首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.  相似文献   

2.
High-concentrated sulfur wastewater with sodium and COD (chemical oxygen demand) up to 26000 mg/L from a chemical plant, Jiangsu Province of China has been treated by deposition of natrojarosite in lab. The results indicated that the COD of the wastewater was decreased sharply from 26000 mg/L to 1001 mg/L, with removal rate of COD up to 96% by twice precipitations of natrojarosite and twice oxidation of H202. The treated sulfur wastewater reached the requirement of subsequent biochemical treatment to water quality. The optimal operational parameters should be controlled on pH value between 2.50 and 3.20 and 50 g FeCly6H2O solid added in per liter wastewater. The study provided an experimental basis for pretreatment of high-concentrated sulfur wastewater and proposed a new mineralogical method on treatment of other wastewaters. Depositing process of jarosite and its analogs should be able to be used to treat wastewater from mine and other industries to remove S, Fe and other toxic and harmful elements, such as As, Cr, Hg, Pb, etc. in the water.  相似文献   

3.
A biogeochemical orientation survey was carried out in the vicinity of an epithermal Au deposit in the Moisan Au–Ag mineralized area, Haenam district in Korea. The Au–Ag bearing quartz veins of the mine occur as narrow open-space fillings within Cretaceous silicic pyroclastics. The vein minerals consist mainly of quartz, sericite, pyrite, chalcopyrite, and galena, with some electrum and argentite. The main objectives of this study were to study the geochemical characteristics of rocks, soils and plants in this area, to investigate the spatial relationship between Au and associated elements in rock–soil–plant system, and to evaluate the applicability of biogeochemical prospecting for Au vein occurrences in Korea. Samples of rocks and soils, and leaves of three plant species (Japanese red pine — P. densiflora, oriental white oak — Q. aliena, Japanese mallotus — M. japonicus) were collected from the target mineralized area and control barren locations, and analyzed for trace elements by instrumental neutron activation analysis. Sampling lines were composed of one slope line which is almost parallel to the mineralized quartz-veins, and four transect lines spaced 100 m apart across the veins at 20 m sampling intervals. From the multi-element data of rock samples (n = 9), high values of Au (maximum 2030 ppb) are spatially related to Au–quartz veins. Soil samples (n = 61) collected from five sampling lines show higher values of Au (24–825 ppb) whereas soil samples from the control locations have lower values of Au (below 25 ppb). Many plant species collected from the vicinity of the veins have high Au contents compared with those at the control locations, but the ranges of Au values are variable among plant species. In a total of 128 samples of plant leaves, Q. aliena yielded Au values of 0.4 to 6.9 ppb, and M. japonicus 0.9 to 4.1 ppb. Gold contents in P. densiflora ranged from 0.1 to 5.6 ppb. Plant leaves from control areas show less than 1.6 ppb Au. The biological absorption coefficient (BAC) of Au in plants decreases in the order of Q. aliena > M. japonicus > P. densiflora. Based on the results of the study, Q. aliena appeared to be the best sampling media for biogeochemical prospecting of Au in the study area.  相似文献   

4.
Using the methods of electron spectroscopy of the surface and SEM–EDS, it is shown that native gold of the deposit related to the epithermal Au–Ag ore formation contains oxidized gold with an oxidation degree of Au (I) or higher on the surface. A thin layer (~15 nm) with high concentrations of Ag and S and an underlying SiO2-bearing layer with a thickness of ~30–60 nm play a protective role providing preservation of Ag and Au sulfides in the surface parts of the Au–Ag grains under the oxidizing conditions. S-rich marginal parts of native gold particles may be represented by solid solutions Ag2–xAu x S or (with a lack of S) by agglomerates of Ag n Au m S clusters. The formation of surface zoning in the nanoscale on the surface of native Au is abundant in nature and may be applied in prospecting.  相似文献   

5.
Phytoremediation is increasingly receiving attention as a cost effective technique that uses plants to remediate contaminants from wastewater, soil and sediments. In this study, the ability of Typha domingensis to uptake heavy metals as well as its potential application for phytoremediation was assessed. Pollutant elements concentrations were measured in samples of wastewater, sediments and Typha domingensis collected from industrial wastewater ponds, El-Sadat city, Egypt. This study specifically focused on the capacity of Typha domingensis to absorb and accumulate aluminum, iron, zinc and lead. Results indicated that Typha domingensis was capable of accumulating the heavy metal ions preferentially from wastewater than from sediments. The accumulation of metals in plant organs attained the highest values in roots, rhizomes and old leaves. Rhizofiltration was found to be the best mechanism to explain Typha domingensis phytoremediation capability.  相似文献   

6.
Contamination of surface water and groundwater by organic pollutants is a serious problem due to their persistence, bioaccumulation and biomagnification through food webs. Since the removal of dyes from wastewater is considered an environmental challenge and government legislation requires textile wastewater to be treated, therefore there is a constant need to have an effective process that can efficiently remove these dyes. The aim of the present study is to evaluate the potentiality of dried Carpobrotus edulis plant as low-cost adsorbent for the removal of the industrial acid blue 113 dye from aqueous solutions using the batch equilibration technique. The effects of different physicochemical parameters such as adsorbent dose, contact time, initial dye concentration, solution pH and temperature on adsorption rate of anionic AB113 dye on microparticles of dried C. edulis plant were investigated. The experimental data were analyzed by using mathematical models to determine the thermodynamic parameters. The negative values of free energy change indicated the spontaneous nature of the adsorption and negative value of enthalpy change suggested the exothermic nature of the adsorption process. These results indicate that dried C. edulis plant as an environmentally friendly adsorbent could be potentially used for the removal of anionic dyes from aqueous solutions.  相似文献   

7.
A batch nitrification process was studied using synthetic wastewater as substrate and Chilean natural zeolite as biomass carrier at ambient temperatures (20 °C). Three groups of experiments were carried out: a first experimental set (I) with and without added zeolite using initial biomass concentrations of 1,000 and 2,000 mg VSS/L; a second set of experiments (II) with added zeolite and at the same initial biomass concentrations. In these two experimental sets, biomass from an activated sludge process located in an urban wastewater treatment plant at La Farfana, Santiago de Chile, was used as inoculum (1). Finally, a third set of experiments (III) was carried out with zeolite at an initial biomass concentration of 1,000 mg VSS/L using an inoculum derived from an activated sludge process treating wastewater from a paper mill (inoculum 2). Nitrifying biomass concentration values in the range of 13,000–18,800 mg VSS/L were achieved when initial biomass concentrations varied between 1,000 and 2,000 mg VSS/L. Inoculum (1) generated higher biomass concentrations than inoculum (2). Ammonium N removals higher than 70 % were obtained in experimental sets II and III when zeolite was used. For both initial biomass concentrations tested, an exponential biomass growth was observed up to the second day of operation, and a slight decrease was evident afterwards, achieving stationary values after 10–12 days of operation. The third experimental set (III) revealed that the highest N consumption took place between days 11 and 16 of digestion.  相似文献   

8.
Our study was based on the recent increase in wastewater pollution and its deleterious effects to the marine ecosystem. Using numerical simulation (DESCAR-3.2 software program), we investigated the orientation and quantification of trace metals in wastewater discharges from permanent and semi-permanent drain outfalls constructed along the Kuwait Coastline encompassing six Kuwait Governorates (GI-GVI). This study was related to trace metals toxicity and bioaccumulation effects on the commercial yellow fin Sea bream, Acanthopagrus latus fish using probit program and bioaccumulation factor (BAF), respectively. Observations from wastewater discharges showed high trace metals concentrations in the sequence of Zn > Cr > Cu > Fe > Ni > Pb > Hg during winter compared to summer and in GI and GIV compared to drain outfalls in the other Governorates. Seasonally, trace metals in A. latus revealed the sequence of Zn > Fe > Cu > Ni > Cr > Pb > Hg in GI, GII and GIV indicating the significance of toxic metals that bioaccumulated from their surrounding untreated wastewater. Toxicity test revealed A. latus highly sensitive to Hg even at low lethal concentrations (LC15) compared to other metals. BAF in A. latus body parts was >1 indicating significant accumulation of trace metals from wastewater. However, BAF was <1 in Cr suggesting that A. latus could absorb trace metals from multiple sources over lengthy exposure period and not necessarily from wastewater containing rich Cr levels. Thus, the present findings validate A. latus as bioindicator to pollution more authentically by numerical simulation, toxicity and bioaccumulation tests compared to the traditional method of labeling A. latus as a pollution indicator.  相似文献   

9.
《Applied Geochemistry》2000,15(5):629-646
Stream waters and sediments draining a gossan tailings pile at the Murray Brook massive sulphide deposit were collected to investigate Au mobility. Weathering of the massive sulphides at Murray Brook during the Late Tertiary period resulted in the concentration of Au in the gossan cap overlying the supergene Cu and unoxidized massive sulphide zones of the deposit. The gossan was mined between 1989 and 1992, and Au and Ag were extracted using a cyanide vat leach process. Although stream sediments prior to mining had Au<5 ppb (the detection limit), sediments collected in 1997 had Au contents ranging up to 256 ppm with values up to 6 ppm more than 3 km downstream from the deposit. Dissolved Au contents were similarly anomalous, up to 19 μg/L and in excess of 3 μg/L 3 km downstream. The elevated Au contents in the waters and sediments are interpreted to reflect complexation of Au (as Au(CN)2) by cyanide hosted within the gossan tailings pile. Precipitation recharges through the tailings pile with groundwater flow exiting to Gossan Creek. Degradation of cyanide along the flow path and within Gossan Creek allows colloidal Au to form via reduction of Au(I) by Fe2+, consistent with SEM observations of Au as <1 μm subrounded particles. In the surface waters, the majority of the Au must be in a form <0.45 μm in size to account for the similarity in Au contents between the <0.45 μm and unfiltered samples. The very elevated stream sediment Au values close to the headwaters of Gossan Creek near the tailings indicate that upon exiting to the surface environment, Au(CN)2 complexes are rapidly destroyed and Au removed from solution. However, the high Au<0.004 μm/Autotal in the headwaters and the extended Au dispersion in Gossan Creek waters and sediments suggest that Au(CN)2 complexes persist for the full length of Gossan Creek. The decrease in aqueous Au which is less than 0.004 μm indicates that Au is converted from a complexed form to a colloidal form with increasing distance downstream, consistent with dissolved NO3 contents which decrease from 5210 μg/L near the headwaters to 1350 μg/L at the lower end of the stream.  相似文献   

10.
‘Invisible gold’ in bismuth chalcogenides   总被引:1,自引:0,他引:1  
Gold concentrations have been determined by LA-ICPMS in bismuth chalcogenides (tellurides and sulfosalts, minerals with modular structures; chalcogen X = Te, Se, and S) from 27 occurrences. Deposit types include epithermal, skarn, intrusion-related and orogenic gold. The samples comprised minerals of the tetradymite group, aleksite series, bismuth sulfosalts (cosalite, lillianite, hodrushite, bismuthinite, and aikinite), and accompanying altaite. Gold concentrations in phases of the tetradymite group range from <0.1 to 2527 ppm. Phases in which Bi > X tend to contain lower gold concentrations than Bi2X3 minerals (tellurobismuthite and tetradymite). Cosalite and lillianite contain Au concentrations ranging up to 574 and 3115 ppm, respectively. Bismuthinite derivatives have lower Au concentrations: <2 ppm in bismuthinite and up to 542 ppm in aikinite. In our samples, Au concentrations in altaite range from <0.2 to 1662 ppm.Smoother parts of the LA-ICPMS profiles suggest lattice-bound gold, whereas irregularities on the profiles are best explained by the presence of gold particles (?1 μm in diameter). Plotting Au vs. Ag for the entire dataset gives a wedge-shaped distribution, suggesting that Ag underpins Au uptake in both bismuth tellurides and sulfosalts. In the tellurides, correlation trends suggest statistical substitution of Ag(Au), together with Pb, into the octahedral site in the layers. In sulfosalts, Au follows coupled substitutions in which M1+ (Ag, Cu) enters the structure. In tellurides, the presence of van der Waals gaps at chalcogen-chalcogen contacts provides for p-type semi-conductive properties critical for gold scavenging from fluids. Such weak bonds may also act as sites for nucleation of Au (nano)particles. In sulfosalts, contacts between different species that replace one another are also highly predictable to act as traps for (nano)particulate gold.Invisible gold in Bi-chalcogenides is useful to (i) identify trends of orefield zonation, (ii) discriminate between ‘melt’ and ‘fluid-driven’ scavenging, and (iii) interpret replacement and remobilisation processes. Bismuth chalcogenides have the potential to be significant Au carriers in sulfide-poor Au systems, e.g., intrusion-related gold, with impact on the overall Au budget if mean Au concentrations are high enough and the minerals are sufficiently abundant.  相似文献   

11.
This paper presents an investigation of the capacity of four different plants to remove and assimilate ferri-cyanide at different pH conditions. Detached roots of weeping willows (Salix babylonica L.), rice (Oryza sativa L. cv. JY 98), soybean (Glycine max L. cv. WH) and maize (Zea mays L. var. HK) were hydroponically exposed to ferri-cyanide in a closed system at 25?±?0.5°C for 24?h kept under darkness. Almost all applied ferri-cyanide was in the complex form in the hydroponic solution at pH????7.0 in the absence of light, while dissociation of ferri-cyanide to free cyanide and iron in solution was detected at pH????6.5. All plant species used were found to be able to remove and assimilate ferri-cyanide efficiently. The uptake and assimilation rates appeared to be inversely related to the pH, in which positive effects were observed at pH 6.0 and 6.5. Remarkable decreases in the assimilation rates were found at pH 8.0. Results presented here suggest that changes in solution pH have a substantial influence on not only the speciation of ferri-cyanide in the plant growth media, but also the uptake and assimilation mechanisms of ferri-cyanide by plants.  相似文献   

12.
Nonlinear kinetic analysis of phenol adsorption onto peat soil   总被引:1,自引:0,他引:1  
Phenolic compounds are considered as a serious organic pollutant containing in many industrial effluents particularly vulnerable when the plant discharge is disposed on land. In the present study, the phenol removal potential of peat soil as adsorption media was investigated as the adsorption process are gaining popular for polishing treatment of toxic materials in industrial wastewater. Batch experiments were performed in the laboratory to determine the adsorption isotherms of initial concentrations for 5, 8, 10, 15, and 20 mg/L and predetermined quantity of peat soil with size ranges between 425 and 200 μm poured into different containers. The effects of various parameters like initial phenol concentration, adsorbent quantity, pH, and contact time were also investigated. From experimental results, it was found that 42 % of phenol removal took place with optimized initial phenol concentration of 10 mg/L, adsorbent dose of 200 g/L, solution pH 6.0 for the equilibrium contact time of 6 h. The result exhibits that pseudo-first-order (R 2 = 0.99) and Langmuir isotherm models are fitted reasonably (R 2 = 0.91). Adams–Bohart, Thomas, Yoon–Nelson, and Wolborska models were also investigated to the column experimental data of different bed heights to predict the breakthrough curves and to determine the kinetic coefficient of the models using nonlinear regression analysis. It was found that the Thomas model is the best fitted model to predict the experimental breakthrough curves with the highest coefficient of determination, R 2 = 0.99 and lowest root mean square error and mean absolute performance error values.  相似文献   

13.
Phytoremediation is a proven low-cost and sustainable method for the removal of toxic pollutants from water. This green technology has been practiced for the past several years all over the world. In the present study, the interaction of fluoride on the surface of the floating aquatic plant water lettuce (Pistia stratiotes) during fluoride removal was investigated. Batch kinetic studies were performed to examine the fluoride uptake capacity of the plant with different initial fluoride concentrations such as 3, 5, 10, and 20 mg/L. The effects of various process parameters on fluoride uptake dynamics such as pH, plant biomass, initial fluoride concentration, and time were examined. Freundlich’s isotherm model was found to (R 2 = 0.957) fit well to the experimental data. The nature of reaction order followed pseudo-first-order kinetics, when the initial fluoride level in the solution was 5 mg/L. The experimental findings showed that the removal mechanism was driven by biosorption phenomenon. High fluoride concentration in the solution reduced the growth ratio of P. stratiotes. The lowest growth ratio of this aquatic macrophyte was found to be 76.80 ± 3.73% at 20 mg/L fluoride concentration. At lower fluoride concentrations such as 3 and 5 mg/L, the growth ratio of the plant was not reduced significantly.  相似文献   

14.
The Pulang (普朗) porphyry copper deposit, located in the southern segment of the Yidun-Zhongdian (义敦-为中甸) island arc ore-forming belt of the Tethys-Himalaya ore-forming domain, is a recently discovered large copper deposit. Compared with the composition of granodiorite in China, the porphyry rocks in this area are enriched in W, Mo, Cu, Au, As, Sb, F, V, and Na2O (K1≥1.2). Compared with the composition of fresh porphyry rocks in this district, the mineralized rocks are enriched in Cn, Au, Ag, Mo, Pb, Zn, W, As, Sb, and K2O (K≥1.2). Some elements show clear anomalies, such as Zn, Ag, Cu, Au, W, and Mo, and can be regarded as pathfinders for prospecting new ore bodies in depth. It has been inferred from factor analysis that the Pulang porphyry copper deposit may have undergone the multiple stages of alteration and mineralization: (a) Cu-Au mineralization; (b) W-Mo mineralization; and (c) silicification and potassic metasomatism in the whole ore-forming process. A detailed zonation sequence of indicator elements is obtained using the variability index of indicator elements as follows: Zn→Ag→Cu→Au→W→Mo. According to this zonation, an index such as (Ag×Zn) D/(Mo×W) D can be constructed and regarded as a significant criterion for predicting the Cu potential at a particular depth.  相似文献   

15.
The molecular diversity of the purple photosynthetic bacteria was assessed during temporal pigmentation changes in four interconnected wastewater stabilization ponds treating domestic wastewater by denaturant gel gradient electrophoresis method applying pufM gene. Results revealed high phylogenetic diversity of the purple phototrophic anoxygenic bacteria community characterized by the presence of the purple non-sulfur, purple sulfur, and purple aerobic photosynthetic anoxygenic bacteria. This phototrophic bacterial assemblage was dominated by the purple non-sulfur bacteria group (59.3 %) with six different genera followed by the purple sulfur community (27.8 %) with four genera and finally 12.9 % of the pufM gene sequences were assigned throughout the aerobic anoxygenic phototrophic bacterial group. The purple phototrophic bacterial community was characterized by the presence of salt-dependant bacterial species belonging to the genus Marichromatium, Thiorhodococcus, Erythrobacter, and Roseobacter. The wastewater treatment plant performances were unsatisfactory, and the biological and chemical parameters suggested that the purple photosynthetic bloom was correlated with the eutrophic state.  相似文献   

16.
The Aitik Cu–Au–Ag deposit is located in northern Sweden and is hosted by strongly deformed 1.9 Ga Svecofennian volcano-sedimentary rocks. The main copper mineralization, which occurs as disseminations and veinlets, is hosted by garnet–biotite schist. Subeconomic mineralization in the footwall to the ore is hosted by feldspar–biotite–amphibole gneiss and porphyritic quartz monzodiorite. The deposit has been affected by post-mineralization metamorphic and igneous activity. Fluid inclusions in six samples of copper-mineralized quartz veins record the presence of three different fluid populations. The main ore was deposited from an aqueous, highly saline (31–37 eq. wt% NaCl + CaCl2) fluid. This fluid was trapped in inclusions intimately associated with the main chalcopyrite mineralization. Later bornite deposition took place from a less saline (18–27 eq. wt% NaCl + CaCl2), aqueous fluid. A third fluid composed of almost pure CO2, interacted with the copper-rich system during a post-ore event. The Aitik Cu–Au–Ag deposit shares some features with both porphyry-type and Fe-oxide–Cu–Au deposits. A high calcium content of the ore fluids, similar to other Cu–Au deposits in northern Scandinavia, suggests a contribution to the salinity of the mainly magmatic-hydrothermal fluids from evaporitic rocks in stratigraphically lower units.  相似文献   

17.
Although Ag has long been recognized as highly toxic to aquatic organisms and as an efficient tracer of urban wastewater inputs, there are very few data available on Ag levels and fluxes in rivers and estuaries. Due to anomalously high Ag concentrations in oysters from the estuary mouth, dissolved (AgD) and particulate Ag (AgP) concentrations in rivers of the Gironde Estuary watershed were studied. Using daily discharge, Suspended particulate matter (SPM) data and monthly measured AgD and AgP, the respective fluxes were estimated at the three main entries of the Gironde Estuary and at selected key sites at the outlets of different sub-watersheds for multiple years of the past decade. Dissolved and particulate Ag concentrations were 0.5 ng/L (detection limit) to 5.7 ng/L and 0.13-13.9 mg/kg in all rivers, except for the Riou-Mort River (up to 1260 ng/L and 261 mg/kg) that has been heavily polluted by former Zn ore treatment and remaining waste tailings. At all sites Ag transport mainly (73-100%) occurred in the particulate phase, i.e. strongly depended on hydrological parameters. Comparing Th-normalised (i.e. grain size independent) AgP levels at the different sites including one remote site showed that the regional background is best described by AgP/ThP = 0.026. The anthropogenic components in AgP levels and fluxes ranged from 24% to 90% at all sites, except for the Riou-Mort River (81-99%). Although this former ore treatment site still is an evident Ag source to the Lot-Garonne fluvial-estuarine system, its contribution to Ag fluxes at the main entry of the Gironde Estuary (i.e. 0.33-2.44 t/a at the La Reole site) is <11%. This clearly suggests that other sources such as rock weathering and erosion (0.057-0.817 t/a), urban wastewater inputs (0.042-0.057 t/a) and cloud-seeding (0.030-0.063 t/a) contribute the major parts of the fluvial Ag budget in this watershed. The estimated anthropogenic surface- and population-specific Ag fluxes in the studied system were 1.14-682 g/km2/a and 0.028-6.05 g/person/a, respectively. The results obtained suggest that the Gironde fluvial-estuarine system is contaminated by Ag inputs from various sources, but further work is necessary to (i) identify and quantify the major sources and (ii) produce comparable data for other systems, which would be useful for the evaluation of Ag contamination at a larger scale.  相似文献   

18.
Most of the industrial wastewaters comprise toxic, biologically non-biodegradable, and heavy metals which tend to accumulate in the biological organisms causing different diseases. There are some novel technologies and strategies to remove these pollutants. Using the magnetic nanoparticles which are cheap, recyclable, and reusable can be considered as an effective method for removing the pollutants as they do not require conservation or complicated equipments. Using this method, dangerous and rare heavy metals can be restored to the industry. In this study, magnetic nanoparticles with the size of 30 nm were prepared and used for the removal of chromium from synthetic wastewater polluted by chromium sulfate. For this purpose, removal of various concentrations of chromium(III) from wastewater was investigated. The best concentration was achieved in the removal efficiency of 99.1 %. The optimal values of pH, rotation speed of magnetic stirrer, time, temperature, and the amount of nanoparticles were determined according to the primary concentration (500 mg/L). The mechanism of chromium adsorption onto iron oxide (Fe3O4) magnetic nanoadsorbent was also investigated. The results showed both Freundlich and Longmuir isotherms to be the best fit for the chromium adsorption, with Freundlich isotherm being more suitable.  相似文献   

19.
Previous studies of chondrites heated in the laboratory for extended periods under conditions approximating those in shock-heated collisional debris indicate that Au, Co, Se, Ga, Rb, Cs, Te, Bi, In, Ag, Zn, Tl and Cd progress in mobility. We report data for these 13 trace elements in 14 L4–6 chondrites of established shock history and discuss these and 13 additional chondrites studied earlier. Trace element contents vary with petrologic type, SFe sub-group and shock history, the last dominating strongly. Absolute abundances and interelement relationships for the 6 or 7 most mobile elements vary with degree of shock-loading (i.e. residual temperatures) established from mineralogic/petrologic study. A tertiary process, shock-heating, previously known to have affected radiogenic 40Ar and/or 4He in meteorites but not other elements, apparently was at least as effective as other open-system processes (secondary [parent body] and primary [nebular and/or accretionary] episodes) in establishing mobile trace element contents of L chondrites and probably others. If conditions during early genetic episodes are to be deduced from compositional information, shocked meteorites should be avoided or effects of later processes should be compensated for.  相似文献   

20.
肖斌  潘懋  赵鹏大  侯景儒 《地质科学》2001,36(4):500-508
空间信息统计学是一门集数学、空间信息科学及计算机技术于一体,在时空域内对区域化变量的随机性与结构性进行定量研究的技术。以山东归来庄金矿床为例,对其g(AuAg)异常进行空间信息统计学研究。利用指示克立格法研究g(AuAg)的空间变异结构特征,建立空间结构模型。在对结构模型和估计方案进行交叉验证后,对g(AuAg)的空间分布进行估计。根据g(AuAg)的空间分布规律,探讨其与Au空间分布的关系,并对今后该区的找金工作提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号