首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The location of H filaments is compared with maps of the photospheric line of sight velocity V and the magnetic field H . It is found that (1) H filaments are associated with regions of ¦V ¦ 300m s–1, (2) always both positive as well as negative velocities are present under H structures, (3) stable (long lasting) portion of filaments frequently occur at the position of H = 0 as well as V = 0 lines, (4) this association remains valid for the longitudes less than 50° from central meridian.  相似文献   

2.
We observed the large post-flare loop system, which developed after the X 3.9 flare of 25 June 1992 at 2011 UT, in H with the Multichannel Subtractive Double Pass Spectrograph at Pic-du-Midi and in X-rays with the it Yohkoh/SXT instrument. Following the long-term development of cool and hot plasmas, we have determined the emission measure of the cool plasma and, for the first time, the temporal evolution of the hot-loop emission measure and temperature during the entire gradual phase. Thus, it was possible to infer the temporal variation of electron densities, leading to estimates of cooling times. A gradual decrease of the hot-loop emission measure was observed, from 4 × 1030 cm–5 at 2300 UT on 25 June 1992 to 3 × 1028 cm–5 at 1310 UT on 26 June 1992. During the same period, the temperature decreased only slowly from 7.2 to 6.0 × 106 K. Using recent results of NLTE modeling of prominence-like plasmas, we also derive the emission measure of cool H loops and discuss their temperature and ionisation degree. During two hours of H observations (11–13 hours after the flare) the averaged emission measure does not show any significant change, though the amount of visible cool material decreases and the volume of the loops increases. The emission measure in H, after correction for the Doppler-brightening effect, is slightly lower than in soft X-rays. Since the hot plasma seems to be more spatially extended, we arrive at electron densities in the range n infe supho n infe supcool 2 × 1010 cm–3 at the time of the H observations.These results are consistent with the post-flare loop model proposed by Forbes, Malherbe, and Priest (1989). The observed slow decrease of the emission measure could be due to an increase of the volume of the loops and a gradual decrease of the chromospheric ablation driven by the reconnection, which seems to remain effective continuously for more than 16 hours. The cooling time for hot loops to cool down to 104 K and to appear in H would be only a few minutes at the beginning of the gradual phase but could be as long as 2 hours at the end, several hours later.  相似文献   

3.
We present evidence for Ly pumping of the Lyman band system of molecular hydrogen in Herbig-Haro 7 and the bipolar outflow DR 21. For this study we have measured several vibrational-rotational emission lines of H2 whose energy levels are widely spaced and ranging from 6000 (v = 1) to 25000 Kelvin (v = 4). We show that the near-infrared H2 emission from the shocked gas in HH 7 can be well described by a bow C-type shock. The enhanced emission observed from the higher energy levels (v > 3) can be well modelled by employing the Ly pumping mechanism.In the DR 21 outflow the multi-line study showed that different physical conditions exist in the eastern and western emission lobes. The higher H2 line ratios measured in the eastern lobe suggests a higher Ly pump rate which may be locally produced in the fast bowshocks. The FUV radiation field emanating from the central HII regions may in addition be exciting the Lyman and Werner bands of H2 in the molecular lobes.We show that the observed H2 emission can be interpreted in terms of a simple model consisting of a C-type bowshock, which produces the low excitation H2 emission, and a FUV radiation field with enough Ly line radiation to produce the high excitation H2 emission through fluorescence.  相似文献   

4.
The utility of very high dispersion spectra (5–11 mm/Å) for the study of line profile and velocity structure in quiescent prominences is demonstrated by observations, taken with the spectregraphic slit positioned normal to the limb in H 6563 Å, He D3 5876 Å, and Ca+K 3933 Å. The emission profiles of both H and the K line often show a central reversal (absorption). Emission structures in the K-line can be complex with details as narrow as 0.04 Å. Frequently this structure consists of two distinct components: a central, strong, rather narrow line, and an often displaced, weak feature of undefined profile appearing as fuzz. It is suggested that this fuzz indicates an exchange of matter between the prominence and the corona.Visiting Astronomer, Institute for Theoretical Astrophysics, Oslo, Norway.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

5.
We analyze the emission component of galaxy nuclei at very low intensity levels (W(H)2Å). This emission level is considerably lower than that of classical LINERS like NGC 1052. We have access to weaker emission lines by averaging spectra with similar line ratios for H [NII], and [SII]. From the resulting spectrum for very low level emission nuclei, the [SII] 6717, 6731/[SIII] 9069, 9532 line ratio criterion (Diazet al., 1985a) unambiguously shows that shock-wave heating is the mechanism responsible for the ionization in such objects.  相似文献   

6.
Results from wind ionization calculations are presented which show how the P-Cygni profiles of superionized species such as O VI can provide information about the X-ray source characteristics of early-type stars. Using detailed radiative and atomic physics models, we find that a significant source of X-ray emission from Pup (O4 If) comes from a region in the wind located within roughly 1 to 2 stellar radii of the photosphere. Our results suggest that X-rays sources in which emission occurs exclusively at large radii (r a fewR * ) are inconsistent with UV P-Cygni profiles for O VI. Instead, we find that X-ray emission from shocks distributed throughout the lower regions of the wind (r 1 – 2R * ) is consistent with both X-ray and UV data, as well as mass loss rates deduced from radio andH observations.  相似文献   

7.
H. Zirin 《Solar physics》1978,58(1):95-120
I have studied a number of flares for which good X-ray and optical data were available. An average lag of 5.5 s between hard X-ray (HXR) start and H start, and HXR peak and Ha peak was found for 41 flares for which determination was possible. Allowing for time constants the time lag is zero. The peak H lasts until 5–6 keV soft X-ray (SXR) peak. The level of H intensity is determined by the SXR flux.Multiple spikes in HXR appear to correspond to different occurrences in the flare development. Flares with HXR always have a fast H rise. Several flares were observed in the 3835 band; such emission appears when the 5.1–6.6 keV flux exceeds 5 × 104 ph cm-2 s-1 at the Earth. Smaller flares produce no 3835 emission; we conclude that coronal back conduction cannot produce the bright chromospheric network of that wavelength.The nearly simultaneous growth of H emission at distant points means an agent travelling faster than 5 × 103 km s-1 is responsible, presumably electrons.In all cases near the limb an elevated Ha source is seen with the same time duration as HXR flux; it is concluded that this H source is almost always an elevated cloud which is excited by the fast electrons. A rough calculation is given. Another calculation of H emission from compressed coronal material shows it to be inadequate.In several cases homologous flares occur within hours with the same X-ray properties.Radio models fit, more or less, with field strengths on the order of 100G. A number of flares are discussed in detail.  相似文献   

8.
D3 and H pictures of prominences were obtained with a 21-in. Lyot coronograph and a Fabry-Perot etalon used as a narrow band filter. The monochromatic images of quiescent, quasiquiescent and loop-prominences were studied. The comparison of the isophotes of quiescent and quasi-quiescent prominences in D3 with those in H shows the similarity of the prominence structure at both wavelength, although there is a strong tendency for an increase in the intensity ratio D3/H in the upper region of prominences. It seems that it is due to lower temperature in the upper regions of prominences. Probably, the relaxation processes establishing ionization equilibrium play some role. Measurements of the knot intensities of the loop-prominence show strong variations of the intensity ratio D3/H (more than one order of magnitude).  相似文献   

9.
Absolute wavelengths for Fraunhofer lines are compared with laboratory measurements for several atomic and molecular spectra. The wavelength differences are shown to be consistent with the proposal that the deeper layers of the photosphere are in convective motion: e -3 km/sec for log 0> -1.0. Convective motions in the outer layers (log0< - 1.0) are shown to be very small. Wavelength shifts of Fraunhofer lines formed in these outer layers are in good quantitative agreement with the predictions of the General Theory of Relativity.  相似文献   

10.
We have compared the structures seen on X-ray images obtained by a flight of the NIXT sounding rocket payload on July 11, 1991 with near-simultaneous photospheric and chromospheric structures and magnetic fields observed at Big Bear. The X-ray images reflect emission of both Mgx and Fexvi, formed at 1 × 106 K and 3 × 106 K, respectively. The brightest H sources correspond to a dying sub-flare and other active region components, all of which reveal coronal enhancements situated spatially well above the H emission. The largest set of X-ray arches connected plages of opposite polarity in a large bipolar active region. The arches appear to lie in a small range of angle in the meridian plane connecting their footpoints. Sunspots are dark on the surface and in the corona. For the first time we see an emerging flux region in X-rays and find the emission extends twice as high as the H arches. Many features which we believe to correspond to X-ray bright points (XBPs) were observed. Whether by resolution or spectral band, the number detected greatly exceeds that from previous work. All of the brighter XBPs correspond to bipolar H features, while unipolar H bright points are the base of more diffuse comet-like coronal arches, generally vertical. These diverge from individual features by less than 30°, and give a good measure of what the canopies must do. The H data shows that all the H features were present the entire day, so they are not clearly disappearing or reappearing. We find a new class of XBPs which we call satellite points, elements of opposite polarity linked to nearby umbrae by invisible field lines. The satellite points change rapidly in X-ray brightness during the flight. An M1.9 flare occurred four hours after the flight; examination of the pre-flare structures reveals nothing unusual.  相似文献   

11.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

12.
A new model for the source distribution of galactic soft X-ray (B and C band) emission is presented. From the mean dependence of count rates on galactic latitudeb (i.e., the brightness distribution), we derive the soft X-ray source functionQ as function of the optical depth by solving the equation of radiative transfer with the aid of a Laplace transform. Contrary to older Heaviside step models,Q is found to increase strongly, but not abruptly, in the range 1.5<<2.5, indicating a noticeable emission of X-rays from beyond theHi scale height. Using standard X-ray absorption cross-sections for the interstellar medium, we find that the B band X-ray emission coefficient is non-zero within theHi disk and has a maximum at az-value slightly above the Hi scale height. In the C band, the emission coefficient slightly decreases with increasingz, at least up to theHi scale height. A non-zero source function near the galactic plane implies that the interstellar medium (ISM) within theHi scale height is not only an absorbing layer but is mixed with X-ray emitting regions. The so-called local hot bubble is adopted as one of these regions. The maximum of the B band emission coefficient, together with the sharp increase ofQ, is strong evidence for the existence of a galactic soft X-ray halo, and, moreover, give rise to the assumption of a general intergalactic X-ray background. The effective absorption cross-sections given in the literature, based on an (pure) exponential dependence in the negative correlation between count rates andHi column densities, were biased to be too small, in particular in the B band. In replacing the Heaviside step (in the ISM) by a smoothed transition region, these inconsistencies become spurious.  相似文献   

13.
In this paper we present the H map, the 2D velocity field and the rotation curve of the galaxy NGC 784 obtained with the ByuFOSC2 scanning Fabry-Perot interferometer, attached at the prime focus of the 2.6-m telescope of Byurakan Observatory. The H image shows several HII condensations along the major axis of the galaxy. The galaxy has an asymmetric distribution of the H emission. The rotation curve is quite symmetric with a low gradient in the central part of the galaxy.  相似文献   

14.
In shocked media of high preshock ionisation, the lack of thermal contact between atoms in the neutral component of the gas can prevent the formation of a thermal equilibrium independent of the ionic component. The behaviour of the neutral gas in such a shock is dominated by the atomic processes driven by the postshock ionic component.A transport equation for the velocity distribution of the neutral gas is explicitly solved under the physical conditions of a 1D ionic shock transition. The resulting distributions are used to calculate predicted H line emission from such a system.  相似文献   

15.
The 25 years following the serendipitous discovery of megamasers have seen tremendous progress in the study of luminous extragalactic H2O emission. Single-dish monitoring and high-resolution interferometry have been used to identify sites of massive star formation, to study the interaction of nuclear jets with dense molecular gas and to investigate the circumnuclear environment of active galactic nuclei (AGN). Accretion disks with radii of 0.1–3 pc were mapped and masses of nuclear engines of order 106–108 M were determined. So far, 50 extragalactic H2O maser sources have been detected, but few have been studied in detail.  相似文献   

16.
The H observations of a selected sample of bright Be stars are presented. The available infrared observations at K band (2.2 m) of these stars have been used to find the infrared excess emission. The analysis of the combined data show thatL H, the luminosity of the H emission line, is proportional toL IR, the luminosity of the infrared excess emission. The linear correlation betweenL IR andL H shows that both the infrared excess and the H line originate in a common region. It is also detected that the infrared excess emission is produced throughout the whole envelope whereas the H is emitted in some defined region of the circumstellar (CS) envelope.  相似文献   

17.
As a consequence of the Taylor–Proudman balance, a balance between the pressure, Coriolis and buoyancy forces in the radial and latitudinal momentum equations (that is expected to be amply satisfied in the lower solar convection zone), the superadiabatic gradient is determined by the rotation law and by an unspecified function of r, say, S(r), where r is the radial coordinate. If the rotation law and S(r) are known, then the solution of the energy equation, performed in this paper in the framework of the ML formalism, leads to a knowledge of the Reynolds stresses, convective fluxes, and meridional motions. The ML-formalism is an extension of the mixing length theory to rotating convection zones, and the calculations also involve the azimuthal momentum equation, from which an expression for the meridional motions in terms of the Reynolds stresses can be derived. The meridional motions are expanded as U r(r,)=P 2(cos)2(r)/r 2+P 4(cos)4(r)/r 2 +..., and a corresponding equation for U (r,). Here is the polar angle, is the density, and P 2(cos), P 4(cos) are Legendre polynomials. A good approximation to the meridional motion is obtained by setting 4(r)=–H2(r) with H–1.6, a constant. The value of 2(r) is negative, i.e., the P 2 flow rises at the equator and sinks at the poles. For the value of H obtained in the numerical calculations, the meridional motions have a narrow countercell at the poles, and the convective flux has a relative maximum at the poles, a minimum at mid latitudes and a larger maximum at the equator. Both results are in agreement with the observations.  相似文献   

18.
Large field H observations of the Milky Way between Carina and Aquila were made through a narrow interference filter 15 wide. Characteristic large-scale features of the observed region are extended emission areas in Carina, Norma-Scorpius and Scutum-Sagittarius and some weak isolated nebulosities near the Coal Sac, Centauri and Normae. H photographs, a chart mapping the emission, and a list of identified emission regions are given.  相似文献   

19.
Observations of C100 and C125 atomic carbon recombination lines were made at the Algonquin Radio Observatory, towards the neutral interface separating theHii region DR21 (at RA=20h37m14s, Dec=+42°0900) from its associated molecular cloud. An analysis of the Cn observations in conjunction with a simple model of a neutral interface enabled the derivation of the following parameters: electron density of 300 cm–3, electron temperature of 30 K, microturbulent velocity of 2.3 km s–1, and depth of the neutral interface of 0.01 pc. A single,stimulated emission model is sufficient to reproduce the Cn observations in the wavelength range from 4.6 cm (C100) to 21 cm (C166). All the known Cn data do support a pressure equilibrium between the neutral interface and theHii region, after the usual allowance is made for carbon depletion on grains.  相似文献   

20.
Hall effects on the flow of electrically conducting rarefied gas due to combined buoyant effects of thermal and mass diffusion past an infinite porous plate with constant suction in the presence of strong transverse magnetic field have been investigated. The equations governing the flow poblem have been solved for primary, secondary velocities and temperature. The effects of Hall current, magnetic field and the effect of rarefication have been discussed graphically followed by a discussion.Nomenclature x,y coordinate system - u velocity inx direction - v 0 suction velocity - w velocity inz direction - E Eckert number - G, G* Grashof numbers - h 1 velocity slip coefficient - h 2 temperature jump coefficient - h 3 concentration jump coefficient - M, m magnetic field parameter, Hall parameter - Pr Prandtl number - Sc Schmidt number - T, T w, T temperature in flow regime, plate temperature, temperature outside the boundary layer very away from the plate - C, C w, C concentration of the gas in flow, concentration at the plate, concentration far away from the plate - thermal conductivity - D coefficient of chemical molecular diffusion - coefficient of kinematic viscosity - coefficient of viscosity - electrical conductivity - C p specific heat of gas at constant pressure density  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号