首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the "black soil" in Northeast China has been greatly deteriorated by long-term intensive conventional mouldboard plow tillage (CT) practices. In this study, micro- morphological observation and image analysis of soil thin sections were conducted to evaluate the impacts of 21 years (1986-2007) of no tillage (NT) on soil structure as compared to CT in an experiment near Gongzhuling City, Jilin Province. Soil organic matter (SOM), wet aggregate stability and saturated hydraulic conductivity (Ks) were also analyzed. Total SOM was not significantly affected by tillage systems, but fresher SOM was observed in the surface layer under NT. The aggregates under NT showed different hierarchies in the form of crumbs, and the mean weight diameter (MWD) of NT was significant higher than that of CT in the surface layer. Platy and blocky aggregates were frequently observed in the lower layers under CT practice. The compound pore structure with intertwined intra- and inter- aggregates pores under NT was well developed in a layer from 0-5 cm to 20-25 era. While under CT system, more inter-aggregate pores and fewer intra- aggregate pores were observed, and planes and channels were frequently found in the 20-25 cm layer, where maeroporosity decreased significantly and a plow pan was evident. The Ks values of NT weresignificantly lower at o-5 cm but significantly higher at 20-95 cm compared with CT, which showed the same trend with macroporosity. These results confirmed that long-term CT practice fragmented the tillage layer soil and compacted the lower layer soil and formed a plow pan. While long-term NT practice in the black soil region favored soil aggregation and a stable porous soil structure was formed, which are important to the water infiltration and prevent soil erosion.  相似文献   

2.
Precipitation plays an important role in the water supplies that support ecological restoration by sustaining large-scale artificial plantations in arid and semiarid regions, especially black locust(Robinia pseudoacacia) plantations(RP plantations), which are widely planted due to R. pseudoacacia being an excellent pioneer species. Characterizing the response of soil moisture to rainfall events at different stages of restoration is important for assessing the sustainability of restoration in RP plantations. In this study, we quantified the response of soil moisture to rainfall events at different years of restoration(15, 20 and 30 yr) representing different restoration stages in RP plantations in a typical hilly-gully area, i.e., the Yangjuangou Catchment, of the Loess Plateau, China. Over the growing season(June to September) of 2017, smart probes were placed at nine depths(10, 20, 40, 60, 80, 100, 120, 150, and 180 cm below the soil surface) to obtain volumetric soil water information at 30-min intervals in the three RP plantations. The advance of the wetting front was depicted, and the total cumulative water infiltration was measured. Soil moisture was mainly replenished by eight heavy rainfall events(mean rainfall amount = 46.3 mm), accounting for 88.7% of the rainfall during the growing season. The mean soil moisture content profiles of RP plantations at the three restoration stages were ordered as 30-yr(14.07%) 20-yr(10.12%) 15-yr(8.03%), and this relationship displayed temporal stability. Soil moisture was primarily replenished by rainfall at the 0-60 cm soil depth, and soil moisture remained stable below the 100-cm soil depth. The rainfall regime influenced the advancement of the wetting front. Here, a single rainfall event of 30 mm was the rainfall threshold for infiltration into the 60-cm soil layer. The total infiltration time ranged from 310.5-322.0 h, but no significant differences were found among RP plantations at different restoration stages. Young and old RP plantations had more total infiltration(more than 228.2 mm) and deeper infiltration depths(80-100 cm) than middle-aged plantations. The RP plantation at the intermediate restoration stage exhibited minimal total infiltration(174.2 mm) and a shallow infiltration depth(60 cm) due to the soil physical structure of the plot, which may have limited rain infiltration. More stand conditions that may affect infiltration should be considered for priority afforestation areas.  相似文献   

3.
The impacts of no-tillage (NT) and moldboard plough (MP) managements on infiltration rate and preferential flow were characterized using a combined technique of double-ring device and dye tracer on a black soil (Mollisols) in Northeast China. The objective of this study is to evaluate how tillage practices enhance soil water infiltration and preferential flow in favor of soil erosion control in the study area. The steady infiltration rates under NT management are 1.6 and 2.1 times as high as those under MP management in the 6th and 8th years of the tillage management in place, while the infiltrated water amounts under NT management are 1.4 and 2.0 times as high as those under MP management, respectively. The depth of methylene blue penetrated into NT soil increases from 43 cm in the 6th year to 57 cm in the 8th year, which are 16 cm and 19 cm deeper than those in MP soil, respectively. The results of morphologic image show that more biological macro-pores occur in NT soil than in MP soil. These macro-pores play a key role in enhancing preferential flow in NT soil, which in turn promotes water infiltration through preferential pathways in NT soil. The results are helpful to policy-making in popularizing NT and have the implications for tillage management in regard to soil erosion control in black soil region of China.  相似文献   

4.
Soil microbial communities are primarily regulated by environmental temperature. Our study investigated the effects of global warming on soil microbial community composition as measured via phospholipid fatty acid (PLFA) analysis and soil chemical characteristics in relation to soil depth in a dragon spruce plantation and a spruce-fir-dominated natural forestin the Eastern Tibetan Plateau. Open-top chambers were utilized to increase the soil and air temperature. Soil samples were collected from the 0-10 cm, 10-20 cm, and 20-30 cm layers after a 4-year warming. Our results showed that the soil microbial community and the contents of TC (Total carbon), TN (Total nitrogen), NO 3 - , and NH 4 + responded differently to warming in the two contrasting forests, especially at the 0-10 cm soil depth. Warming increased soil microbial biomass at the 0-20 cm depth of soil in natural forest but reduced it at the 0-10 cm depth ofsoil in the plantation. In contrast, the TC and TN contents were reduced in most soil layers of a natural forest but increased in all of the soil layers of the plantation under warming conditions. This result suggested that the effects of warming on soil microbial community and soil C and N pools would differ according to soil depth and forest types; thus, the two contrasting forests would under go differing changes following the future climate warming in this region.  相似文献   

5.
Soil carbon and nutrient contents and their importance in advancing our understanding of biogeochemical cycling in terrestrial ecosystem, has motivated ecologists to find their spatial patterns in various geographical area. Few studies have focused on changes in the physical and chemical properties of soils at high altitudes. Our aim was to identify the spatial distribution of soil physical and chemical properties in cold and arid climatic region. We also tried to explore relationship between soil organic carbon (SOC) and total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), soil particle size distribution (PSD). Samples were collected at 44 sites along a 300 km transect across the alpine grassland of northern Tibet. The study results showed that grassland type was the main factor influencing SOC, TN and TP distribution along the Gangdise Mountain-Shenzha-Shuanghu Transect. SOC, TN and TP contents were significantly higher in alpine meadow than alpine steppe ecosystems. SOC, TN, TP and AN contents in two soil layers (0-15 cm and 15-30 cm) showed no significant differences, while AP content in top soil (0-15 cm) was significantly higher than that in sub-top soil (15-30 cm). SOC content was correlated positively with TN and TP content (r = 0.901 and 0.510, respectively). No correlations were detected for clay content and fractal dimension of particle size distribution (D). Our study results indicated the effects of vegetation on soil C, N and P seem to be more important than that of rocks itself along latitude gradient on the northern Tibetan Plateau. However, we did not found similar impacts of vegetation on soil properties in depth. Inaddition, this study also provided an interesting contribution to the global data pool on soil carbon stocks.  相似文献   

6.
Labile organic carbon (LOC) is a fraction of soil organic carbon (SOC) with rapid turnover time and is affected by soil fertilization. This investigation characterized the SOC content, LOC content and LOC distribution in the treatment plots of surface soil erosion at five levels (0-, 5-, 10-, 20- and 30-cm erosion). The soil had received contrasting fertilizer treatments (i.e., chemical fertilizer or chemical fertilizer + manure) for 6 years. This study demonstrated that both SOC and various LOC fractions contents were higher in the plots with fertilizer + manure than in those with fertilizer alone under the same erosion conditions. The SOC and LOC contents de- creased as the erosion depth increased. Light fraction organic carbon, particulate organic carbon, easily oxidizable organic carbon (KMnO4-oxydizable organic carbon), and microbial biomass carbon were 27% 57%, 37%-7%, 20%-25%, and 29%-33% higher respectively in the fertilizer + manure plots, than in the fertilizer alone plots. Positive correlations (p 〈 0.05) between SOC content and different fractions contents were observed in all plots except the correlation between total SOC content and water-soluble organic carbon content in the different fertilization treatments. Obviously, fertilizer + manure treatments would be conducive to the accumulation of LOC and SOC in the Black soil of Northeast China.  相似文献   

7.
In order to research engineering geological properties of the soil in Zhenlai of western Jilin, especially the dispersivity of soil, the authors carried out the basic physicochemical test and dispersivity identification test. The results show that the dispersivity of the soil increases with the increase of depth within 0-30 cm ( surface soil) ; it decreases as the depth increases within in 30-100 cm. Furthermore, the statistical analysis of the dispersivity indexes and physicochemical propertity indexes show that the DP is positively linear correlated with total soluble salt content, sodium ion content, ESP, pH and organic matter content. Meanwhile, it is negatively linear correlated with clay content, and the linear relationship is better. Through the study of the dispersion mechanism of soil samples, it can be concluded that sodium montmorillonite, higher percentage of exchangeable sodium and high pH are the main reasons for the dispersion of soils in western Jilin.  相似文献   

8.
Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.  相似文献   

9.
In order to research engineering geological properties of the soil in Zhenlai of western Jilin,especially the dispersivity of soil,the authors carried out the basic physicochemical test and dispersivity identification test.The results show that the dispersivity of the soil increases with the increase of depth within 0-30 cm (surface soil);it decreases as the depth increases within in 30-100 cm.Furthermore,the statistical analysis of the dispersivity indexes and physicochemical propertity indexes show that t...  相似文献   

10.
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers (0-400 cm depth) was measured before and after the rainy season in severe drought (2015) and normal hydrological year (2016) in three vegetation restoration areas (artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers (0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers (below 100 cm). In 2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau  相似文献   

11.
比较在0、5、10、15、20、25、30(自然海水)、35、40、45、50等11个盐度梯度下,菊黄东方鲀(Takiugu flavidus)的受精卵发育和仔鱼生长情况,测定仔鱼的不投饵存活系数(SAI).结果表明:1)菊黄东方鲀受精卵在盐度0~50范围内均可孵化,最适盐度20~25.盐度(x)与孵化时间(y)呈正相关关系,表达式为:y=0.345 x+141.1,R2=0.956.2)实验盐度范围内,菊黄东方鲀仔鱼SAI值为1.55~30.10.3)在盐度5~45条件下,仔鱼皆可存活,存活率为3%~27%.其中,在10~30盐度下存活率较高,为20%~27%.经15 d的培育,仔鱼平均全长为6.28~7.34 mm.低盐度对菊黄东方鲀仔鱼生长更有利,在15~20盐度条件下,仔鱼生长较好,最终平均全长为7.30~7.34 mm.4)根据SAI值和生长状况,仔鱼生长和存活的适宜生长盐度为10~30,最适盐度范围为15~20.  相似文献   

12.
The first account of the effects of wetland reclamation on soil nematode assemblages were provided, three sites in Heihe River Basin of Northwest China, that is grass wetland(GW), Tamarix chinensis wetland(TW) and crop wetland(CW) treatments, were compared. Results showed that the majority of soil nematodes were presented in the 0–20 cm soil layers in CW treatments, followed by in the 20–40 cm and 40–60 cm layers in GW treatments. Plant-feeding nametodes were the most abundant trophic groups in each treatment, where GW(91.0%) TW(88.1%) CW(53.5%). Generic richness(GR) was lower in the TW(16) than that in GW(23) and CW(25). The combination of enrichment index(EI) and structure index(SI) showed that the soil food web in GW was more structured, and those in TW was stressed, while the enrichment soil food web was presented in the CW treatment. Several ecological indices which reflected soil community structure, diversity, Shannon-Weaver diversity(H′), Evenness(J′), Richness(GR) and modified maturity index(MMI) were found to be effective for assessing the response of soil namatode communities to soil of saline wetland reclamation. Furthermore, saline wetland reclamation also exerted great influence on the soil physical and chemical properties(p H, Electric conductivity(EC), Total organic carbon(TOC), Total nitrogen(Total-N) and Nitrate Nitrogen(N-NO3–)). These results indicated that the wetland reclamation had significantly effects on soil nematode community structure and soil properties in this study.  相似文献   

13.
塑料遮阳网大棚小气候观测与分析   总被引:8,自引:0,他引:8  
通过3个晴天,对遮阳网大棚风小气候进行观测,结果表明,黑色SZW=12型蔗阳网遮光率为53%-77%,平均为69%;对降低土壤温度十分明显,0,51,0cm降温幅度分别为:1.0-11.9℃,0.8-6.2℃,0.7-5.2℃,平均降温分别为5.6℃,3.8℃,3.3℃;而对棚内气温降低作用不明显,只有0.30m以下气层平均降低0.4℃;0.50,1.00,1.50m气层比棚外高0.2-0.9℃,并有逆温现象。此结果可为花卉度夏,超常蔬菜育秧管理提供气象依据。  相似文献   

14.
Rock fragments have major effect on soil macropores and water movement. However, the characteristics of rock fragments and their relationship with macropore characteristics remain elusive in forest stony soils in northern mountainous area of China. The objectives of this study are to (1) use Industrial Computed Tomography (CT) scanning to quantitatively analyze rock fragment characteristics in intact soil columns in different forest lands and (2) identify the relationship between characteristics of rock fragments and that of the macropores. Intact soil columns that were 100 mm in diameter and 300 mm long were randomly taken from six local forest stony soils in Wuzuolou Forest Station in Miyun, Beijing. Industrial CT was used to scan all soil column samples, and then the scanned images were utilized to obtain the three-dimensional (3D) images of rock fragments and macropore structures. Next, the parameters of the rock fragments and macropore structure were measured, including the volume, diameter, surface area, and number of rock fragments, as well as the volume, diameter, surface area, length, angle, tortuosity and number of macropores. The results showed that no significant difference was found in soil rock fragments content in the 10-30 cm layer between mixed forest and pure forest, but in the 0-10 cm soil layer, the rock fragments in mixed forest were significantly less than in pure forest. The number density of macropores has significant negative correlation with the number of rock fragments in the 0-10 cm soil layer, whereas this correlation is not significant in 10-20 cm and 20-30 cm soil layers. The volume density of macropore was not correlated with the volume density of rock fragments, and there is no correlation between the density of macropore surface area and the density of rock fragment surface area. Industrial CT scanning combined with image processing technology can provide a better way to explore 3D distribution of rock fragments in soil. The content of rock fragments in soil is mainly determined by parent rocks. The surface soil (0-10 cm) of forest contains fewer rock fragments and more macropores, which may be caused by bioturbation, root systems, gravitational settling and faunal undermining.  相似文献   

15.
Soil respiration from decomposing aboveground litter is a major component of the terrestrial carbon cycle. However, variations in the contribution of aboveground litter to the total soil respiration for stands of varying ages are poorly understood. To assess soil respiration induced by aboveground litter, treatments of litter and no litter were applied to 5-, 10-, and 20-year-old stands of Populus davidiana Dode in the sandstorm source area of Beijing-Tianjin, China. Optimal nonlinear equations were applied to model the combined effects of soil temperature and soil water content on soil respiration. Results showed that the monthly average contribution of aboveground litter to total soil respiration were 18.46% ± 4.63%, 16.64% ± 9.31%, and 22.37% ± 8.17% for 5-, 10-, and 20-year-old stands, respectively. The relatively high contribution in 5- and 20-year-old stands could be attributed to easily decomposition products and high accumulated litter, respectively. Also, it fluctuated monthly for all stand ages due to substrate availability caused by phenology and environmental factors. Litter removal significantly decreased soil respiration and soil water content for all stand ages (p < 0.05) but not soil temperature (p > 0.05). Variations of soil respiration could be explained by soil temperature at 5-cm depth using an exponential equation and by soil water content at 10-cm depth using a quadratic equation, whereas soil respiration was better modeled using the combined parameters of soil temperature and soil water content than with either soil temperature or soil water content alone. Temperature sensitivity (Q 10) increased with stand age in both the litter and the no litter treatments. Considering the effects of aboveground litter, this study provides insights for predicting future soil carbon fluxes and for accurately assessing soil carbon budgets.  相似文献   

16.
The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12'S, 70°30'E, 73°E and 75(30'E) at December 18-26, 1998 and January 12-18, 1999 in Prydz Bay and its north sea area, Antarctica. The results showed that surface chlorophyll a concentration were 0. 16 -3. 99 μg dm-3. The high values of chlorophyll a concentration (more than 3.5 μg dm -3) were in Prydz Bay and in the west Ladies Bank. The average chlorophyll a concentration at sub-surface layer was higher than that at surface layer; its concentration at the deeper layers of 50 m decreased with increasing depth and that at 200 m depth was only 0. 01 -0. 95μg dm -3. The results of size-fractionated chlorophyll a showed that the contribution of the netplanktion to total chlorophyll a was 56% , those of the nanoplankton and the picoplankton were 24% and 20% respectively in the surveyed area. The potential primary productivity at the euphotic zone in the surveyed area wa  相似文献   

17.
Wetland is an important carbon pool,and the degradation of wetlands causes the loss of organic carbon and total nitrogen.This study aims to explore how wetland degradation succession affects soil organic carbon(SOC)and total nitrogen(TN)contents in alpine wetland.A field survey of 180 soilsampling profiles was conducted in an alpine wetland that has been classified into three degradation succession stages.The SOC and TN contents of soil layers from 0 to 200 cm depth were studied,including their distribution characteristics and the relationship between microtopography.The results showed that SOC and TN of different degradation succession gradients followed the ranked order of Non Degradation(ND)>Light Degradation(LD)>Heavy Degradation(HD).SWC was positively correlated with SOC and TN(p<0.05).As the degree of degradation succession worsened,SOC and TN became more sensitive to the SWC.Microtopography was closely related to the degree of wetland degradation succession,SWC,SOC and TN,especially in the topsoil(0-30 cm).This result showed that SWC was an important indicator of SOC/TN in alpine wetland.It is highly recommended to strengthen water injection into the wetland as a means of effective restoration to reverse alpine meadow back to marsh alpine wetland.  相似文献   

18.
The biogenic silica (BSi), total organic carbon (TOC), total nitrogen (TN) and grain size were analyzed with a gravity core (3250-6) collected from the mud area in the north East China Sea. The average deposition rate of the upper core was about 0.078 cm yr?1 based on the results of 210Pbex. The mean grain size increased with depth in general. The frequency distribution of grain size showed that two marked changes of deposition environment occurred at 30 cm and 50 cm depths (about 1550 AD and 1300 AD, respectively). The variations of BSi and TOC indicated two distinct major periods of primary productivity over the past 800 years: a stage of low primary productivity corresponding to weak upwelling and low nutrient input below 30 cm depth (about 1200–1550 AD), and a stage of high primary productivity with strong currents and upwelling above 30 cm depth (about 1550–1950 AD). The stage with high primary productive appeared to be due to the northward-expanded muddy area caused by strong Asian Winter Monsoon and enhanced Yellow Sea Warm Current in winter. In conclusion, the BSi and TOC in the muddy sediments, the symbols of marine primary productivity, can be then used to investigate the evolution history of currents and relative climate change in the offshore areas.  相似文献   

19.
Hazarganji Chiltan National Park in Balochistan, Pakistan was established in 1980 and the protected area was further extended in 1998. Large area of this mountain is still open for unmanaged human disturbances such as collection of wood for fuel purpose and livestock grazing. Removal of vegetation of rangelands has a significant negative impact on soil organic matter(SOM). This research evaluates litter decomposition in three sites of Hazarganji Chiltan mountain with varying history of human disturbances(unprotected site, young protected site and old protected site). Twigs of Pistacia khinjuk with approximately equal weight and length were placed in litter bags of mesh size 2 mm and were buried in 0-5 cm depth in three sites in January. Half of the twigs of each site received rain simulation in April, August, October, November and January while the other half of the twigs were subjected under natural conditions for 15 months. Twigs from each plot of each treatment of each site were collected from soil after every rain simulation in the previous month of experiment and were processed for weight loss assessment. Results showed that weight loss of twigs by decomposition was significantly higher in the soil of unprotected site as compared to other two sites and there was no difference between rain simulation and control treatments except that loss of weight of twigs of unprotected site was higher under control than rain simulation condition. To confirm that SOM was the major controlling factor for the decomposition of litter decay, soils of each site were collected and burned to remove SOM;thereafter, burned soil samples were mixed with homogenous powder of oven-dried native plants, incubated for 6 months and were provided with dissolved organic matter of the soils of each site. Results showed that there was no difference in the decomposition of litter between soils under controlled laboratory condition, which confirmed that SOM was a major controlling factor for the litter decay in soil under field conditions. The pyrosequencing analysis of the DNA of soils collected from three sites revealed the presence of bacterial species Thermovum composti.  相似文献   

20.
Grid method is employed for sampling covering soil at the test field,which is reclamation area filled by coal mining wastes for cropland in the Fushun coal mine,Liaoning Province,the Northeast China.The soil samples are taken at different locations,including three kinds of covering soil,three different depths of soil layers and four different covering ages of covering soil.The spatial-temporal variation of heavy metal element content in reclamation soil is stud-ied.The results indicate that the content of heavy metal elements is decreasing year after year,the determinant reason why the content of heavy metal elements at 60cm depth layer is higher than that at 30cm depth layer and surface is fertiliz-er and manure application;the metal elements mainly come from external environment;there is no metal pollution coming from mother material (coal mining wastes)in plough layer of covering soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号