首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beach seines are widely used to estimate the density and species richness of fishes in estuaries. We evaluated the causes and extent of bias in estimates from seines using a series of field experiments in small estuaries in southern California, USA. Seining in spatially paired areas that were either enclosed by block nets or not, revealed that seines used without block nets und erestimated density by more than 4-fold and species richness by more than 2-fold relative to blocked areas. Seining in paired blocked areas with seines of two lengths revealed that net length affected estimates of density, but not species richness; a 7.6-m long seine produced 1.6-fold higher estimates of total density than did a 15.2-m long seine due to increased catches of demersal fishes, but not midwater species. Paired sampling in blocked areas also revealed that many fishes initially evaded capture by the seine. Estimates of density but not species richness were significantly higher in areas through which a seine was swept 5 times compared to once. This was due to higher catches of demersal fishes but not midwater fishes in areas seined 5 times. Repeated seining through blocked areas revealed that the vast majority (90% or more) of species and individuals of midwater fishes were captured within the first 5 sweeps, compared to only about 50% of the individuals of demersal species. A mark-recapture study in blocked areas revealed lower probabilities of capture for demersal species relative to midwater species.  相似文献   

2.
We sampled nearshore fishes in the Sacramento-San Joaquin Delta, California, United States, during 2001 and 2003 with beach seines and gill nets. We addressed three questions. How and why did fish assemblages vary, and what local habitat features best explained the variation? Did spatial variation in assemblages reflect greater success of particular life history strategies? Did fish biomass vary among years or, across habitats? Nonmetric multidimensional scaling showed that habitat variables had more influence on fish assemblages than temporal variables. Results from both gear types indicated fish assemblages varied between Sacramento and San Joaquin River sampling sites. Results from gill net sampling were less pronounced than those from beach seine sampling. The Sacramento and San Joaquin river sites differed most notably in terms of water clarity and abundance of submerged aquatic vegetation (SAV), suggesting a link between these habitat characteristics and fish relative abundance. Among-site differences in the relative abundance of periodic and equilibrium strategist species suggested a gradient in the importance of abiotic versus biotic community structuring mechanisms. Fish biomass varied among years, but was generally higher in SAV-dominated habitats than the turbid, open habitats in which we found highest abundances of striped bassMorone saxatilis and special-status native fishes such as delta smeltHypomesus transpacificus, Chinook salmonOncorhyncus tschawytscha, and splittailPogonichthys macrolepidotus. The low abundance of special-status fishes in the comparatively productive SAV-dominated habitats suggests these species would benefit more from large-scale restoration actions that result in abiotic variability that mirrors natural river-estuary habitat than from actions that emphasize local (site-specific) productivity.  相似文献   

3.
Efficiency, defined as the percentage of the total number of individuals captured from a known area of tidal creek (blocked with seines), was studied on six occasions from December 1976 through August 1978. Sampling was conducted at two stations near the Cape Fear River, Southport, North Carolina using either seines or rotenone. For the three most abundant species collected by each method, the range for seine efficiencies (60.6±19.4 to 78.0±9.4%) was generally narrower than that for rotenone (29.6±9.5 to 57.7±14.8%). However, overall species richness was better represented by rotenone, the mean percentage of species captured for all samples was 92.1% versus 70.3% for seines. Consistent patterns in efficiency for individual species with regard to size, age, or water temperature were absent. A comparison of individual collections with that of the sample “universe” trapped between the block nets indicated that a representative sample of the extant nekton community was taken by each method.  相似文献   

4.
5.
Effective sampling of marsh nekton is difficult due to the organisms’ use of the marsh-edge and/or marsh surface during high tide. Quantitative sampling approaches currently used are expensive, require permanent structures, and can require a considerable number of personnel for implementation. Our purpose was to assess the use of Breder traps (T) as a sampling method capable of documenting relative abundance of nekton. We sampled marsh habitats (within 1 m of marsh grass) in five bayous using seines at high (HS) and low (LS) tide and compared them with rank abundance and similarity data. Seining (n=3/tidal stage) was conducted adjacent to each set of traps (n=4) which were retrieved at low tide. Four transient (Engraulidae, 34.7%; Penaeidae, 12.4%; Portunidae, 6.8%; and Sciaenidae, 1.2%) and four resident families (Palaemonidae, 28.1% Fundulidae, 9.2%; Atherinidae, 3.2%; and Gobiidae, 1.1%) met our requirements (≥1% of all nekton captured) for analysis and accounted for 96.6% of the total nekton captured. High seine and LS collections were most similar (Jaccard's index, 0.58), followed by T and LS (0.46) and HS and T (0.37). Transient families were captured in greatest numbers and higher rank with seines (LS>HS>T) while two resident families (Palaemonidae and Fundulidae) dominated T collections (T>LS>HS). Our data suggests that Breder traps adequately sample resident nekton which use the marsh surface and should be considered in future studies which require only CPUE estimates of abundance.  相似文献   

6.
We evaluated the sampling characteristics of enclosure traps in estuaries in southern California, USA. Using enclosure traps that sampled 0.25, 0.5, and 1-m2 footprints, we found that enclosure trap size significantly affected estimates of fish density and the precision of these estimates. The highest estimates were produced by the 0.5-m2 trap and the lowest by the 0.25-m2 trap. Precision of the density estimates improved with increasing trap size, while the proportion of zero values in the data sets decreased and estimates of species richness increased. The largest trap was difficult to use in the field and often did not function properly; thus we concluded that intermediate enclosure trap sizes offered the best compromise between statistical and logistical considerations. By examination of burrows in sediment cores taken in fished out enclosure traps, we found no evidence to support the widely held view that burrow-dwelling fishes evaded capture by hiding in burrows. We also used mark-recapture techniques to estimate recovery efficiency in 0.43-m2 enclosure traps. Recovery efficiency averaged 91% and did not differ significantly among estuaries or sampling stations within estuaries. Based on extensive netting within enclosure traps, we determined that in areas with dense fish populations (>90 fish 0.43-m−2), netting could be ceased after the first sweep that captured no fish with only a trivial effect on the estimate of density. In more sparsely populated areas, netting had to continue until 2–3 sweeps had captured no fish in order to obtain estimates of density that were within 90% of the actual values present. Overall, we found enclosure traps to be effective tools for sampling small, abundant fishes in shallow estuaries in southern California, but we recommend that care be taken when choosing trap size and sampling (netting) effort within traps in order to optimize their sampling characteristics.  相似文献   

7.
We describe the use of flume nets for passively, quantitatively, and nondestructively sampling fishes and macrocrustaceans on tidal marsh surfaces. We captured 3,765 organisms of 23 species in 118 samples using six such nets in a Virginia tidal freshwater marsh in 1984. Efficiency estimates for four common species of fishes range from 53 to 80%. Flume nets are most suited to the collection of long-term data and are particularly useful in elucidating seasonal trends in species composition and relative abundance. These nets are also useful in comparing different microhabitats within and between marshes. This method is most applicable to intertidal habitats with predictable lunar tides, including mud flats, mangrove swamps, and other wetlands.  相似文献   

8.
This study evaluated the use by fish of restored tidal wetlands and identified links between fish species composition and habitat characteristics. We compared the attributes of natural and constructed channel habitats in Sweetwater Marsh National Wildlife Refuge, San Diego Bay, California, by using fish monitoring data to explore the relationships between channel environmental characteristics and fish species composition. Fishes were sampled annually for 8 yr (1989–1996) at eight sampling sites, four in constructed marshes and four in natural marshes, using beach seines and blocking nets. We also measured channel habitat characteristics, including channel hydrology (stream order), width and maximum depth, bank slope, water quality (DO, temperature, salinity), and sediment composition. Fish colonization was rapid in constructed channels, and there was no obvious relationship between channel age and species richness or density. Total richness and total density did not differ significantly between constructed and natural channels, although California killifish (Fundulus parvipinnis) were found in significantly higher densities in constructed channels. Multivariate analyses showed fish assemblage composition was related to channel habitat characteristics, suggesting a channel’s physical properties were more important in determining fish use than its restoration status. This relationship highlights the importance of designing restoration projects with natural hydrologic features and choosing proper assessment criteria in order to avoid misleading interpretations of constructed channel success. We recommend that future projects be designed to mimic natural marsh hydrogeomorphology and diversity more closely, the assessment process utilize better estimates of fish habitat function (e.g., individual and community-based species trends, residence time, feeding, growth) and reference site choice, and experimental research be further incorporated into the restoration process.  相似文献   

9.
We assessed fish assemblage stability over the last half century in Lake Pontchartrain, an environmentally degraded oligohaline estuary in southeastern Louisiana. Because assemblage instability over time has been consistently associated with severe habitat degradation, we attempted to determine whether fish assemblages in demersal, nearshore, and pelagic habitats exhibited change that was unrelated to natural fluctuations in environmental variables (e.g., assemblage changes between wet and dry periods). Collection data from three gear types (trawl, beach seine, and gill nets) and monthly environmental data (salinity, temperature, and Secchi depth) were compared for four collecting periods: 1954 (dry period), 1978 (wet period), 1996–1998 (wet period), and 1998–2000 (dry period). Canonical correspondence analysis (CCA) revealed that although the three environmental variables were significantly associated with the distribution and abundance patterns of fish assemblages in all habitats (with the exception of Secchi depth for pelagic samples), most fish assemblage change occurred among sampling periods (i.e., along a temporal gradient unrelated to changing environmental variables). Assemblage instability was the most pronounced for fishes collected by trawls from demersal habitats. A marked lack of cyclicity in the trawl data CCA diagram indicated a shift away from a baseline demersal assemblage of 50 yr ago. Centroid positions for the five most collected species indicated that three benthic fishes, Atlantic croaker (Micropogonias undulatus), spot (Leiostomus xanthurus), and hardhead catfish (Arius felis), were more dominant in past demersal assemblages (1954 and 1978). A different situation was shown for planktivorous species collected by trawls with bay anchovy (Anchoa mitchilli) becoming more dominant in recent assemblage and Gulf menhaden (Brevoortia patromus) remaining equally represented in assemblages over time. Changes in fish assemblages from nearshore (beach seine) and pelagic (gill net) habitats were more closely related to environmental fluctuations, though the CCA for beach seine data also indicated a decrease in the dominance ofM. undulatus and an increase in the proportion ofA. mitchilli over time. The reduced assemblage role of benthic fishes and the marked assemblage change indicated by trawl data suggest that over the last half century demersal habitats in Lake Pontchartrain have been impacted more by multiple anthropogenic stressors than nearshore or pelagic habitats.  相似文献   

10.
Shallow estuarine habitats often support large populations of small nekton (fishes and decapod crustaceans), but unique characteristics of these habitats make sampling these nekton populations difficult. We discuss development of sampling designs and evaluate some commonly used devices for quantitatively sampling nekton populations. Important considerations of the sampling design include the size and number of samples, their distribution in time and space, and control of tide level. High, stable catch efficiency should be the most important grear characteristic considered when selecting a sampling device to quantify nekton densities. However, the most commonly used gears in studies of estuarine habitats (trawls and seines) have low, variable catch efficiency. Problems with consistently low catch efficiency can be corrected, but large unpredictable variations in this gear characteristic pose a much more difficult challenge. Study results may be bised if the varibility in catch efficiency is related to the treatments or habitat characteristics being measured in the sampling design. Enclosure devices, such as throw traps and drop samplers, have fewer variables influencing catch efficiency than do towed nets (i.e., trawls and seines); and the catch efficiency of these enclosure samplers does not appear to vary substantially with habitat characteristics typical of shallow estuarine areas (e.g., presence of vegetation). The area enclosed by these samplers is often small, but increasing the sample number can generally compensate for this limitation. We recommend using enclosure samplers for estimating densities of small nekton in shallow estuarine habitats because these samplers provide the most reliable quantitative data, and the results of studies using these samplers should be comparable. Many kinds of enclosure samplers are now available, and specific requirements of a project will distate which gear should be selected.  相似文献   

11.
Comparison of the relative abundance of fish species from different life-history groups and their temporal patterns of estuarine habitat use from two estuaries north and south of Cape Cod indicates that the Cape acts as a zoogeographic boundary. Between April 1988 and December 1989, monthly seine and trawl samples were collected from nearshore, shallow-water marsh, and beach and deeper open-water habitats in Wells Harbor, Maine, and Waquoit Bay, Massachusetts. Forty-eight species and 80,341 individuals were collected from Waquoit Bay compared to 24 species and 22,561 individuals from Wells Harbor. Waquoit Bay had proportionally fewer resident species and more marine, nursery, and occasional species than Wells Harbor. Annual density and biomass values were greater across all habitats in Waquoit Bay, with the summer values from the marsh habitat an order of magnitude higher than comparable summer data from the Wells habitats. We suggest that marsh and beach habitats provide a nursery area for young-of-the-year fishes, while deeper, open-water habitats serve as a corridor for fishes moving to nearshore habitats or serve as a refuge during low tide.  相似文献   

12.
The fish assemblages inhabiting two intermittently open coastal lagoons and one permanently open coastal lagoon on the mid south coast of New South Wales were studied over several years during the mid to late 1980s. Fish were sampled either monthly or bimonthly using rotenone ichthyocide and beam trawls (in shallow vegetated habitats), beach seines (in shallow inshore sand habitats), and multiple-panel gill nets (in deep lagoon habitats with mud or sand floors). These fish assemblages were compared and contrasted spatially according to habitat both within lagoons and between the two lagoon types using a multivariate ordination technique. In the permanently open lagoon, Lake Conjola, dominant faunal elements of commercial or recreational fisheries importance included Girellidae, Clupeidae, Monacanthidae, Pomatomidae, Mugilidae, Sparidae, Sillaginidae, Gerreidae, Terapontidae, and Platycephalidae. Dominant faunal elements of no commercial or recreational fisheries importance here included Ambassidae, Scorpaenidae, Gobiidae, Atherinidae, and Eleotridae. In the intermittently open lagoons, Swan Lake and Lake Wollumboola, the dominant faunal elements included Sparidae, Mugilidae, Girellidae, Hemiramphidae, Pomatomidae, and Arripidae amongst the commercial group; and Atherinidae, Syngnathidae, Gobiidae, Eleotridae, and Scorpaenidae amongst the noncommercial group. The overall species richness of the permanently open lagoon (≈100 species, including 52 commercial species) was found to be approximately 2.5 times that of each of the two intermittently open lagoons (39 species, including 22 commercial species for Swan Lake; and 41 species, including 26 commercial species for Lake Wollumboola). The dominant faunal elements of the latter two south-eastern Australian intermittently open lagoons were also compared with those of similar lagoons in south-western Australia, southern Africa, and western Mexico, and the faunal similarities at the species, genus, and family levels are discussed. Available commercial and recreational fisheries catch data for the three south-eastern Australian coastal lagoons were also analyzed and compared. The two intermittently open lagoons were found to support number of species in the latter and also its greater water surface area.  相似文献   

13.
We developed a relative index of fish biomass and size distribution in ultra-shallow waters (< 2 m) of Barataria Bay, Louisiana, based on the comparison of horizontal hydroacoustic data with gill net and push trawl catches in an effort to understand the role that habitat plays in both fish biomass and distribution. Exclosure net experiments indicated that the contribution of acoustic backscattering from sources other than fishes were negligible. Split-beam transducer, gill net, and push trawl sampling were conducted concurrently in Barataria Bay to provide information on fish composition and length distributions and for comparisons among gear types. Results suggest that acoustic fish biomass was generally higher in the low salinity stations and lower at the high salinity stations, at least in March 2004. We observed a greater mean length of fishes associated with oyster shell habitats when compared to adjacent sand-mud habitats. This paper demonstrates the utility of hydroacoustics as a tool to quantify relative acoustic fish biomass and size distribution associated with common estuarine habitats in ultra-shallow waters. This study also illustrates the potential of using acoustics for augmenting traditional sampling procedures.  相似文献   

14.
Three polyhaline subtidal marsh creeks in southern New Jersey were sampled with weirs and seines to determine seasonal patterns of utilization by fishes and macroinvertebrates. Sixty-four species of fish, 13 invertebrates, and the diamondback terrapin were collected in 69 weir and 57 seine samples from April to November 1988 and April to October 1989. Average abundance, biomass, and faunal composition were strongly seasonal with greatest abundances during spring and summer, and peaks in May and August. Sixteen species were represented by all life-history stages, including the five most important species by combined ranks of percent frequency, mean abundance, and mean biomass. These five species were important during spring, summer, and fall and included the fishes Menidia menidia and Fundulus heteroclitus, the shrimps Palaemonetes vulgaris and Crangon septemspinosa, and the crab Callinectes sapidus. In addition, there were distinct seasonal assemblages of other species which utilized the creeks primarily as young-of-the-year. Importnat species in spring collections included the fishes Clupea harengus, Alosa aestivalis, Alosa pseudoharengus, Pollachius virens, and Urophysics regia, while Leiostomus xanthurus, Pomatomus saltatrix, Paralichthys dentatus, Mugil curema, and Strongylura marina were important in the summer. Fall samples were best characterized by declining abundances of summer species. Thus, subtidal marsh creeks in southern New Jersey appear to be valuable nurseries for a variety of species which spawn over the continental shelf, as well as one of the most important habitats for estuarine residents.  相似文献   

15.
Many studies compare utilization of different marine habitats by fish and decapod crustaceans; few compare multiple vegetated habitats, especially using the same sampling equipment. Fish and invertebrates in seagrass, mangrove, saltmarsh, and nonvegetated habitats were sampled during May–August (Austral winter) and December–January (Austral summer) in the Barker Inlet-Port River estuary, South Australia. Sampling was undertaken using pop nets in all habitats and seine nets in seagrass and nonvegetated areas. A total of 7,895 fish and invertebrates spanning 3 classes, 9 orders, and at least 23 families were collected. Only one fish species,Atherinosoma microstoma, was collected in all 4 habitats, 11 species were found in 3 habitats (mangroves, seagrass, and nonvegetated), and 13 species were only caught in seagrass and nonvegetated habitats. Seagrass generally supported the highest numbers of fish and invertebrates and had the greatest species richness. Saltmarsh was at the other extreme with 29 individuals caught from two species. Mangroves and nonvegetated habitats generally had more fish, invertebrates, and species than saltmarsh, but less than seagrass. Analyses of abundances of individual species generally showed an interaction between habitat and month indicating that the same patterns were not found through time in all habitats. All habitats supported distinct assemlages although seagrass and nonvegetated assemblages were similar in some months. The generality of these patterns requires further investigation at other estuaries. Loss of vegetated habitats, particularly seagrass, could result in loss of species richness and abundance, especially for organisms that were not found in other habitats. Although low abundances were found in saltmarsh and mangroves, species may use these habitats for varying reasons, such as spawning, and such use should not be ignored.  相似文献   

16.
A small purse seine, 250 ft. long and 23 ft. deep, and two 14 ft. purse boats to fish it in shallow estuaries for menhaden (Brevoortia) are described. The seine is made of No. 6 nylon in the two wings and heavier No. 15 nylon in the center bunt. Mesh is 1 3/8 in. bar. Purse boats have a 7 ft. beam and 2 ft. of freeboard, and are built of 1/4 in. marine plywood and seasoned oak ribs. A 40 hp outboard motor mounted in a center well powers each boat. Boats and seine are portable (on trailers) and can be used any place where launching sites are available. Over 40,000 menhaden were caught and marked with internal ferro-magnetic tags over a 3-year period. Boats and seine also could be used to capture other schooling species.  相似文献   

17.
Trawl collections indicate that the fish community of the Belize barrier reef lagoon is dominated numerically and in biomass by grunts (Haemulidae), especiallyHaemulon sciurus andHaemulon flavolineatum. Although the gear selected for small sizes, length frequency analysis indicated seasonality in recruitment of the dominant species of grunts. Apogonids and tetraodontiform fishes were also dominant components of the community. Most fishes collected were juveniles of species that occur as adults on the main reef, or were small species that are resident in the lagoon. Of three habitats sampled, the mangrove creek had the greatest relative abundance and biomass of fishes, followed by the seagrass bed and the sand-rubble zone. There were no significant seasonal differences in fish relative abundance or biomass. Community structure analysis indicated a uniqueness in the mangrove fish community. Diversity (H′) was high, and was due to high species richness and evenness of distribution of individuals among species. The Belize barrier reef lagoon serves as an important nursery habitat for juvenile fishes.  相似文献   

18.
Species richness and abundance of epibenthic fishes and decapod crustaceans were quantified with day-time beam trawl tows and throw traps to provide information on nekton assemblages inZostera marina and unvegetated sandy habitats in northern latitudes. Sampling at randomly selected stations with a 1.0-m beam trawl occurred in eelgrass (Zostera marina) and unvegetated sandy substrates of two mid-coastal Maine estuaries: Casco Bay and Weskeag River. Random 1.0-m throw trap samples were collected inZostera and adjacent unvegetated sandy substrates in Casco Bay and Weskeag River as well. Species richness and faunal abundances were positively associated with the occurrence ofZostera within Weskeag River and Casco Bay estuaries using both gear types. A total of 17 species of fishes and 6 species of decapods were collected in the two estuaries using both gears. Populations of most species were dominated by young-of-the-year and juvenile life history stages. Number and densities of fishes were higher inZostera, due primarily to the abundances of eelgrass residents such as threespine,Gasterosteus aculeatus, and fourspine sticklebacks,Apeltes quadracus, grubby,Myoxocephalus aenaeus, and cunner,Tautogolabrus adspersus. Crangon septemspinosa dominated decapod catch per unit effort and density in both estuaries and habitats.  相似文献   

19.
The pelagic fish assemblage within a temperate estuary was examined to determine if there were diel differences in species richness, total abundance, biomass, and species composition. These comparisons were made over both seasonal (January–December 1996) and annual (August–November 1995; August–December 1996) scales with pop net collections in a shallow (<2 m MLW) embayment within Great Bay in southern New Jersey, USA. In the complete year of sampling in 1996, more than 335,000 pelagic fish, representing 13 families (23 species), were collected during diel sampling with 12 species constituting over 99.9% of the total catch including Clupea harengus (84%), Menidia menidia (10%), and Anchoa mitchilli (4%). A detailed examination determined that nighttime species richness, total abundance and biomass may have been enhanced during some seasons by using artificial light. Diel variation in species composition was similar regardless of the use of the artificial light in all seasons but fall. Annual comparisons between 1995 and 1996 during late summer and fall found these results to be consistent. In general, these findings point out the importance of sampling during both day and night to understand the movement and abundance patterns of estuarine pelagic fishes and their ecological significance in temperate estuaries.  相似文献   

20.
We examined patterns of habitat use by fishes and decapod crustaceans in a seemingly pristine tidal stream system that drains into southeastern coastal Louisiana, northern Gulf of Mexico. The study area centered on a relatively unaltered mesohaline saltmarsh nested within more heavily degraded conditions. Monthly sampling (February–November 2004) stratified along a stream-order gradient examined changes in nekton abundance, species richness, and community structure. Analyses were based on a microhabitat approach used to characterize nekton responses to spatial gradients of water depth, temperature, dissolved oxygen, salinity, turbidity, bottom slope, stream width, and distance to mouth. Thirty taxa were identified from 3,757 individuals collected in 82 seine samples. Seven fishes and three decapods constituted >95% of the community structure. Analyses detected the effects of stream order on fish community structure and associated environmental variables. Spatial differences of environmental variables across stream order were attributed to the geomorphology and hydrology of the study area. A factor analysis resolved eight environmental variables into four orthogonal axes that explained 80% of environmental variation. We interpreted factor 1 as a stream-order axis, factor 2 as a morphological axis, factor 3 as a seasonal axis, and factor 4 as a salinity axis. Differences in use of four-dimensional factor space by dominant species reflected habitat selection and species residency status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号