首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
To discriminate possible anthropogenic and lithogenic sources of Pb in Lower Silesia (SW Poland), the Pb isotope composition was investigated in a spectrum of rocks and anthropogenic materials as well as within 10 soil profiles. Silicate rocks in Lower Silesia have 206Pb/207Pb ratios that vary from 1.17 for serpentinites to 1.38 for gneisses, and this variability is reflected in the isotope composition of the mineral soil horizons. The Pb isotope composition of coals, ores and anthropogenic materials (slags and fly ashes) is rather uniform, with 206Pb/207Pb ratios ranging from 1.17 to 1.18. Similar ratios were observed in ore and coal samples from Upper Silesia. The O soil horizons also have uniform 206Pb/207Pb ratios of 1.17–1.18 and the heterogeneity of the 206Pb/207Pb ratios increases with depth in the soil profiles. Five soils, with varying Pb concentrations, analysed far from contamination centres, show consistent, approximately 2-fold enrichment in Pb concentration from the C to A horizons, which is consistent with natural re-distribution of Pb within the profiles. The increase in the Pb concentration is accompanied by a decrease in 206Pb/207Pb ratios, also attributed to natural Pb isotope fractionation. Four soil profiles from industrial areas show variable enrichments in Pb concentrations and these are attributed to anthropogenic input from air-borne pollutants or even slag particles at smelting sites. The implication is that a lithogenic Pb source can deviate from the basement rock composition, and detailed isotope characteristics of the geological background and natural enrichments in soils are often needed to determine the lithogenic/anthropogenic proportions of Pb in soils.  相似文献   

2.
Lead concentrations and stable isotopic measurements were examined in the different chemical fractions of Czech forest soils to investigate the mechanisms of Pb partitioning. A method of selective sequential dissolution (SSD) was employed that distinguished between five different fractions: exchangeable, surface bound, organic matter, Fe-oxides, and silicates (non-labile).From an analysis of the concentrations and isotopic compositions associated with the different fractions, it is apparent that Pb in the deep Czech mineral soils is of predominantly natural origin and is primarily associated with silicates (69-81%) and Fe-oxides (11-19%). Natural Pb associated with surface bound and organic matter fractions in mineral soils accounts for only 7 to 15%. Anthropogenic Pb in the Czech soils is concentrated primarily in the organic horizons and is strongly associated with the surface-bound and organic matter fractions in which the proportion of total Pb is 33 to 50% and 23 to 47%, respectively.At high and low levels of contamination, Pb isotopic signatures within the labile fractions of the same soil samples are generally homogenous, although a degree of heterogeneity among these fractions is noted in samples of intermediate degrees of contamination. Such heterogeneity probably reflects different levels of natural and anthropogenic Pb mixing.Determination of the mass-normalized affinity of Pb to the primary components using solid-solution distribution coefficients suggests that in Czech forest soils, the order of affinity may be summarized as Fe-oxides > organic matter > silicates. A similar treatment of the data reported for semiarid Mediterranean soils indicates the prevailing order to be Fe-oxides > carbonates > organic matter > silicates. The general similarity of the behaviour of Pb with respect to the different soil components in both temperate and semiarid soils suggests that these orders of affinity may have wider significance for a variety of other soil types.  相似文献   

3.
Geochemical evaluation of the distribution of heavy metals in soils of Port Harcourt and its environs in the Niger Delta region is presented in respect of anthropogenic factor and index of geoaccumulation. Sixteen (16) soil samples were collected from two horizons (0-10 cm and 100 cm) from the various grids and analyzed. The geo-chemical analyses showed the vertical and horizontal distributions of heavy metals. The results showed the ranges of the metals determined as follows: Pb (6.86-2.49)×10-6, with an average of 4.63×10-6; Cd (0.05-0.00)×10-6, with an average of 0.02×10-6, As (0.01-0.00)×10-6, with an average of 0.00×10-6. Cu (15.36-10.80) ×10-6, with an average of 13.36×10-6, and V (1.36-0.20)×10-6, with an average of 0.94×10-6. Quantification of the degree of pollution was carried out using anthropogenic factor (AF) and index of geoaccumulation (Igeo). The Igeo values of 0.06, 0.02 and 0.00 for Pb, Cd and As, respectively indicate low-level contamination while Zn (1.14) and V (1.40) show me-dium-level contamination. The sources of contamination are attributed to urbanized anthropogenic activities. The majority of the samples analyzed show that the AF values are less than 1 with the exception of vanadium (V) whose AF values range from 2.73 to 13.60×10-6. Vanadium is more enriched than As, Cd, Pb, and Cu. The order of degrees of anthropogenic contamination and index of geoaccumulation in the soil is V >Zn >Pb >Cu >Cd >AS. Metals were retained near the top soil and their concentrations in the deepest horizons were lower and normal for uncontaminated soils. Metal concentrations in the top soil horizons were significantly related to distance from the industrial and hu-man activities.  相似文献   

4.
Todos os Santos (all Saints) Bay area on Brazil’s east coast is known for one of the most significant cases of lead contamination in the country owing to the past activities of a Pb-smelter plant. This work was carried out to assess the concentration and sources of Pb based on Pb isotopes and enrichment factor of soil profiles surrounding Todos os Santos Bay in order to understand the expansion of contamination and to help the establishment of Pb regulatory standards for the region. Forty-four samples were collected from soil genetic horizons of six pedons that represent the range of dominant soil properties and geologic materials in the region. Concentrations of Pb and the isotopes 204Pb, 206Pb, 207Pb, and 208Pb were determined on an inductively coupled plasma (quadrupole) mass spectrometry. The soil enrichment factor was calculated using Al and Fe as conservative index elements. Average Pb concentration (15.87 mg kg?1) in uppermost horizons (from all six pedons) is slightly higher than soil background concentrations commonly reported in Brazil. Samples feature a wide range of Pb isotope ratios, ranging from 36.71 to 47.38 for 208Pb/204Pb, 15.00 to 15.65 for 207Pb/204Pb, 16.86 to 20.59 for 206Pb/204Pb, and 1.10 to 1.31 for 206Pb/207Pb. For the enrichment factor calculations, only Fe demonstrated a good agreement with Pb isotopic ratios. Both Pb isotopic composition and enrichment factor were useful tools to distinguishing natural and anthropogenic influence on the Pb soil concentrations.  相似文献   

5.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

6.
This study analyses the adsorption of Pb(II) and Cr(III) in soils. These metals are commonly found together in nature in urban wastes or industrial spillages, and the theoretical approach of the work was to evaluate the response of the soil to continuous Cr and Pb spillages to soil in terms of several physicochemical parameters. The influence of an anthropogenic input of phosphorus was evaluated. Continuous flow experiments were run in duplicates in acrylic columns (25 cm × 3.2 cm). The influent Cr(III) and Pb(II) solutions of 10 mg l?1 and 25 mg l?1 at pH 5 were pumped upward through the bottom of the columns to ensure saturation flow conditions. Also, successive experiments were run with the above concentrations of Cr(III) and Pb(II) and NaH2PO4, keeping metal to phosphorus ratio of 1:0, 1:0.1 and 1:1. Modelling parameters included Freundlich and Langmuir equations, together with the Two-site adsorption model using CXTFIT code. Results obtained allowed concluding that Pb(II) adsorption presents a certain degree of irreversibility and the continued spillages over soil increment the fraction which is not easily desorbed. Cr(III) desorption was almost complete, evidencing its high mobility in nature. The presence of an anthropogenic input of phosphorus leads to a marked increase of both Pb(II) and Cr(III) adsorption in soils. Z-potential measurements allow to discard the electrostatic attraction of Cr(III) and Pb(II) with the surface charged soil as the dominant process of metal sorption. Instead, CheaqsPro simulation allows to identify PbH2PO4 +, PbHPO4 (aq) and CrHPO4 + as the dominant species which regulate Cr(III) and Pb(II) transport in soils.  相似文献   

7.
Selenium and heavy metals content in some Mediterranean soils   总被引:1,自引:0,他引:1  
The study of metal contents in industrial, agricultural or/and polluted soils compared with natural or unpolluted soils is currently necessary to obtain reference values and to assess soil contamination. Nonetheless, very few works published appear in international journals on elements like Se, Li and Sr in Spanish soils. This study determines the total levels of Se, Li, Sr, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, Fe, Mn and Ba in 14 natural (unpolluted) soils (Gypsisols, Leptosols, Arenosols and Acrisols), 14 agricultural soils (Anthrosols, Fluvisols and Luvisols), and 4 industrial–urban affected-surface soil horizons (Anthrosols and Fluvisols) of Eastern Spain. The geochemical baseline concentrations (GBC) and reference values (RV) have been established, and the relationships among elements and also between soil properties and elemental concentrations have been analysed. The RV obtained in this study were (mg kg−1): Se 2.68, Li 115, Sr 298, Cd 0.97, Co 35, Cr 217, Cu 46, Ni 50, Pb 137, V 120, Zn 246, Fe 124,472, Mn 2691, and Ba 743. The RV for Se and Li were used as a preliminary approach to assess soil contamination in Spanish soils. The results confirm human impact on Sr, As, Cd, Cr, Cu, Ni, Pb and Zn soil concentrations, but evidence no deviation from natural Se, Li, Co, V, Fe, Mn and Ba concentrations. The results obtained from the statistical analysis reveal significant correlations between some elements and clay and soil organic matter (SOM) contents, indicating that metal concentrations are controlled by soil composition. One particularly interesting finding is the high correlation coefficients obtained between SOM and Se, Cd, Cr, V, Fe, and Mn, and between clay and Cd, Zn, V, Fe and Mn. Once again, these facts confirm the role of SOM and clay minerals in soil functions and that soil is an ecosystem element responsible for maintaining environmental quality.  相似文献   

8.
Zn and Pb smelters are the major contributors to Zn and Pb emissions among all anthropogenic sources, thus, it is essential to understand Zn isotopic variations within the context of metallurgical industries, as well as its fractionation in different environments impacted by smelting activities. This mini review outlines the current state of knowledge on Zn isotopic fractionation during the high-temperature roasting process in Zn and Pb refineries; δ66Zn values variations in air emissions, slags and effluents from the smelters in comparison to the geogenic Zn isotopic signature of ores formation and weathering. In order to assess the environmental impact of these smelters, the available and measured δ66Zn values are compiled for smelter impacted natural water bodies (groundwater, stream and river water), sediments (lake and reservoir) and soils (peat bog soil, inland soil). Finally, the discussion is extended to the fractionation induced during numerous physicochemical reactions and transformations, i.e. adsorption, precipitation as well as both inorganic and organic surface complexation.  相似文献   

9.
Due to the intensified industrial activities and excessive application of agrochemicals and organic waste materials over the last few decades, there is a great concern about the accumulation of potentially toxic elements (PTEs) in soils from north of Khuzestan Province, southwestern Iran. Therefore, a comparative study with a total number of 300 composite soil samples (0–10 cm) from industrial, urban, agricultural, forest, and rangelands; and 26 samples from the major types of soils parent materials was conducted to examine sources, pollution status, and the effects of soil properties, land use types, and the local lithology on the total concentrations of As, Pb, and Cu (measured using atomic absorption spectrometer (AAS) equipped with graphite furnace) in the soils studied. The mean values of Pb and Cu were 12.2?±?4.6 and 13.5?±?7.6 mg kg?1, respectively, slightly higher than the background values of the study area, but lower than the guideline values of Iranian Environmental Quality Standard for Soils. However, the mean values of As (1.72?±?1.15 mg kg?1) were lower than both background values and the guideline values of Iranian Environmental Quality Standard for soils. The greatest values of the geo-accumulation index (I geo), enrichment factor (EF), and the concentrations of Pb, Cu, and As were arranged as industrial > urban > agriculture > rangelands = forest land uses. The results also indicated that concentrations of all PTEs were greater in soils as compared to those in parent materials. Using principal component analysis (PCA), the origin of Cu and Pb with moderate to high enrichments was attributed to the inputs from both natural and anthropogenic sources. However, As was found to be mainly influenced by lithogenic origin.  相似文献   

10.
Zinc isotopes have been studied along two smelter-impacted soil profiles sampled near one of the largest Pb and Zn processing plants in Europe located in northern France, about 50 km south of Lille. Mean δ66Zn values along these two soil profiles range from +0.22 ± 0.17‰ (2σ) to +0.34 ± 0.17‰ (2σ) at the lowest horizons and from +0.38 ± 0.45‰ (2σ) to +0.76 ± 0.14‰ (2σ) near the surface. The δ66Zn values in the lowest horizons of the soils are interpreted as being representative of the local geochemical background (mean value +0.31 ± 0.38‰), whereas heavier δ66Zn values near the surface of the two soils are related to anthropogenic Zn. This anthropogenic Zn occurs in the form of franklinite (ZnFe2O4)-bearing slag grains originating from processing wastes at the smelter site and exhibiting δ66Zn values of +0.81 ± 0.20‰ (2σ). The presence of franklinite is indicated by EXAFS analysis of the topsoil samples from both soil profiles as well as by micro-XANES analysis of the surface horizon of a third smelter-impacted soil from a distant site. These results indicate that naturally occurring Zn and smelter-derived Zn exhibit significantly different δ66Zn values, which suggests that zinc isotopes can be used to distinguish between geogenic and anthropogenic sources of Zn in smelter-impacted soils. In addition to a possible influence of additional past sources of light Zn (likely Zn-sulfides and Zn-sulfates directly emitted by the smelter), the light δ66Zn values in the surface horizons compared to smelter-derived slag materials are interpreted as resulting mainly from fractionation processes associated with biotic and/or abiotic pedological processes (Zn-bearing mineral precipitation, Zn complexation by organic matter, and plant uptake of Zn). This conclusion emphasizes the need for additional Zn isotopic studies before being able to use Zn isotopes to trace sources and pathways of this element in surface environments.  相似文献   

11.
Industrialization, urbanization, and agricultural practices are 3 of the most important sources of metal accumulations in soils. Concentrations of Cr, Mn, Ni, Cu, Pb, Zn and Cd were determined in surface soils collected under different land uses, including urban (UR), industrial (IN-1 and IN-2), agricultural (AG), abandoned unused (AB), and natural (NA) sites to examine the influence of anthropogenic activities on metals in soils formed in a typical Mediterranean environment. The highest concentrations of Cr, Cd, and Pb observed in the NW industrial area (IN-2) were 63.7, 3.34 and 2330 mg metal kg−1 soil, for each metal, respectively. The SW industrial area (IN-1) contained the highest Zn content at 135 mg kg−1. However, soils with the highest concentrations of Ni and Cu were located in AG sites at 30.9 and 64.9 mg kg−1 soil, respectively. Sampling locations with the highest concentrations of Mn were identified in AB sites. Using the concentrations of metals at the NA sites as the baseline levels, soils collected from all other land uses in the study area exhibited significantly higher total contents of Zn, Mn, Cr and Ni. Metal enrichment was attributed to fertilizer and pesticide applications, industrial activities, and metal deposition from a high volume of vehicular traffic (for Pb and Cd). High concentrations of Mn in some samples were attributed to parent materials. The study demonstrated that anthropogenic activities associated with various land uses contribute to metal accumulation in soils and indicated a need to closely monitor land management practices to reduce human and ecological risks from environmental pollution.  相似文献   

12.
The properties of soils derived from carbonate rock, red residua, and sand-shale in Guizhou province, China are essentially different. However, the effects of parent material and anthropogenic activities on the concentration of trace elements when the soils are converted into paddy soils are unknown. A total of 319 paddy topsoil samples (0–20 cm) were collected in a typical region to determine their relative contribution to the concentrations of trace elements in the soil. The results indicated that the contents of trace elements were far beyond the uncultivated soil background and the input of organic fertilizers was presumably responsible for accumulation of trace elements. In addition, principal component analysis showed that the first component included Cd, Cr, and As, which strongly associated with anthropogenic activities. Pb and Hg formed the second component, which related to both parent materials and anthropogenic input. Furthermore, the Cr and Hg contents in paddy soil derived from carbonate rock have higher values than other types of soils partly because of the high background values as well as slightly alkaline condition. In the paddy soil derived from red residua, high physical clay content accounted for enrichment of Pb.  相似文献   

13.
Systematic variations in the Cd and Pb isotope ratios in polluted topsoils surrounding the Jinding Pb–Zn mine in China were measured so that the sources of the metals could be traced. The average δ114/110Cd value and 206Pb/207Pb isotope ratio in background soils from the region were +0.41‰ and 1.1902, respectively, whereas the contaminated soil samples had different values, with the δ114/110Cd values varying between −0.59‰ and +0.33‰ and the 206Pb/207Pb isotope ratios varying between 1.1764 and 1.1896. We also measured the Cd and Pb isotopic compositions in oxide ores, sulfide ores, and slags, and found that binary mixing between ores and background soils could explain almost all of the variations in the Cd and Pb isotope ratios in the contaminated soils. This suggests that Cd and Pb pollution in the soils was mainly caused by the deposition of dust emitted during anthropogenic activities (mining and refining). The Pb and Cd isotope ratios clearly showed that contamination in soils in the northeastern part of the area was caused by surface mines and zinc smelters and their slagheaps, while contamination in soils in the southwestern part of the area also came from tailing ponds and underground mines. The main area of soil polluted by dust from Pb–Zn mining processes roughly extended for up to 5 km from the mine itself.  相似文献   

14.
Numerous natural and anthropogenic processes in a watershed produce the geochemical composition of a river, which can be altered over time by snowmelt and rainfall events and by built infrastructure (i.e., dams and diversions). Trace element concentrations coupled with isotopic ratios offer valuable insights to disentangle the effects of these processes on water quality. In this study, we measured a suite of 40+ trace and major elements (including As, Cd, Ce, Cr, Cs, Fe, La, Li, Mo, Pb, Rb, Sb, Se, Sr, Ti, Tl, U, and Zn), Sr isotopes (87Sr/86Sr), and stable isotopes of H and O (δD and δ18O) to investigate natural and anthropogenic processes impacting the Provo River in northern Utah, USA. The river starts as a pristine mountain stream and passes through agricultural and urban areas, with two major reservoirs and several major diversions to and from the river. We sampled the entire 120 km length of the Provo River at 13 locations from the Uinta Mountains to Utah Valley, as well as two important tributaries, across the range of hydrologic conditions from low flow to snowmelt runoff during the 2013 water year. We also sampled the furthest downstream site in the Utah Valley urban area during a major flood event. Trace element concentrations indicate that a variety of factors potentially influence Provo River chemistry, including inputs from weathering of carbonate/siliciclastic rocks (Sr) and black shales (Se and U), geothermal groundwater (As, Cs, Li, and Rb), soil erosion during snowmelt runoff (Ce, Cr, Fe, La, Pb, and Ti), legacy mining operations (Mo, Sb, and Tl), and urban runoff (Cr, Pb, and Zn). Although specific elements overlap between different groups, the combination of different elements together with isotopic measurements and streamflow observations may act as diagnostic tools to identify sources. 87Sr/86Sr ratios indicate a strong influence of siliciclastic bedrock in the headwaters with values exceeding 0.714 and carbonate bedrock in the lower reaches of the river with values approaching 0.709. δD and δ18O changed little throughout the year in the Provo River, suggesting that the river is primarily fed by snowmelt during spring runoff and snowmelt-fed groundwater during baseflow. Based on nonmetric multidimensional scaling (NMS) water chemistry was unique across the upper, middle, and lower portions of the river, with high temporal variability above the first reservoir but minimal temporal variability below the reservoir. Thus, the results show that dams alter water chemistry by allowing for settling of particle-associated elements and also by homogenizing inflows throughout the year to minimize dilution during snowmelt runoff. Taken together, trace element concentrations and isotopic measurements can be used to evaluate the complex geochemical patterns of rivers and their variability in space and time. These measurements are critical for identifying natural and anthropogenic impacts on river systems.  相似文献   

15.
As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by ‘pumping’ lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope (206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine (Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ∼100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ∼1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/207Pb ratio of ∼1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m−2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (∼50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ∼0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m−2 yr−1 (mean ± SD), is taken up from the mor layer, the mineral soil and the atmosphere, respectively, by plants in the undisturbed mature forest. These small fluxes, which are at least a magnitude lower than reported downward migration losses, suggest that plant uptake will not strongly prolong the self-cleaning rate of the mor layer.  相似文献   

16.
Anthropogenic Pb affects the environment worldwide. To understand its effect on forest ecosystem, Pb isotope ratios were determined in precipitation, various components of vegetation, the forest floor, soil and parent material in a Japanese cedar (Cryptomeria japonica D. Don) forest stand. The average 206Pb/207Pb ratio in bulk precipitation was 1.14 ± 0.01 (mean ± SD), whereas that in the subsoil (20–130 cm) was 1.18 ± 0.01. Intermediate ratios ranging from 1.15 to 1.16 were observed in the vegetation, the forest floor, and the surface soil (0–10 cm). Using the 206Pb/207Pb ratios, the contribution of anthropogenic sources to Pb accumulated in the forest were estimated by the simple binary mixing model. Sixty-two percent of the Pb in the forest floor, 71% in the vegetation, and 55% in the surface soil (0–10 cm) originated from anthropogenic sources, but only 16% in the sub-surface soil (10–20 cm) was anthropogenic. These results suggest that internal Pb cycling occurs mainly between surface soil and vegetation in a Japanese cedar ecosystem, and that anthropogenic Pb strongly influences Pb cycling. Although the Japanese cedar ecosystem has a shallow forest floor, very little atmospherically derived Pb migrated downward over 10 cm in depth.  相似文献   

17.
Industrial development, intensive agriculture and fast urbanization have caused the metal contents of soils to increase to many times the allowable limits. To assess this impact on urban and rural soils, we quantified the Cd, Cr, Cu, Pb, Ni and Zn contents of 258 soil samples from the Recife metropolitan region (RMR). The objectives of the study were to estimate the probability of ecological risk, to determine the spatial pattern of the metals’ accumulation in the soil and to identify potential sources for the metals using a multivariate geostatistical approach. Mean concentrations of Zn, Cr, Pb, Cu, Ni and Cd in soils were 65.2, 17.9, 16.5, 12.8, 6.3 and 1.5 mg kg?1, respectively. The results demonstrated that the Cd was anthropogenic in origin, the Cr and Ni were lithogenic (natural) in origin and the Cu, Pb and Zn were mixed in origin. Cd contaminated 91% of the samples; the median content of Cd (1.4 mg kg?1) was three times the quality reference value for soil. The Cd contents of sugarcane fields exceeded the allowable limit (3.0 mg kg?1) for agricultural areas. The spatial variability of the metals in the RMR showed that metallurgy, cement production, vehicle exhaust and vehicular traffic were the main sources of metals in urban areas, while phosphate-based fertilizers were the main sources in rural areas. More than 80% of the metropolitan region surveyed in the study was at moderate to high ecological risk.  相似文献   

18.
《Applied Geochemistry》2002,17(4):475-492
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input.  相似文献   

19.
研究雄安地区土壤重金属和砷元素空间分布特征及其来源,对于支撑新区土地资源和环境管理具有重要意义。基于雄安新区土壤环境调查,运用地统计学方法和ArcGIS 技术分析模拟了土壤中As、Hg、Cd、Cu、Pb、Zn、Ni、Cr等8种元素空间分布特征,综合运用空间分析、多元统计学方法和正定因子矩阵模型解析这些元素的主要来源。结果表明:(1)区内土壤质量总体良好,4.35 %的土壤样品Cd和Cu含量超过农用地土壤污染风险筛选值,但均低于农用地土壤污染风险管控值;与河北省背景值相比,Cd、Cu、Pb、Zn和Hg存在不同程度中度和显著富集。(2)As、Cd、Cu、Pb、Zn、Ni、Cr含量呈现出由北部向南部逐渐增高的趋势,高值区主要分布在新区西南部;Hg元素分布分散,高值区主要分布在城镇及工业企业周边。(3)不同土地利用类型土壤剖面重金属和砷元素垂向分布受pH值、有机碳和铁铝氧化物等理化性质影响显著。(4)研究区土壤重金属和砷元素富集受人类活动影响明显,人为来源贡献率达67.12 %,Hg元素主要来源于人为排放的大气沉降富集,As元素富集受到废渣堆放和利用的影响,Cd、Cu、Pb和Zn元素富集受工业生产、污水灌溉以及尾气排放等活动影响。研究成果可为雄安新区合理制定土地资源开发利用和生态保护措施提供技术支撑。  相似文献   

20.
Three soil profiles taken from the Hartwood Research Station in Central Scotland have been analyzed using chemical digestion and extraction techniques to investigate the chemical association of heavy metals deposited from the atmosphere. Total digestion, EDTA extraction and the BCR (Bureau Communitaire de Reference) sequential extraction procedure were used. In addition, lead isotope ratios in the whole soils and in the fractions from the sequential extraction procedure were measured using thermal ionisation mass spectrometry. All the digestion and extraction procedures gave clear indication of enhanced concentrations of heavy metals in surface soils, in particular for lead and zinc. Whereas total digestion gave a good indication of the heavy metal status of the soils, the extraction procedures were necessary to provide information on chemical association of the metals with soil components, information needed to understand the soil processes involved in mobilization of metals. Lead isotope analysis of the whole soils revealed a consistent picture of lower 206Pb/207Pb ratios in surface soils (1.140-1.147) than in soils at 20-30 cm depth (1.182-1.190). The steady progression from the lower to higher ratios down the profile was clear indication that anthropogenic lead had penetrated to some degree into the deeper soils. The combination of sequential extraction and lead isotope analysis proved to be a powerful approach to studying this effect in more detail and showed that the fractions extractable from 20 to 30 cm soils contained lead with much lower 206Pb/207Pb ratios (1.174-1.178) than the residual fraction (1.196-1.200). As the extractable fractions contained ≥85% of the lead in the soil, a substantial portion of lead at 20-30 cm depth was of anthropogenic origin. The 206Pb/207Pb ratios of 1.174-1.178 found in the extractable fractions suggested that the mobile component of the anthropogenic lead was that deposited before the introduction of leaded petrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号