首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 664 毫秒
1.
On July 22, 2013, an earthquake of Ms. 6.6 occurred at the junction area of Minxian and Zhangxian counties, Gansu Province, China. This earthquake triggered many landslides of various types, dominated by small-scale soil falls, slides, and topples on loess scarps. There were also a few deep-seated landslides, large-scale soil avalanches, and fissure-developing slopes. In this paper, an inventory of landslides triggered by this event is prepared based on field investigations and visual interpretation of high-resolution satellite images. The spatial distribution of the landslides is then analyzed. The inventory indicates that at least 2330 landslides were triggered by the earthquake. A correlation statistics of the landslides with topographic, geologic, and earthquake factors is performed based on the GIS platform. The results show that the largest number of landslides and the highest landslide density are at 2400 m–2600 m of absolute elevation, and 200 m–300 m of relative elevation, respectively. The landslide density does not always increase with slope gradient as previously suggested. The slopes most prone to landslides are in S, SW, W, and NW directions. Concave slopes register higher landslide density and larger number of landslides than convex slopes. The largest number of landslides occurs on topographic position with middle slopes, whereas the highest landslide density corresponds to valleys and lower slopes. The underlying bedrocks consisting of conglomerate and sandstone of Lower Paleogene (Eb) register both the largest number and area of landslides and the highest landslide number and area density values. Correlations of landslide number and landslide density with perpendicular- and along-strike distance from the epicenter show an obvious spatial intensifying character of the co-seismic landslides. The spatial pattern of the co-seismic landslides is strongly controlled by a branch of the Lintan-Dangchang fault, which indicates the effect of seismogenic fault on co-seismic landslides. In addition, the area affected by landslides related to the earthquake is compared to the relationship of “area affected by landslides vs. earthquake magnitude” constructed based on earthquakes worldwide, and it is shown that the area affected by landslides triggered by the Minxian–Zhangxian earthquake is larger than that of almost all other events with similar magnitudes.  相似文献   

2.
Green Lake Landslide is an ancient giant rock slide in gneiss and granodiorite located in the deeply glaciated Fiordland region of New Zealand. The landslide covers an area of 45 km2 and has a volume of about 27 km3. It is believed to be New Zealand's largest landslide, and possibly the largest landslide of its type on Earth. It is one of 39 known very large (106–107 m3) and giant (≥108 m3) postglacial landslides in Fiordland discussed in the paper. Green Lake Landslide resulted in the collapse of a 9 km segment of the southern Hunter Mountains. Slide debris moved up to 2.5 km laterally and 700 m vertically, and formed a landslide dam about 800 m high, impounding a lake about 11 km long that was eventually infilled with sediments. Geomorphic evidence supported by radiocarbon dating indicates that Green Lake Landslide probably occurred 12 000–13 000 years ago, near the end of the last (Otira) glaciation. The landslide is described, and its geomorphic significance, age, failure mechanism, cause, and relevance in the region are discussed, in relation to other large landslides and recent earthquake-induced landslides in Fiordland. The slope failure occurred on a low-angle fault zone undercut by glacial erosion, and was probably triggered by strong shaking (MM IX–X) associated with a large (≥ M 7.5–8) earthquake, on the Alpine Fault c. 80 km to the northwest. Geology was a major factor that controlled the style and size of Green Lake landslide, and in that respect it is significantly different from most other gigantic landslides. Future large earthquakes on the Alpine Fault in Fiordland are likely to trigger more very large and giant landslides across the region, causing ground damage and devastation on a scale that has not occurred during the last 160 years, with potentially disastrous effects on towns, tourist centres, roads, and infrastructure. The probability of such an event occurring within the next 50 years may be as high as 45%.  相似文献   

3.
This paper describes the potential applicability of a hydrological–geotechnical modeling system using satellite-based rainfall estimates for a shallow landslide prediction system. The physically based distributed model has been developed by integrating a grid-based distributed kinematic wave rainfall-runoff model with an infinite slope stability approach. The model was forced by the satellite-based near real-time half-hourly CMORPH global rainfall product prepared by NOAA-CPC. The method combines the following two model outputs necessary for identifying where and when shallow landslides may potentially occur in the catchment: (1) the time-invariant spatial distribution of areas susceptible to slope instability map, for which the river catchment is divided into stability classes according to the critical relative soil saturation; this output is designed to portray the effect of quasi-static land surface variables and soil strength properties on slope instability and (2) a produced map linked with spatiotemporally varying hydrologic properties to provide a time-varying estimate of susceptibility to slope movement in response to rainfall. The proposed hydrological model predicts the dynamic of soil saturation in each grid element. The stored water in each grid element is then used for updating the relative soil saturation and analyzing the slope stability. A grid of slope is defined to be unstable when the relative soil saturation becomes higher than the critical level and is the basis for issuing a shallow landslide warning. The method was applied to past landslides in the upper Citarum River catchment (2,310 km2), Indonesia; the resulting time-invariant landslide susceptibility map shows good agreement with the spatial patterns of documented historical landslides (1985–2008). Application of the model to two recent shallow landslides shows that the model can successfully predict the effect of rainfall movement and intensity on the spatiotemporal dynamic of hydrological variables that trigger shallow landslides. Several hours before the landslides, the model predicted unstable conditions in some grids over and near the grids at which the actual shallow landslides occurred. Overall, the results demonstrate the potential applicability of the modeling system for shallow landslide disaster predictions and warnings.  相似文献   

4.
《Quaternary Research》2014,81(3):445-451
Some scholars have argued that the formation and outburst of an ancient dammed lake in the Jishi Gorge at ca. 3700 cal yr BP resulted in the destruction of Lajia, the site of a famous prehistoric disaster in the Guanting Basin, upper Yellow River valley, China. However, the cause of the dammed lake and the exact age of the dam breaching are still debated. We investigated ancient landslides and evidence for the dammed lake in the Jishi Gorge, including dating of soil from the shear zone of an ancient landslide, sediments of the ancient dammed lake, and loess above lacustrine sediments using radiocarbon and optically stimulated luminescence (OSL) dating methods. Six radiocarbon dates and two OSL dates suggested that the ancient landslides and dammed lake events in the Jishi Gorge probably occurred around 8100 cal yr BP, and the ancient dammed lake was breached between 6780 cal yr BP and 5750 cal yr BP. Hence, the outburst of the ancient dammed lake in the Jishi Gorge was unrelated to the ruin of the Lajia site, but likely resulted in flood disasters in the Guanting Basin around 6500 cal yr BP.  相似文献   

5.
We consider a series of hydrogeophysical techniques that provide a multiscale investigation of the water content in the vadose zone and of the perched aquifer at the experimental site of “La Soutte” in the Vosges Mountains (France). It is located in a catchment area where several springs and streams occur along fractured volcanic and weathered plutonic rocks. The site is the object of a long-term study that uses both continuous and repeated measurements to monitor hydrogeological processes. The main results from AMT and DC resistivity techniques allow the determination of a high-resolution 3D resistivity model over a large range of depths (from 100 to 103 m). We discuss their use and propose a hydrogeological model (porosity, water conductivity and water content). We also use MRS and GPR for a detailed investigation of the shallow part of the catchment that consists of soil and weathered rocks of highly varying thickness (0 to 15 m). MRS is used to map the thickness and total water volume content by unit surface of the saturated weathered zone. It also yields estimates of the vadose zone thickness through the depth to the top of the saturated zone. Moreover, we show results from GPR CMP measurements that yield estimates of the water content and porosity in the shallowest layer (0–30 cm) by simple interpretation of the ground direct wave.  相似文献   

6.
The May 12, 2008 Wenchuan, China Earthquake which measured Mw = 8.3 according to Chinese Earthquake Administration – CEA (Mw = 7.9 according to the USGS) directly triggered many landslides, which caused about 20,000 deaths, a quarter of the total. Rock avalanches were among the most destructive landslides triggered by this seismic event, and have killed more people than any other type of landslide in this earthquake. The Donghekou rock avalanche, one example of a catastrophic avalanche triggered by the Wenchuan earthquake, occurred in Qingchuan and buried one primary school and 184 houses, resulting in more than 780 deaths, and in addition, caused the formation of two landslide dams, which formed barrier lakes.Combining aerial images (resolution of 0.5 m) with field investigations, this paper lists some parameters of 66 cases in one table, and details source characteristics of six typical cases. It has been found that most of the long runout rock avalanches have source areas with high relief and steep inclination, causing the debris in the travel courses to accelerate. There was also a large amount of saturated Holocene-age loose deposits formed by a river or gully that existed in the travel courses. Comparison studies indicate that saturated Holocene loose deposits in the travel courses could be the most important factor for the causes of the long runout characteristic of the rock avalanches especially when they traveled over gentle or even flat ground surfaces.Furthermore, the relationships among the relief slope gradient, runout and covered area are investigated, and a threshold line for predicting the maximum horizontal runout distance under certain change in elevation is presented.  相似文献   

7.
This study investigates the hydraulic conductivity field and the groundwater flow pattern as predicted by a calibrated steady state groundwater flow model for the Keta Strip, southeastern Ghana. The hydraulic conductivity field is an important parameter in evaluating aquifer properties in space, and in general basin-wide groundwater resources evaluation and management. This study finds that the general hydraulic conductivity of the unconsolidated unconfined aquifer system of the Keta Strip ranges between 2 m/d and 20 m/d, with an average of 15 m/d. The spatial variation in horizontal hydraulic conductivity appears to take the trend in the variations in the nature of the material in space. Calibrated groundwater recharge suggests that 6.9–34% of annual precipitation recharges the shallow aquifer system. This amount of recharge is significant and suggests high fortunes in terms of groundwater resources development for agriculture and industrial activities in the area. A spatial distribution of groundwater recharge from precipitation is presented in this study. The spatial pattern appears to take the form of the distribution in horizontal hydraulic conductivity, and suggests that the vertical hydraulic conductivity takes the same pattern of spatial variation as the horizontal hydraulic conductivity. This is consistent with observations in other areas. The resulting groundwater flow is dominated by local flow systems as the unconfined system is quite shallow. A general northeast – southwest flow pattern has been observed in the study area.  相似文献   

8.
The High Himalaya is a key area for tectonic, geomorphological and climate studies, because of its extreme relief and location at the transition zone between areas with abundant monsoonal precipitation and the arid/semiarid Tibetan Plateau. We present 10Be surface exposure ages on 22 boulders from the Annapurna area in Nepal. The ages improve understanding of the Late Quaternary landscape history and the geomorphological processes operating in this part of the Himalaya.Although our study is reconnaissance in nature, it highlights the importance of catastrophic events, such as landslides and debris flows, for denudation of high mountains. Holocene exposure ages for the Dhampu–Chooya landslide (~4.1 ± 0.6 ka) and for 600 m of alluviation in Kali Gandaki Valley (~2.1 ± 0.6 ka), for example, indicate the frequent occurrence and extent of catastrophic events and their implications for natural hazards. We also offer an explanation for the differences in Late Quaternary glacial chronologies at closely spaced study sites in the Nepal Himalaya. Topographically controlled and spatially variable precipitation in the Himalaya determines the sensitivity of glaciers to changes in temperature and precipitation. Accordingly, some glaciers advanced in-phase with Northern Hemisphere ice sheets, whereas others reached their maximum extent at times of increased monsoonal precipitation during Marine Isotope Stage 3 and the early Holocene.  相似文献   

9.
近年来受多次地震影响,芦山县的地质环境和生态结构较为脆弱,滑坡灾害高发,制约了县内基础建设和经济发展,威胁着人民生命财产安全,研究静态地质环境下芦山县滑坡影响因素的空间分异性,可为区内国土空间规划提供基础资料,为滑坡灾害预测与防治提供数据支持。本文使用信息量模型和地理探测器分析了高程、坡度等12个影响因素与滑坡发育的关系,总结了滑坡发育规律,分析了影响因素的空间分异特征,并使用GIS加权叠加生成了滑坡易发性评价图。研究结果表明: ①滑坡主要集中于高程较低([571,1 300) m)、距道路距离较近([0,300) m)、距水系距离较近([0,300) m)、地形起伏度较小([0,30) m)、坡度较缓([0°,30°))、距断层距离较近([0,600) m)的地区,岩土类型以粉砂质泥岩、泥质粉砂岩、泥岩等软弱沉积岩和砂卵砾石土层的第四系堆积物为主,土地利用类型以建设用地、农业用地等为主; ②滑坡发育主要受高程、距道路距离、工程地质岩组等因素控制,此外土地利用类型、距水系距离、地形起伏度、坡度、距断层距离等因素也有较高的贡献率; ③两种不同影响因素对滑坡发育的作用较单一因素而言均呈现双因子或非线性增强,以高程和距道路距离与其他因素的交互作用最为强烈; ④滑坡高易发区和极高易发区主要分布于东南部中低山峡谷区、丘陵区以及河流沟谷地貌。  相似文献   

10.
The forms and location patterns of geologic hazards induced by earthquakes in southern Siberia, Mongolia, and northern Kazakhstan in1950 through 2008 have been investigated statistically, using a database of coseismic effects created as a GIS MapInfo application, with a handy input box for large data arrays. The database includes 689 cases of macroseismic effects from MS = 4.1–8.1 events at 398 sites. Statistical analysis of the data has revealed regional relationships between the magnitude of an earthquake and the maximum distance of its environmental effects (soil liquefaction and subsidence, secondary surface rupturing, and slope instability) to the epicenter and to the causative fault. Thus estimated limit distances to the fault for the MS = 8.1 largest event are 40 km for soil subsidence (sinkholes), 80 km for surface rupture, 100 km for slope instability (landslides etc.), and 130 km for soil liquefaction. These distances are 3.5–5.6 times as short as those to the epicenter, which are 150, 450, 350, and 450 km, respectively. Analysis of geohazard locations relative to nearest faults in southern East Siberia shows the distances to be within 2 km for sinkholes (60% within 1.5 km), 4.5 km for landslides (90% within 1.5 km), 8 km for liquefaction (69% within 1 km), and 35.5 km for surface rupture (86% within 2 km). The frequency of hazardous effects decreases exponentially away from both seismogenic and nearest faults. Cases of soil liquefaction and subsidence are analyzed in more detail in relation to rupture patterns. Equations have been suggested to relate the maximum sizes of secondary structures (sinkholes, dikes, etc.) with the earthquake magnitude and shaking intensity at the site. As a result, a predictive model has been created for locations of geohazard associated with reactivation of seismogenic faults, assuming an arbitrary fault pattern. The obtained results make basis for modeling the distribution of geohazards for the purposes of prediction and estimation of earthquake parameters from secondary deformation.  相似文献   

11.
Four large landslides, each with a debris volume >106 m3, in the Himalaya and Transhimalaya of northern India were examined, mapped, and dated using 10Be terrestrial cosmogenic radionuclide surface exposure dating. The landslides date to 7.7±1.0 ka (Darcha), 7.9±0.8 ka (Patseo), 6.6±0.4 ka (Kelang Serai), and 8.5±0.5 ka (Chilam). Comparison of slip surface dips and physically reasonable angles of internal friction suggests that the landslides may have been triggered by increased pore water pressure, seismic shaking, or a combination of these two processes. However, the steepness of discontinuities in the Darcha rock-slope, suggests that it was more likely to have started as a consequence of gravitationally-induced buckling of planar slabs. Deglaciation of the region occurred more than 2000 years before the Darcha, Patseo, and Kelang Serai landslides; it is unlikely that glacial debuttressing was responsible for triggering the landslides. The four landslides, their causes, potential triggers and mechanisms, and their ages are compared to 12 previously dated large landslides in the region. Fourteen of the 16 dated landslides occurred during periods of intensified monsoons. Seismic shaking, however, cannot be ruled out as a mechanism for landslide initiation, because the Himalaya has experienced great earthquakes on centennial to millennial timescales. The average Holocene landscape lowering due to large landslides for the Lahul region, which contains the Darcha, Patseo, and Kelang Serai landslides, is ~0.12 mm/yr. Previously published large-landslide landscape-lowering rates for the Himalaya differ significantly. Furthermore, regional glacial and fluvial denudation rates for the Himalaya are more than an order of magnitude greater. This difference highlights the lack of large-landslide data, lack of chronology, problems associated with single catchment/large landslide-based calculations, and the need for regional landscape-lowering determinations over a standardized time period.  相似文献   

12.
Holocene shallow (0.5–4.5 m, rarely more) and Pliocene–Pleistocene deep (> 25 m) placers occur within the China tectonic depression. The shallow placers are associated with the formation of the present-day drainage valleys of the China River under permafrost conditions, and the deep ones are localized within the preglacial paleovalleys of the river basin. An integrated geological and geochemical study was carried out at ten shallow commercial placers, eight of which are classified as poorly studied and “unconventional.” Placers are considered “unconventional” based on their technological characteristics (commercial gold is small (? 0.25 to + 0.1 mm), thin (? 0.1 mm), and micron-sized or “bound” (invisible)), geomorphologic conditions of formation, confinement to the oxidized zone of active permafrost, significant portion of fine hydrogenic gold, and several other minor features.The formation of shallow “unconventional” placers is controlled by the conditions of active permafrost. Under aerobic conditions, suprapermafrost waters form an oxidized zone, in which iron hydroxides impart a yellowish reddish color to water-bearing rocks. Long-lived geochemical barriers (biogenic, reduction, electrochemical, sorption, and others), including gravitational differentiation, play an important role in the concentration of small and thin gold.Alluvial deposits in Meso-Cenozoic tectonic depressions, such as the China basin, are the most promising in terms of “unconventional” placers. The main factors favoring the formation of these localities and the criteria for their assessment are large feeding sources of gold (mainly carbonaceous and sulfide) mineralization, endogenic and exogenic dispersion aureoles with thin and invisible gold; increased thickness of the suprapermafrost active layer and its temporal and spatial stability, contributing to the formation and functioning of oxidized horizons with the accumulation of ferric hydroxide and hydrogenic gold; specific morphologic varieties of hydrogenic gold, which are the fundamental criterion for primary gold mineralization with migratable metal; fine-clastic clay-rich composition of recent alluvial or alluvial-talus sediments, produced by water reworking of ancient gold-bearing weathering crusts; and development of broad floodplains filled with Holocene sediments and their junction with talus-solifluction erosional slopes.  相似文献   

13.
The Albany-Fraser Orogen (AFO), southeast Western Australia, is an underexplored, deeply weathered regolith-dominated terrain that has undergone complex weathering associated with various superimposed climatic events. For effective geochemical exploration in the AFO, integrating landscape evolution with mineralogical and geochemical variations of regolith and bedrock provides fundamental understanding of mechanical and hydromorphic dispersion of ore and pathfinder elements associated with the different weathering processes.In the Neale tenement, northeast of the AFO, a residual weathering profile that is 20-55 m thick was developed under warm and humid climatic conditions over undulating Proterozoic sheared granitoids, gneisses, schists and Au-bearing mafic rocks. From the base, the typical weathering profile consists of saprock, lower ferruginous saprolite, upper kaolinitic saprolite and discontinuous silcrete duricrust or its laterally coeval lateritic residuum. These types of duricrusts change laterally into areas of poorly-cemented kaolinitic grits or loose lateritic pisoliths and nodules.Lateritic residuum probably formed on remnant plateaus and was transported mechanically under arid climatic conditions over short distances, filling valleys to the southeast. Erosion of lateritic residuum exposes the underlying saprolite and, together with dilution by aeolian sands, constitutes the transported overburden (2-25 m thick). The reworked lateritic materials cover the preserved silcrete duricrusts in valleys. The lower ferruginous saprolite and lateritic residuum are well developed over mafic and sulphide-bearing bedrocks, where weathering of ferromagnesian minerals and sulphides led to enrichment of Fe, Cu, Ni, Cr, Co, V and Zn in these units. Kaolinitic saprolite and the overlying pedogenic silcrete are best developed over alkali granites and quartzofeldspathic gneisses, which are barren in Au and transition elements, and enriched in silica, alumina, rare earth and high field strength elements.A residual Au anomaly is formed in the lower ferruginous saprolite above a Au -bearing mafic intrusion at the Hercules prospect, south of the Neale tenement, without any expression in the overlying soil (< 20 cm). Conversely, a Au anomaly is recorded in the transported cover, particularly in the uppermost 3 m at the Atlantis prospect, 5 km southwest of the Hercules prospect. No anomalies have been detected in soils using five different size fractions (> 2,000 μm, 2,000-250 μm, 250-53 μm, 53-2 μm and < 2 μm). Therefore, soil cannot be efficiently applied as a reliable sampling medium to target mineralization at the Neale tenement. This is because mechanical weathering was interrupted by seasonal periods of intensive leaching under the present-day surface conditions and/or dilution by recently deposited aeolian sediments which obscure any signature of a potential Au anomaly in soils. Therefore, surface soil sampling should extend deeper than 20 cm to avoid dilution by aeolian sands and seasonal leaching processes. Regolith mapping and the distinction between the residual and transported weathering products are extremely significant to follow the distal or proximal mineralization.  相似文献   

14.
Residual shear strength is generally considered in the design of preventive measures for slopes consisting of preexisting shear surfaces of large-scale landslides. Recent research suggests that the preexisting shear surface of a reactivated landslide can regain strength with the passage of time, which might also be considered in designing the slope stability measures. In this study, three reactivated landslide soils were tested in a ring shear apparatus for the discontinued shear periods of 1, 3, 7, 15, and 30 days with the following main objectives: (i) to understand the strength recovery behavior of landslide soils in a residual state of shear after as long as 30 days of discontinued shear, (ii) to understand the comparative pattern of strength recovery in highly plastic and less plastic soils, and (iii) to understand the mechanism involved in strength recovery at a residual state of shear. The results indicate that recovered strength measured in the laboratory is hardly noticeable after a rest period of 3 days, but recovered strength is lost after a small shear displacement. This paper primarily focuses on the effect of strength recovery from residual strength on preexisting shear surface soils and the mechanisms behind it.  相似文献   

15.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

16.
The hillslopes of the Serra do Mar, a system of escarpments and mountains that extend more than 1500 km along the southern and southeastern Brazilian coast, are regularly affected by heavy rainfall that generates widespread mass movements, causing large numbers of casualties and economic losses. This paper evaluates the efficiency of susceptibility mapping for shallow translational landslides in one basin in the Serra do Mar, using the physically based landslide susceptibility models SHALSTAB and TRIGRS. Two groups of scenarios were simulated using different geotechnical and hydrological soil parameters, and for each group of scenarios (A and B), three subgroups were created using soil thickness values of 1, 2, and 3 m. Simulation results were compared to the locations of 356 landslide scars from the 1985 event. The susceptibility maps for scenarios A1, A2, and A3 were similar between the models regarding the spatial distribution of susceptibility classes. Changes in soil cohesion and specific weight parameters caused changes in the area of predicted instability in the B scenarios. Both models were effective in predicting areas susceptible to shallow landslides through comparison of areas predicted to be unstable and locations of mapped landslides. Such models can be used to reduce costs or to define potentially unstable areas in regions like the Serra do Mar where field data are costly and difficult to obtain.  相似文献   

17.
《Quaternary Science Reviews》2007,26(7-8):1149-1191
Quaternary glacial stratigraphy and relative sea-level changes reveal at least four expansions of the Kara Sea ice sheet over the Severnaya Zemlya Archipelago at 79°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from raised-beach sequences that occur at altitudes up to 140 m a.s.l. Chronologic control is provided by AMS 14C, electron-spin resonance, green-stimulated luminescence, and aspartic-acid geochronology. Major glaciations followed by deglaciation and marine inundation occurred during MIS 10-9, MIS 8-7, MIS 6-5e and MIS 5d-3. The MIS 6-5e event, associated with the high marine limit, implies ice-sheet thickness of >2000 m only 200 km from the deep Arctic Ocean, consistent with published evidence of ice grounding at ∼1000 m water depth in the central Arctic Ocean. Till fabrics and glacial tectonics record repeated expansions of local ice caps exclusively, suggesting wet-based ice cap advance followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains, appear to have repeatedly fostered initiation of a large Kara Sea ice sheet, with exception of the Last Glacial Maximum (MIS 2), when Kara Sea ice did not impact Severnaya Zemlya and barely graced northernmost Taymyr Peninsula.  相似文献   

18.
Rainfall-induced landslides in Hulu Kelang area, Malaysia   总被引:5,自引:2,他引:3  
Hulu Kelang is known as one of the most landslide-prone areas in Malaysia. The area has been constantly hit by landslide hazards since 1990s. This paper provides an insight into the mechanism of rainfall-induced landslide in the Hulu Kelang area. Rainfall patterns prior to the occurrences of five selected case studies were first analyzed. The results showed that daily rainfall information is insufficient for predicting landslides in the area. Rainfalls of longer durations, i.e., 3–30 days prior to the landslides should be incorporated into the prediction model. Numerical simulations on a selected case study demonstrated that both matric suction and factor of safety decreased steadily over time until they reached the lowest values on the day of landslide occurrence. Redistribution of infiltrated rainwater in the soil mass could be a reason for the slow response of failure mechanism to rainfall. Based on 21 rainfall-induced landslides that had occurred in the area, three rainfall thresholds were developed as attempts to predict the occurrence of rainfall-induced landslide. The rainfall intensity–duration threshold developed based on the local rainfall conditions provided a reasonably good prediction to the landslide occurrence. The cumulative 3- versus 30-day antecedent precipitation index threshold chart was capable of giving the most reliable prediction with the limiting threshold line for major landslide yielded a reliability of 97.6 %.  相似文献   

19.
《Applied Geochemistry》2006,21(9):1613-1624
Ingestion of soil is a common behaviour in young children as a means of exploring their surroundings. Much attention has been given to remediation of point-source polluted sites with regard to potential health risks for children. However, because of diffuse pollution and long-range atmospheric deposition, soil contaminant levels are generally increased in urban areas compared to their rural counterparts, even in areas located away from any point sources of pollution. Intake of urban soil can thereby result in significant amounts of the child’s daily metal intake. In the present study, soil samples were collected from 25 playgrounds around urban Uppsala, Sweden and analysed for contents of Al, As, Fe, Cr, Cu, Cd, Hg, Mn, Ni, Pb, W and Zn. Prior to aqua regia digestion, the samples were wet-sieved in order to separate soil particle fractions representing deliberate (<4 mm) and involuntary (<50 μm) soil ingestion by children, as well as a third size fraction of 50–100 μm representing soil that is easily transported by suspension. While the metal and As contents in the 50–100 μm fraction were similar to those of the <4 mm fraction, the <50 μm fraction had metal and As contents on average one and a half times higher than those of the <4 mm fraction. The metal and As contents correlated negatively with the sand content in both particle size fractions <4 mm and 50–100 μm, suggesting a general decrease in metal and As content with increasing sand content. However, a positive correlation was found between sand content and the metal and As contents of the finest fraction (<50 μm), suggesting that when the sand content is high, the bulk of the sorbed elements are on the finest particles. The difference between metal and As contents in the different size fractions was greater in the soil sample with the highest sand content than in the sample with the lowest sand content. This implies that texture is a significant factor in metal and As distribution in soils with moderate metal and As contents, when the number of binding sites associated with small particles is low. Tolerable daily intake (TDI) values for Pb and As were exceeded at all sites, and at two sites for Cd, for children with pica behaviour. A high ingestion rate of mainly small particles could also result in the TDI value for Pb being exceeded at 10 sites and that for As at one site. This study also found that soil analysis by the procedure recommended by Swedish authorities accurately represents the metal intake from deliberate soil ingestion, whereas involuntary soil ingestion of mainly small particles could result in metal intakes which are up to twice as high.  相似文献   

20.
《Earth》2009,95(1-4):23-38
Erosion is a major threat to soil resources in Europe, and may impair their ability to deliver a range of ecosystem goods and services. This is reflected by the European Commission's Thematic Strategy for Soil Protection, which recommends an indicator-based approach for monitoring soil erosion. Defined baseline and threshold values are essential for the evaluation of soil monitoring data. Therefore, accurate spatial data on both soil loss and soil genesis are required, especially in the light of predicted changes in climate patterns, notably frequency, seasonal distribution and intensity of precipitation. Rates of soil loss are reported that have been measured, modelled or inferred for most types of soil erosion in a variety of landscapes, by studies across the spectrum of the Earth sciences. Natural rates of soil formation can be used as a basis for setting tolerable soil erosion rates, with soil formation consisting of mineral weathering as well as dust deposition. This paper reviews the concept of tolerable soil erosion and summarises current knowledge on rates of soil formation, which are then compared to rates of soil erosion by known erosion types, for assessment of soil erosion monitoring at the European scale.A modified definition of tolerable soil erosion is proposed as ‘any actual soil erosion rate at which a deterioration or loss of one or more soil functions does not occur,’ actual soil erosion being ‘the total amount of soil lost by all recognised erosion types.’ Even when including dust deposition in soil formation rates, the upper limit of tolerable soil erosion, as equal to soil formation, is ca. 1.4 t ha 1 yr 1 while the lower limit is ca. 0.3 t ha 1 yr 1, for conditions prevalent in Europe. Scope for spatio-temporal differentiation of tolerable soil erosion rates below this upper limit is suggested by considering (components of) relevant soil functions. Reported rates of actual soil erosion vary much more than those for soil formation. Actual soil erosion rates for tilled, arable land in Europe are, on average, 3 to 40 times greater than the upper limit of tolerable soil erosion, accepting substantial spatio-temporal variation. This paper comprehensively reviews tolerable and actual soil erosion in Europe and highlights the scientific areas where more research is needed for successful implementation of an effective European soil monitoring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号