首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediment transport of four boulder bed rivers is studied using lichenometry. The presence of lichens on boulders in the river channel is used to date the last mobilization of the blocks. Using size frequency diagrams and regional growth curves calibrated with dated reference points it is possible to determine the flood event responsible for the last mobilization of each boulder with lichens present. The specific stream power of flood events over the last 60 years is then calculated, and thresholds of sediment transport based on the sediment size are calculated. The results from the four studied rivers are compared to similar relationships in the literature. Sediment motion thresholds appear to be very variable within the same type of river (mountainous boulder bed rivers). The critical specific stream power necessary to mobilize a particle of a given diameter may vary by up to 10 times from one river to the next. Bed sediment size and river slope may explain this large range of stream powers. Calculation of the relative size of the transported particles (Di/D50) also shows that both hiding and protrusion effects, as well as channels slope, are important factors in sediment transport. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Solubility equilibria in aqueous media are a powerful source of information on Gibbs energy functions of pure ionic compounds and solid-solutions. Because solid-solid phase transformations and/or recrystallizations are often much slower than equilibration between solids and solutes, it is sometimes possible to obtain reliable data from measurements on metastable systems.Thermodynamic quantities of geochemically and industrially important sparingly soluble metal oxides, hydroxides, carbonates and sulfides have been determined by solubility techniques. Activity coefficient variations of the reacting species are either minimized by the method of constant ionic media, or else corrected for by using the Pitzer equations. Measurements carried out at various fixed ionic strengthsI may be used to calculate the value of the solubility constantK s 0 at infinite dilution. Given the availability of Pitzer parameters of sufficient quality, values ofK s 0 extrapolated by this method lead to accurate Gibbs energies of formation. Moreover, when Pitzer parameters are known up to saturation, solubilities of highly soluble salts can easily be exploited for the calculation of Gibbs functions.A consistent set of equilibrium constants for the homogeneous and heterogeneous reactions occurring in the systems under investigation is used in the general Gibbs energy minimizing program ChemSage. Master variables for the depiction of the pertinent solid-solute phase diagrams are deduced from generalized Gibbs-Duhem equations. Application of the resulting data to geochemical and industrial problems is discussed.  相似文献   

3.
The purpose of the present paper is to analyse factors controlling total concentration and aqueous speciation of aluminium in the Große Ohe River, using a thermodynamic equilibrium model and a mixing approach. A model compound for humic substances is derived on the basis of the relation between anion deficit and the organic carbon content in the river as well as literature data. An equilibrium speciation model for aluminium is set up, considering this model compound and relevant inorganic solutes. Although the model cannot be verified directly, its results may be viewed as qualitatively correct. Applying the model to measured stream water samples highlights that aqueous speciation of aluminium is mainly controlled by the pH value and discharge and that free aluminium concentrations reach clearly toxic levels during acidic episodes. Comparing measured concentrations of sulfate and H+ and calculated concentrations of Al3+ with solubility curves of gibbsite like minerals and jurbanite clearly shows that total aluminium concentrations are not controlled by equilibria with these mineral phases alone. The observed relationship can be better explained from a mixture of two distinct waters, representing lowflow and highflow chemistry, and the resulting equilibrium concentrations. This indicates that total aluminium concentration, in particular during high discharge events, is mainly controlled by the mixture of waters with differing chemistry and flowpaths.  相似文献   

4.
Magma type and tectonic setting discrimination using immobile elements   总被引:1,自引:0,他引:1  
Five minor and trace elements have been variously combined to produce a set of binary diagrams in addition to total alkali-SiO2 diagrams, that discriminate between fresh tholeiitic and alkali basalts. These diagrams are TiO2-Zr, TiO2-Y/Nb, P2O5-Zr, TiO2-Zr/P2O5, and Nb/Y-Zr/P2O5. A clear discrimination between alkaline and tholeiitic basalts can be obtained, although no meaningful separation can be made between the broad groups of oceanic and continental basalts, of either magma type, on the diagrams. As these elements (Ti, P, Zr, Y and Nb) are generally considered immobile during alteration processes, it should be possible to distinguish the magma type of ancient basic volcanics that have been subjected to submarine weathering, spilitization and low-grade metamorphism.  相似文献   

5.
The dual geochemical character of paragenesis and fractionation between gold, arsenic and antimony in micro-disseminated gold deposits in southwestern Guizhou is discussed in terms of spatial distribution of independent deposits, lateral and vertical enrichment, mineralization stage and factor and correlation analyses. Thermodynamic calculations of solubility and speciation of gold and antimony minerals indicate that gold is transported in hydrothermal solution as Au(HS)- 2 and antimony is mainly as Sb (OH) 3 0 although HSb2S4 may be of increasing importance in acid environment at low temperatures during the late stage of mineralization. Changes in physicochemical conditions hold the key to the association and fractionation between gold and antimony. Gold and antimony response differently to physicochemical variations because they are distinct from each other in soluble speciation and mineral solubility, leading to precipitation at different times and localities during hydrothermal evolution.  相似文献   

6.
An experimental and theoretical investigation of the effect of pressure on the solubility of FeO in molten iron has been carried out. Analyses of shock-wave compression data on iron oxides combined with measurements of the FeO bond length in “metallic” oxides suggest that the partial molar volume of FeO(V*) dissolved in molten iron is substantially smaller than that of molten wüstite. Hence the effect of high pressure should be to increase the solubility of FeO in molten iron at a given temperature. This inference is confirmed by an experimental investigation of the effect of pressure on the position of the FeFeO eutectic. Thermodynamic calculations based on these experiments yield an estimate forV* which is in reasonable agreement with the theoretical estimates. The experimental value ofV* is used to calculate the effect of high pressure upon the FeFeO phase diagram. Solubility of FeO in molten iron increases sharply with pressure, the liquid immiscibility region contracts and disappears around 20 GPa and it is predicted that the FeFeO phase diagram should resemble a simple eutectic system above about 20 GPa. Analogous calculations predict that the solubility of FeO in molten iron in equilibrium with magnesiowüstite (Mg0.8Fe0.2)O at 2500°C increase from 14 mol.%(P = 0) to above 25 mol.% at 20 GPa. If the core formed by segregation of metallic iron originally dispersed throughout the earth, it seems inevitable that it would dissolved large amounts of FeO, thereby accounting for the observation that the density of the outer core is substantially smaller than that of pure iron under correspondingP, T conditions.  相似文献   

7.
The western U.S. is experiencing shifts in recharge due to climate change, and it is currently unclear how hydrologic shifts will impact geochemical weathering and stream concentration–discharge (CQ) patterns. Hydrologists often use CQ analyses to assess feedbacks between stream discharge and geochemistry, given abundant stream discharge and chemistry data. Chemostasis is commonly observed, indicating that geochemical controls, rather than changes in discharge, are shaping stream CQ patterns. However, few CQ studies investigate how geochemical reactions evolve along groundwater flowpaths before groundwater contributes to streamflow, resulting in potential omission of important CQ controls such as coupled mineral dissolution and clay precipitation and subsequent cation exchange. Here, we use field observations—including groundwater age, stream discharge, and stream and groundwater chemistry—to analyse CQ relations in the Manitou Experimental Forest in the Colorado Front Range, USA, a site where chemostasis is observed. We combine field data with laboratory analyses of whole rock and clay x-ray diffraction and soil cation-extraction experiments to investigate the role that clays play in influencing stream chemistry. We use Geochemist's Workbench to identify geochemical reactions driving stream chemistry and subsequently suggest how climate change will impact stream CQ trends. We show that as groundwater age increases, CQ slope and stream solute response are not impacted. Instead, primary mineral dissolution and subsequent clay precipitation drive strong chemostasis for silica and aluminium and enable cation exchange that buffers calcium and magnesium concentrations, leading to weak chemostatic behaviour for divalent cations. The influence of clays on stream CQ highlights the importance of delineating geochemical controls along flowpaths, as upgradient mineral dissolution and clay precipitation enable downgradient cation exchange. Our results suggest that geochemical reactions will not be impacted by future decreasing flows, and thus where chemostasis currently exists, it will continue to persist despite changes in recharge.  相似文献   

8.
The threshold of coarse sediment transport has been examined in natural streambeds in an upland Pennine (U.K.) area. Threshold values of the total boundary shear stress (T0) (for a given grain size), in a narrow natural stream (W/D < 11) are considerably higher than values of T0 in a broad stream (W/D > 11). Efficiency in the entrainment process is related not only to the overall channel geometry, but also varies as a function of discharge in channels characterized by compound roughness. Empirical curves relating T0 and a mean grain size (d 5) are presented, but are limited in application to streams of similar physical and hydraulic characteristics as the ones examined in this investigation. Considerable divergence is noted between these empirical functions and a summary empirical function for general application obtained from a published source. The reasons for this divergence are discussed. The influence of grain shape was found not to be important in the initiation of motion criterion. This conclusion may reflect the limited range of natural grain shapes in the study streams, but might reasonably apply to other field investigations of similar streams. Modifications of the Shields' and Yalin diagrams are suggested for practical applications in shallow streams with poorly-graded bed material. The Shields' parameter may be regarded as an inverse function of the relative protrusion of individual grains in the shallow flow depth (d 5/D). The increased importance of augmented drag forces, in the entrainment process in shallow flows, is suggested as the physical explanation for the reduced values of the Shields' parameter. However, the relationships presented should not be applied to laboratory experiments concerned with well-graded sediments (therefore beds with little deviation in level), in which the Shields' parameter may be regarded as constant at high Reynolds' grain numbers. Consistent estimated field values of ?, a threshold sediment transport parameter, might be used to compare field data to threshold values derived from statistical arguments and laboratory experiments reported in the literature.  相似文献   

9.
Abandoned mining operations continue to severely degrade many ecosystems worldwide by releasing acidic water and/or heavy metals into surface and groundwater. Contaminant concentrations in affected streams vary with discharge in patterns that reflect both geochemical reactions and variable mixing of contaminated and non-contaminated waters. However, controls on concentration-discharge (C-Q) patterns remain unclear, particularly for constituents that experience changing solubility across redox and pH gradients. Understanding the C-Q behaviour of contaminants aids in predicting both downstream transport and effects on aquatic life under variable flow. Here, we examined the C-Q behaviours of non-reactive (Na, K, Ca, Mg, Cl) and reactive (Fe, Mn, Al, H+, SO42−) solutes in a stream contaminated with acid mine drainage in northeastern Ohio, USA. Concentration-discharge patterns at the watershed outlet primarily reflected mixing of contaminated baseflow with intermittent inputs of high pH water draining from a passive limestone treatment system into the stream. The treatment system acted as an ephemeral tributary that mitigated contamination in the stream by diluting solutes, raising pH, and driving metal precipitation, but only when flow was present during wet seasons. Consequently, AMD-derived reactive solutes (H+, Fe, Mn, Al) decreased with increasing stream discharge while relatively conservative solutes (e.g., Ca, Mg, K, Na) decreased only slightly or were chemostatic. This study highlights both the unique C-Q patterns of reactive solutes when compared to those of non-reactive solutes and the potential for intermittent streams to control C-Q behaviour in headwater catchments.  相似文献   

10.
The problem of predicting future short-term chemical behaviour in acidic and acid-sensitive streams is addressed. A relatively simple method is presented which combines a chemical technique for splitting the hydrograph into ground water and soil water components, based on the conservative component acid neutralization capacity, with the long-term hydrochemical model (MAGIC) in a ‘two-box’ mode. This method, coupled with a chemical speciation program (ALCHEMI), is used to assess short-term variations in stream chemistry with change in atmospheric deposition chemistry. The method is applied for a semi-natural moorland catchment in mid-Wales (Afon Gwy). For both hydrogen ion and inorganic aluminium, the modelled stream mixing relationships are non-linear, particularly at low hydrogen ion concentrations. The results also show that the relationship between hydrogen ion and inorganic aluminium concentrations varies with time in the stream. This result has important implications as it implies that aluminium concentrations will not recover, with reduced anthropogenic sulphur deposition, as rapidly as has previously been thought. Two methods, for use with critical load evaluation of ecological stress, are presented for describing the changes occurring: the hydrogen ion and inorganic aluminium concentration duration curve; the hydrogen ion and inorganic aluminium incident frequenty diagram.  相似文献   

11.
12.
This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2 concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2 ]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth interval and this intensive cementation is responsible for decreased porosity and permeability. In the CaCl2 water at the greater depth, pore water is un-der-saturated with respect to calcite, resulting in dissolution of calcite cements, as consistent with microscopic dissolution features of the samples from this depth interval. Calcite dissolution results in formation of high secondary porosity and permeability, and is responsible for the superior quality of the reservoir rocks at this depth interval. These results illustrate the importance of pore water chemis-try in controlling carbonate precipitation/dissolution, which in turn controls porosity and permeability of oil and gas reservoir rocks in major sedimentary basins.  相似文献   

13.
Concentrations of both aluminium (Al) and dissolved organic carbon (DOC) in stream waters are likely to be regulated by factors that influence water flowpaths and residence times, and by the nature of the soil horizons through which waters flow. In order to investigate landscape‐scale spatial patterns in streamwater Al and DOC, we sampled seven streams draining the Hubbard Brook valley in central New Hampshire. We observed considerable variation in stream chemistry both within and between headwater watersheds. Across the valley, concentrations of total monomeric aluminium (Alm) ranged from below detection limits (<0·7 µmol l−1) to 22·3 µmol l−1. In general, concentrations of Alm decreased as pH increased downslope. There was a strong relationship between organic monomeric aluminium (Alo) and DOC concentrations (R2 = 0·92). We observed the highest Alm concentrations in: (i) a watershed characterized by a steep narrow drainage basin and shallow soils and (ii) a watershed characterized by exceptionally deep forest floor soils and high concentrations of DOC. Forest floor depth and drainage area together explained much of the variation in ln Alm (R2 = 0·79; N = 45) and ln DOC (R2 = 0·87; N = 45). Linear regression models were moderately successful in predicting ln Alm and ln DOC in streams that were not included in model building. However, when back‐transformed, predicted DOC concentrations were as much as 72% adrift from observed DOC concentrations and Alm concentrations were up to 51% off. This geographic approach to modelling Al and DOC is useful for general prediction, but for more detailed predictions, process‐level biogeochemical models are required. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
A theoretical model is derived in which isotopic fractionations can be calculated as a function of variations in dissolved carbonate species on CO2 degassing and calcite precipitation. This model is tested by application to a calcite-depositing spring system near Westerhof, Germany. In agreement with the model,13C of the dissolved carbonate species changes systematically along the flow path. The difference in δ values between the upper and lower part of the stream is about 1‰. The13C content of the precipitated calcite is different from that expected from the theoretical partitioning. The isotopic composition of the solid CaCO3 is similar to that of the dissolved carbonate, though in theory it should be isotopically heavier by about 2.4‰. The18O composition of dissolved carbonate and H2O is constant along the stream. Calculated calcite-water temperatures differ by about +5°C from the observed temperatures demonstrating isotopic disequilibrium between the water and precipitated solid. This is attributed to kinetic effects during CaCO3 deposition from a highly supersaturated solution, in which precipitation is faster than equilibration with respect to isotopes.Plant populations in the water have virtually no influence on CO2 degassing, calcite saturation and isotopic fractionation. Measurements of PCO2, SC and13C within a diurnal cycle demonstrate that metabolic effects are below the detection limit in a system with a high supply-rate of dissolved carbonate species. The observed variations are due to differences in CO2 degassing and calcite precipitation, caused by continuously changing hydrodynamic conditions and carbonate nucleation rates.  相似文献   

15.
The crater lake of Kawah Ijen volcano contains extremely low pH (<0.4) waters with high SO4 (70000 mg/kg), Cl (21000 mg/kg), F (1500 mg/kg), Al (5000 mg/kg), Fe (2000 mg/kg) and trace metal (Cu 0.5, Zn 4, Pb 3 mg/kg) contents. These brines seep outward through the western crater rim and reappear on the other side as streamlets, which form the headwaters of the Banyupahit stream. The Banyupahit first mixes with fresh rivers and thermal springs in the Ijen caldera and then irrigates a coastal agricultural plain which is 30 km from the summit crater.We discuss the downstream composition changes affecting the Banyupahit waters by using stable isotope, chemical and mineralogical data collected from sites along the stream length. The saturation of the stream waters with respect to minerals was evaluated with SOLVEQ and WATEQ4F and compared with the geochemical observations. An aluminous mineralogy (alunogen, pickeringite, tamarugite and kalinite) develops in the upper part of the Banyupahit due to concentration of the headwaters by evaporation. Downstream attenuation of dissolved element concentrations results principally from dilution and from mineral precipitation. The stream pH changes from 0 at the source to >4 close to the mouth. The δD and δ18O values and the relative SO4–Cl–F contents of the Banyupahit waters indicate that the tributaries are mostly meteoric. Dissolved SO4 in the acidic stream come only from the crater lake seepages and are not involved later in microbially mediated reactions, as shown by their δ34S and δ18O values. Re-equilibration of the stream SO4 oxygen-isotope composition with H2O from tributaries does not occur.Calcium, SiO2, Al, Fe, K and SO4 behave non-conservatively in the stream waters. Gypsum, silica (amorphous or poorly ordered), a basic aluminum hydroxysulfate (basaluminite?), K-jarosite and amorphous ferric hydroxide may exert a solubility control on these elements along the entire stream length, or in certain stream sections, consistent with the thermochemical model results. Downstream concentration trends and mineral saturation levels suggest that precipitation of Sr-, Pb-rich barite and celestite consume Ba, Sr and Pb, whereas dissolved Cu, Pb and Zn may adsorb onto solid particles, especially after the junctions of the acidic stream with non-acidic rivers. We calculated that significant fluxes of SO4, F, Cl, Al, SiO2, Ti, Mn and Cu may reach the irrigation system, possibly causing serious environmental impacts such as soil acidification and induration.  相似文献   

16.
The headwater catchments of the Yellow River basin generate over 35% of the basin's total stream flow and play a vital role in meeting downstream water resources requirements. In recent years the Yellow River has experienced significant changes in its hydrological regime, including an increased number of zero‐flow days. These changes have serious implications for water security and basin management. We investigated changes in stream flow regime of four headwater catchments since the 1950s. The rank‐based non‐parametric Mann–Kendall test was used to detect trends in annual stream flow. The results showed no significant trend for the period 1956 to 2000. However, change‐point analysis showed that a significant change in annual stream flow occurred around 1990, and hence the stream‐flow data can be divided into two periods: 1956–1990 and 1991–2000. There was a considerable difference in average annual stream flow between the two periods, with a maximum reduction of 51%. Wet‐season rainfall appears to be the main factor responsible for the decreasing trend in annual stream flow. Reductions in annual stream flow were associated with decreased interannual variability in stream flow. Seasonal stream flow distribution changed from bimodal to unimodal between the two periods, with winter stream flow showing a greater reduction than other seasons. Daily stream flow regime represented by flow duration curves showed that all percentile flows were decreased in the second period. The high flow index (Q5/Q50) reduced by up to 28%, whereas the reduction in the low flow index (Q95/Q50) is more dramatic, with up to 100% reduction. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Due to the unique chemical properties and therefore wide range of applications, significant amounts of reactive dyes often end up in waste waters and this issue raises the need for more efficient treatment technologies. This work investigates the ability of magnetite nanoparticles functionalized with imidazolium based ionic liquid (IL) as an efficient sorbent for the removal of the Reactive black 5 from wastewater. Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, thermo‐gravimetric analysis, and zeta potential measurement were used to characterize the synthesized nanosorbent. The results showed that under optimal conditions, the dye removal efficiency of the grafted IL is 98.5% after a single run. Regeneration of the used sorbent could be possible and the modified magnetic nanoparticles exhibited good reusability. The isothermal data of RB5 sorption conformed well to the Langmuir model and the maximum sorption capacity of IL@Fe3O4 for RB5 was 161.29 mg g?1. Thermodynamic study indicated that the adsorption is endothermic and spontaneous. The use of such a system can provide fast and efficient removal of the reactive dyes from wastewater by using an external magnetic field.  相似文献   

18.
An acidification experiment was conducted on a small stream in the Loch Ard area of central Scotland. The stream was chosen because of its large, flow related, variation in pH (5.9-4.0). Two acid additions were made to approximately pH 3.5–3.7. The results indicated a strong correlation between labile aluminium and hydrogen, and a noticeable hysteresis in the response of calcium and hydrogen. It is hypothesised that divalent cation response is a result of ion-exchange mechanisms involving the streambed vegetation, with aluminium release resulting primarily from exchange reactions with streambed sediment stores. Data from a program of stream spot sampling have been analysed in an attempt to elucidate the contribution of different sources of aluminium under different flow conditions. Streambed sources of aluminium contribute significantly under low flow conditions; however, at high flow, additional sources of aluminium must contribute to match observed streamwater chemistry.  相似文献   

19.
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.  相似文献   

20.
Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long‐term datasets are available to evaluate changes over time. In this study, we demonstrate how simple monthly linear regression models based on short‐term historical Ts observations and readily available interpolated air temperature (Ta) estimates can be used for rapid assessment of historical and future changes in Ts. Models were developed for 61 sites in the southeastern USA using ≥18 months of observations and were validated at sites with longer periods of record. The Ts models were then used to estimate temporal changes in Ts at each site using both historical estimates and future Ta projections. Results suggested that the linear regression models adequately explained the variability in Ts across sites, and the relationships between Ts and Ta remained consistent over 37 years. We estimated that most sites had increases in historical annual mean Ts between 1961 and 2010 (mean of +0.11 °C decade?1). All 61 sites were projected to experience increases in Ts from 2011 to 2060 under the three climate projections evaluated (mean of +0.41 °C decade?1). Several of the sites with the largest historical and future Ts changes were located in ecoregions home to temperature‐sensitive fish species. This methodology can be used by resource managers for rapid assessment of potential climate change impacts on stream water temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号