansion in detail, thereby revealing characteristics of the dying star, the explosion, the expanding shock front, and the expected compact remnant. We report on updates of some of the most interesting results that have been obtained with VLBI so far. Movies of supernovae are available from our website. They show the evolution from shortly after the explosion to decades thereafter, in one case revealing an emerging compact central source, which may be associated with shock interaction near the explosion center or with the stellar corpse itself, a neutron star or a black hole.  相似文献   

3.
A possible model for the pulsar PSR J1852+0040 associated with the supernova remnant Kes 79 and detected in place of a central compact object in this remnant is discussed. The main observational properties of the pulsar can be understood as consequences of its weak surface magnetic field (B s < 3 × 1011 G) and short rotational period (P ~ 0.1 s). Its X-ray emission is thermal, and is generated in a small region near the surface of the neutron star due to cooling of the surface as the surface accretes matter from a relict disk surrounding the pulsar. The radio emission is generated in the outer layers of the pulsar magnetosphere by the synchrotron (cyclotron) mechanism. The optical luminosity of J1852+0040 is estimated to be L opt < 1028 erg/s. If the spectral features in another central compact object, 1E 1207.4+5209, are interpreted as electron cyclotron lines, this provides evidence for a weak surface magnetic field for this neutron star as well (B < 6 × 1010 G). The hypothesis that all central compact objects have weak surface fields makes it possible to explain the number of detected central compact objects, the absence of pulsar-wind nebulae associated with these objects, and the fact that no pulsar has yet been detected at the position of SN 1987a. We suggest that, after the supernova remnant has dissipated, the central compact object becomes a weak X-ray source (XDINS), whose weak emission is also due to the weakness of its magnetic field.  相似文献   

4.
We propose a new mechanism for type II supernova explosions. An important element of the model is large-scale convection that arises due to non-equilibrium neutronization of the matter in the central region of the proto-neutron star. Our analytical estimates and numerical simulations of the convection rate are in good mutual agreement. Large-scale convection leads to the rapid transport of neutrinos from the center of the star to the bounce shock formed during the pause in the collapse of the stellar matter in the proto-neutron star. The mean neutrino energy is 30–50 MeV. We analyze the dependence of the mean neutrino energy on the size of the convection cells—“bubbles.” Our computations of the interaction between the neutrinos and the shock show that the velocity of the shock along the rotational axis of the star exceeds the escape velocity. Thus, explosion of the envelope and a supernova with a very asymmetrical envelope structure become possible, leading to the formation of a neutron star.  相似文献   

5.
We present the results of simulations of Type Ia and II supernovae explosions taking into account the rotation of the initial configuration. The main idea is development of a large-scale convective instability which affects strongly the geometry of the explosion. For Type Ia supernova a jet-like structure of the ejecta was obtained. An important point here is the possibility of continuing consecutive flares, produced when the fresh thermonuclear fuel is ignited in the central part of the star. This fuel is moved to the center by convective fluxes from the outer stellar layers. For Type II supernova a large-scale convection results in a non-equilibrium neutronization of the matter. Large bubbles, moving to the surface, contain high-energy neutrinos from the central region of the proto-neutron stellar core. The following ejection of these neutrinos to the stellar envelope gives enough energy support to the bounce shock, which finally destroys the envelope producing a non-spherical explosion.  相似文献   

6.
We consider the evolution of close binaries resulting in the most intensive explosive phenomena in the stellar Universe—Type Ia supernovae and gamma-ray bursts. For Type Ia supernovae, which represent thermonuclear explosions of carbon-oxygen dwarfs whose masses reach the Chandrasekhar limit during the accretion of matter from the donor star, we derive the conditions for the accumulation of the limiting mass by the degenerate dwarf in the close binary. Accretion onto the degenerate dwarf can be accompanied by supersoft X-ray radiation with luminosity 1–104 L . Gamma-ray bursts are believe to accompany the formation and rapid evolution of compact accretion-decretion disks during the formation of relativistic objects—black holes and neutron stars. The rapid (~1 M /s) accretion of matter from these disks onto the central compact relativistic star results in an energy release of ~0.1 M c 2 ~ 1053 erg in the form of gamma-rays and neutrinos over a time of 0.1–1000 s. Such disks can form via the collapse of the rapidly rotating cores of Type Ib, Ic supernovae, which are components in extremely close binaries, or alternately due to the collapse of accreting oxygen-neon degenerate dwarfs with the Chandrasekhar mass into neutron stars, or the merging of neutron stars with neutron stars or black holes in close binaries. We present numerical models of the evolution of some close binaries that result in Type Ia supernovae, and also estimate the rates of these supernovae (~0.003/year) and of gamma-ray bursts (~10?4/year) in our Galaxy for various evolutionary scenarios. The collimation of the gamma-ray burst radiation within an opening angle of several degrees “matches” the latter estimate with the observed rate of these events, ~10?7–10?8/year calculated for a galaxy with the mass of our Galaxy.  相似文献   

7.
Sytov  A. Yu.  Fateeva  A. M. 《Astronomy Reports》2019,63(12):1045-1055

Results of three-dimensional numerical simulations of the gas dynamics of the envelope of the young T Tauri binary star UZ Tau E are considered. The flow structure in the circumstellar envelope of the system is analyzed. It is shown that a regime with the impulsive accretion of matter from the circumstellar disk is realized in the binary system, in which there is a periodic transfer of matter to the accretion disk of the primary component through the accretion disk of the secondary.

  相似文献   

8.
The question of why the observed periods of anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) cluster in the range 2–12 s is discussed. The possibility that AXPs and SGRs are the descendants of high-mass X-ray binaries that have disintegrated in core-collapse supernova explosions is investigated. The spin periods of neutron stars in high-mass X-ray binaries evolve towards the equilibrium period, which is a few seconds, on average. After the explosion of its massive companion, the neutron star becomes embedded in a dense gaseous envelope, and accretion from this envelope leads to the formation of a residual magnetically levitating disk. It is shown that the expected mass of the disk in this case is 10?7–10?8 M, which is sufficient to support accretion at the rate 1014–1015 g/s over a few thousand years. During this period, the star manifests itself as an isolated X-ray pulsar with a number of parameters similar to those of AXPs and SGRs. The periods of such pulsars can cluster if the lifetime of the residual disk does not exceed the spin-down timescale of the neutron star.  相似文献   

9.
Tutukov  A. V.  Fedorova  A. V. 《Astronomy Reports》2019,63(6):460-478

Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.

Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.

The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103?105)M must be close to ~10 M in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ~5M, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.

The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ~50M), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.

  相似文献   

10.
We consider the evolution of close binaries in which the initial secondary component is a nondegenerate helium star with mass MHe = 0.4–60 M, while the initially more massive primary has evolved into a black hole, neutron star, or degenerate dwarf. The neutron star is assumed to originate as a result of the evolution of a helium star with a mass of 2.5 MMHe ≤ 10 M after the explosion of a type Ib,c supernova. If the axial rotation of the helium star before the explosion is rigid-body and synchronized with the orbital rotation, for Porb ≤ 0.16 day, the rotational energy of the young neutron star will exceed the energy of an ordinary supernova. If the magnetic field of the neutron star is sufficiently strong, the necessary conditions for a magnetic-rotational supernova are provided. The initial rotational period of a young neutron star originating in a system with an orbital period shorter than ~50 days is shorter than ~4 s, which, according to observations, is required for the appearance of a radio pulsar. A helium star whose mass exceeds ~10 M in a close binary with an orbital period shorter than one day and with the axial rotation of the helium presupernova synchronous with the orbital rotation evolves into a Kerr black hole, whose formation is likely to be accompanied by a gamma-ray burst with a duration longer than two seconds. In particular, we consider close binaries in which the second supernova results in the formation of a neutron star that remains in the binary. The theoretical distribution of orbital periods and eccentricities for such systems is consistent with that observed for radio pulsars in the Galactic disk in binaries with compact components and orbital eccentricities exceeding ~0.09, providing an explanation for the observed correlation between the orbital eccentricities and orbital periods for these systems.  相似文献   

11.
We apply a population synthesis technique to study the formation and evolution of low-mass X-ray binaries with black holes, observed as X-ray novae, from hierarchical triple systems. A scenario is suggested in which an inner close binary system evolves into an X-ray system with a large mass ratio. The high rate of accretion onto the neutron star leads to a common envelope stage, which may result in the formation of a Thorne-Zytkow (TZ) object. During its evolution, the envelope of the TZ object expands, encompassing the third star. The recurrent common-envelope stage decreases the size of the orbit of the third star, leading to the formation of a lowmass X-ray nova with a black hole. The dynamical stability of triple systems automatically ensures that only lowmass X-ray novae form. We also consider the possible formation of an X-ray nova from a binary in the case of asymmetrical core collapse during a supernova explosion.  相似文献   

12.
The formation of neutron stars in the closest binary systems (P orb<12 h) gives the young neutron star/pulsar a high rotational velocity and energy. The presence of a magnetic field of 3×1011–3×1013 G, as is observed for radio pulsars, enables the neutron star to transfer ~1051 erg of its rotational energy to the envelope over a time scale of less than an hour, leading to a magnetorotational supernova explosion. Estimates indicate that about 30% of all type-Ib,c supernovae may be the products of magnetorotational explosions. Young pulsars produced by such supernovae should exhibit comparatively slow rotation (P rot>0.01 s), since a large fraction of their rotational angular momentum is lost during the explosion. The magnetorotational mechanism for the ejection of the envelope is also reflected by the shape of the envelope. It is possible that the Crab radio pulsar is an example of a product of a magnetorotational supernova. A possible scenario for the formation of the close binary radio pulsar discovered recently by Lyne et al. is considered.  相似文献   

13.
We investigate the orientation of the orbital planes of X-ray binary systems relative to the direction of the additional velocity acquired by the binary in a supernova explosion or as a result of radiative acceleration. In the second case, the acceleration occurs due to X-ray radiation during a stage of intense accretion onto the neutron star, which has an asymmetric magnetic field. Observational consequences that could enable estimation of the role of each acceleration mechanism are discussed. The results are also applicable to binary millisecond radio pulsars, assuming that they have gone through an accretion stage.  相似文献   

14.
The evolution of stars with mass 5M with an initially cool neutron core (Thorne-Zytkow objects) is computed numerically, taking into account the heating of the neutron star by flows of heat released during the accretion of a surrounding envelope. The temperature of the neutron core does not rise to values at which the system could become unstable to rapid increases in the neutrino luminosity. In other words, the heating of the neutron core does not lead to a rapid collapse of the initial configuration.  相似文献   

15.
The emission measures EM in the directions of supernova remnants and pulsars are considered as functions of their ages t. The resulting plot has a well-defined lower boundary, which can be approximated by the expression EMmin∝1/t. The quantity EMmin increases with decreasing age t and does not level off or reach a maximum until t?500 yr. It is concluded that the bulk of the radiative energy that goes into ionizing and heating the interstellar gas is released at early stages of the supernova remnant’s evolution. We suggest that most of the kinetic energy of the supernova shell is converted into thermal energy and radiated at remnant ages t<100 yr, when the supernova shell, which is expanding at an enormous speed (about 104 km/s), overtakes the shell produced by the presupernova in the supergiant stage. We have estimated the ionization energy E?1051 erg, diameter L?60 pc, and electron density Ne?7 cm?3 of the HII regions around the supernovae (the supernova Strömgren zones). A list of objects that can be reliably identified as Strömgren zones of type II supernovae is presented. The plot of pulsar pulse broadening τ as a function of the pulsar age t also has a well-defined lower boundary, for which τ∝t?2 when t≥1000 yr. This suggests that turbulence develops during the first thousand years after the supernova outburst. It is also concluded that turbulence plays an important role in the formation and evolution of the Strömgren zones of type II supernovae.  相似文献   

16.
We carried out spectroscopy of the binary SSCyg in the Hα, Hβ, and Hγ lines in its active state in August and December 2006. We have estimated the parameters of the main flow elements contributing to the spectra. Profile variations during the orbital period are analyzed, and a Doppler tomogram computed for the Hα line. We consider the evolution of the line profiles with the development of the outburst. A phenomenological model explaining the observed outburst features is suggested. In this model, the main elements of the flow determining the shape of the spectral lines are the accretion disk, a toroidal shell formed in the inner parts of the disk, an expanding spherical shell around the accreting star, a region in front of the bow shock that forms due to the orbital motion of the disk in the circumbinary envelope, and the surface of the donor star near the inner Lagrange point, L1, which is heated by radiation from the accretor.  相似文献   

17.
Using the results of our Hα interferometric observations and observational data on the 21 cm and CO lines, we have analyzed the structure and kinematics of the interstellar medium in the extended vicinity of the star WR 137 and the supernova remnants CTB 87 and G73.9+0.9. A shell structure with a radius of up to 40′ observable in optical lines has been discovered around WR 137. The high-velocity motions of ionized hydrogen inside this shell can be interpreted as expansion of the gas swept out by the wind of WR 137 at velocities of up to 60 km/s. The ionized hydrogen near WR 137 emits at the systematic velocity V LSR ∼ 6–18 km/s. The expansion ofG73.9+0.9 at a velocity of up to 55 km/s has been confirmed. The systematic velocities of the ionized hydrogen toward this supernova remnant are V LSR ≃ −14…+14 km/s. An HI shell around G73.9+0.9 has been detected at velocities V LSR≃−14…−8 km/s. A very faint optical shell of CTB 87 with a size of about 20′ has also been detected. Evidence that CTB 87 is located in the Cygnus Arm is presented.  相似文献   

18.
The radio and X-ray fine structure of the supernova remnant G11.2-0.3 is analyzed using VLA and Chandra data. A possible pair of bipolar X-ray jets inside the remnant shell was reported earlier; caps or terminal X-ray hot spots of these jets have now been discovered outside the shell. These hot spots lie on the jet axis, which is oriented in position angle 66° (measured from North through East). The proper motions of them are measured, and age is determined to be more than 160 years. The estimated physical parameters of the jets agree with the parameters of micro quasar jets. Three broad gaps with opening angles of 9° have been revealed in the radio shell, as well as radio bulges with opening angles of 2°–4° displaying tube-like structures at the shell periphery. Signs of the motion of material along position angle 124.5° have been found in the shell, suggesting the past activity of another pair of bipolar centrally symmetrical jets that were older than those first detected. These structural features provide direct evidence that the shell has been subject to multiple perforation by expanding fragments of matter from the supernova explosion, and by one or two pairs of bipolar jets with different orientations.  相似文献   

19.
As a result of the interaction between an elliptical accretion disk and gas flowing into it from the circumbinary envelope in a close binary in the course of its orbital motion, the matter of the disk and the circum-disk halo is periodically ejected from the vicinity of the Lagrange point L3, and a common envelope is formed in the system. Three-dimensional numerical gas-dynamical modeling is used to study the structure and dynamics of the envelope and determine its basic parameters. The evolution of the envelope is followed on timescales of the order of several orbital periods. The matter flow ejected through the vicinity of L3 displays a spiral shape. The maximum size of the forming spiral structure is restricted by the self-intersection point, and is of the order of four to five times the component separation. We consider the dynamics of the regions directly adjacent to the spiral structure: an inner, rarified and outer, fragmented region, which further makes a transition to an expanding diffuse ring.  相似文献   

20.
A star located in the close vicinity of a supermassive black hole (SMBH) in a galactic nucleus or a globular-cluster core could form a close binary with the SMBH, with the star possibly filling its Roche lobe. The evolution of such binary systems is studied assuming that the SMBH mainly accretes matter from the companion star and that the presence of gas in the vicinity of the SMBH does not appreciably influence variations in the star’s orbit. The evolution of the star–SMBH system is mainly determined by the same processes as those determining the evolution of ordinary binaries. The main differences are that the star is subject to an incident flux of hard radiation arising during the accretion of matter by the SMBH, and, in detached systems, the SMBH captures virtually all the wind emitted by its stellar companion, which appreciably influences the evolution of the major axis of the orbit. Moreover, the exchange between the orbital angular momentum and the angular momentum of the overflowing matter may not be entirely standard in such systems. The computations assume that there will be no such exchange of angular momentum if the characteristic timescale for mass transfer is shorter than the thermal time scale of the star. The absorption of external radiation in the stellar envelope was computed using the same formalism applied when computing the opacity of the stellar matter. The numerical simulations show that, with the adopted assumptions, three types of evolution are possible for such a binary system, depending on the masses and the initial separation of the SMBH and star. Type I evolution leads to the complete destruction of the star. Only this type of evolution is realized for low-mass main-sequence (MS) stars, even those with large initial separations from their SMBHs. Massive MS stars will also be destroyed if the initial separation is sufficiently small. However, two other types of evolution are possible for massive stars, with a determining role in the time variations of the parameters of the star–SMBH system being played by the possible growth of the massive star into a red giant during the time it is located in the close vicinity of the SMBH. Type II evolution can be realized for massive MS stars that are initially farther from the SMBH than in the case of disruption. In this case, the massive star fills its Roche lobe during its expansion, but is not fully destroyed; the star retreats inside its Roche lobe after a period of intense mass loss. This type of evolution is characterized by an increase in the orbital period of the system with time. As a result, the remnant of the star (its former core) is preserved as a white dwarf, and can end up at a fairly large distance from the SMBH. Type III evolution can be realized formassiveMSstars that are initially located still farther from their SMBHs, and also for massive stars that are already evolved at the initial time. In these cases, the star moves away from the SMBH without filling its Roche lobe, due to its intense stellar wind. The remnants of such stars can also end up at a fairly large distances from their SMBHs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号