首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical gas profiles of N2, N2O and O2were obtained in intact sediment cores from a Tagus estuary salt marsh using membrane inlet mass spectrometry. This technique allows direct measurements of dissolved gas concentrations with minimal disturbance. O2concentrations decreased sharply with depth, becoming undetectable below 14mm. Denitrification products (N2and N2O) occurred in the surface layer of the sediment where O2was present. Diffusion of N2and N2O from the anaerobic zone, denitrification in anaerobic microsites and aerobic denitrification are possible explanations for this observation. N2was the sole product of denitrification in control sediment cores probably because of the great demand for electron acceptors in this sediment. The addition of NO3and CH3CO2increased the concentrations of N2and N2O in the sediment. Significantly higher concentrations in treated cores occurred between 1·5 and 2·0cm for N2and between 0·5 and 1·5cm for N2O. The peak in N2concentration occurred in the anaerobic zone of the sediment, close to the aerobic–anaerobic interface while the peak in N2O concentration occurred above this interface where concentrations of O2were approximately 10μM. This is indicative that, in this sediment, production of N2O is less sensitive to the presence of O2than reduction of N2O to N2.  相似文献   

2.
N2O Production, Nitrification and Denitrification in an Estuarine Sediment   总被引:1,自引:0,他引:1  
The mechanisms regulating N2O production in an estuarine sediment (Tama Estuary, Japan) were studied by comparing the change in N2O production with those in nitrification and denitrification using an experimental continuous-flow sediment–water system with15N tracer (15N-NO−3 addition). From Feburary to May, both nitrification and denitrification in the sediment increased (246 to 716 μmol N m−2 h−1and 214 to 1260 μmol N m−2 h−1, respectively), while benthic N2O evolution decreased slightly (1560 to 1250 nmol N m−2 h−1). Apparent diffusion coefficients of inorganic nitrogen compounds and O2at the sediment–water interface, calculated from the respective concentration gradients and benthic fluxes, were close to the molecular diffusion coefficients (0·68–2·0 times) in February. However, they increased to 8·8–52 times in May except for that of NO−2, suggesting that the enhanced NO−3 and O2supply from the overlying water by benthic irrigation likely stimulated nitrification and denitrification. Since the progress of anoxic condition by the rise of temperature from February to May (9 to 16 °C) presumably accelerated N2O production through nitrification, the observed decrease in sedimentary N2O production seems to be attributed to the decrease in N2O production/occurrence of its consumption by denitrification. In addition to the activities of both nitrification and denitrification, the change in N2O metabolism during denitrification by the balance between total demand of the electron acceptor and supply of NO−3+NO−2 can be an important factor regulating N2O production in nearshore sediments.  相似文献   

3.
To explore the influences of semi-lunar spring and neap tidal changes on nitrogen cycling in intertidal sediments, a comparative study among waterlogged, desiccated and reflooded systems was carried out in August 2005 and February 2006 by analyzing nitrification, denitrification and N2O depth profiles in the intertidal flats of the Yangtze estuary. Laboratory experiments showed that alternating emersion and inundation resulted in the significant changes in nitrification and denitrification rates in the intertidal sediment systems. Due to the desiccation-related effects, lowest nitrification and denitrification rates were observed in the desiccated sediment cores. Highest nitrification and denitrification rates were however detected in the waterlogged and reflooded systems, respectively. It is hypothesized that the highest nitrification rates in the waterlogged sediments were mainly attributed to higher nitrifier numbers and NH4+ being more available, whereas the availability of NO3 might dominate denitrification in the reflooded sediments. In addition, the highest N2O concentrations were detected in the reflooded sediment cores, and the lowest found in the dried sediment cores. It was also shown that N2O in the intertidal sediments was mainly from nitrification under the desiccated condition. In contrast, N2O in the intertidal sediments was produced mainly via denitrification under the waterlogged and reflooded conditions. It is therefore concluded that the semi-lunar tidal cycle has a significant influence on nitrification, denitrification and N2O production in the intertidal sediment systems.  相似文献   

4.
The whole core squeezing method was used to simultaneously obtain profiles of nitrous oxide (N2O), nitrogenous nutrients, and dissolved oxygen in sediments of Koaziro Bay, Japan (coastal water), the East China Sea (marginal sea), and the central Pacific Ocean (open ocean). In the spring of Koaziro Bay, subsurface peaks of interstitial N2O (0.5–3.5 cm depth) were observed, at which concentrations were higher than in the overlying water. This was also true for nitrate (NO3) and nitrite (NO2) profiles, suggesting that the transport of oxic overlying water to the depth through faunal burrows induced in situ N2O production depending on nitrification. In the summer of Koaziro Bay, sediment concentrations of N2O, NO3 and NO2 were lower than in the overlying water. In most East China Sea sediments, both N2O and NO3 decreased sharply in the top 0.5–2 cm oxic layer (oxygen: 15–130 μM), which may have indicated N2O and NO3 consumption by denitrification at anoxic microsites. N2O peaks at subsurface depth (0.5–6.5 cm) implied in situ production of N2O and/or its supply from the overlying water through faunal burrows. However, the occurrence of the latter process was not confirmed by the profiles of other constituents. In the central Pacific Ocean, the accumulation of N2O and NO3 in the sediments likely resulted from nitrification. Nitrous oxide fluxes from the sediments, calculated using its gradient at the sediment–water interface and the molecular diffusion coefficient, were −45 to 6.9 nmolN m−2 h−1 in Koaziro Bay in the spring, −29 to −21 nmolN m−2 h−1 in the summer, −46 to 37 nmolN m−2 h−1 in the East China Sea, 0.17 to 0.23 nmolN m−2 h−1 in the equatorial Pacific, and <±0.2 nmolN m−2 h−1 in the subtropical North Pacific, respectively.  相似文献   

5.
Benthic fluxes of dissolved inorganic nitrogen (NO3 and NH4+), dissolved organic nitrogen (DON), N2 (denitrification), O2 and TCO2 were measured in the tidal reaches of the Bremer River, south east Queensland, Australia. Measurements were made at three sites during summer and winter. Fluxes of NO3 were generally directed into the sediments at rates of up to −225 μmol N m−2 h−1. NH4+ was mostly taken up by the sediments at rates of up to −52 μmol N m−2 h−1, its ultimate fate probably being denitrification. DON fluxes were not significant during winter. During summer, fluxes of DON were observed both into (−105 μmol m−2 h−1) and out of (39 μmol m−2 h−1) the sediments. Average N2 fluxes at all sampling sites were similar during summer (162 μmol N m−2 h−1) and winter (153 μmol N m−2 h−1). Denitrification was fed both by nitrification within the sediment and NO3 from the water column. Sediment respiration rates played an important role in the dynamics of nitrification and denitrification. NO3 fluxes were significantly related to TCO2 fluxes (p<0.01), with a release of NO3 from the sediment only occurring at respiration rates below 1000 μmol C m−2 h−1. Rates of denitrification increased with respiration up to TCO2 fluxes of 1000 μmol C m−2 h−1. At sediment respiration rates above 1000 μmol C m−2 h−1, denitrification rates increased less rapidly with respiration in winter and declined during summer. On a monthly basis denitrification removed about 9% of the total nitrogen and 16% of NO3 entering the Bremer River system from known point sources. This is a similar magnitude to that estimated in other tidal river systems and estuaries receiving similar nitrogen loads. During flood events the amount of NO3 denitrified dropped to about 6% of the total river NO3 load.  相似文献   

6.
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

7.
Denitrification may play a major role in inorganic nitrogen removal from estuarine ecosystems, particularly in those subjected to increased nitrate and organic matter loads. The Douro estuary (NW Portugal) suffers from both problems: freshwater input of nitrate and organic load from untreated wastewater discharges. To assess how these factors might control sediment denitrification, a 12-month survey was designed. Denitrification potential and nitrous oxide (N2O) production were measured at different locations using the slurry acetylene blockage technique. Denitrification rate ranged from 0.4 to 38 nmol N g−1 h−1, increasing towards the river mouth following an urban pollution gradient. N2O production, a powerful greenhouse gas implicated on the destruction of the ozone layer, was significantly related with sediment organic matter and accounted for 0.5–47% of the N gases produced. Additional enrichment experiments were consistent with the results found in the environment, showing that sediments from the upper less urban stretch of the estuary, mostly sandy, respond positively to carbon and, inversely, in organic rich sediments from the lower estuary, the denitrification potential was limited by nitrate availability. The obtained results confirmed denitrification as an important process for the removal of nitrate in estuaries. The presence of wastewater discharges appears to stimulate nitrogen removal but also the production of N2O, a powerful greenhouse gas, exacerbating the N2O:N2 ratio and thus should be controlled.  相似文献   

8.
In January 1982, sediment microbial N transformations and inorganic N fluxes across the sediment/water interface were studied at nine sites off the South Island West Coast, New Zealand. The sediments showed a great variety in physical, chemical and biological properties. The sediment organic matter had a molar CN ratio of 5.9–10.9, and the total NP ratio was 1.2–4.0. The denitrification capacity in the top 7.5 cm of sediment was 0.1–77.2 mmol N m?2 day?1 and generally declined with increasing sediment depth. The in situ denitrification rate was 0.02–1.84 mmol N m?2 day?1 and highest activities were generally found in surface sediments and at 6–7.5 cm depth. Denitrification accounted for 82–100% of total nitrate reduction. Net N mineralization was indirectly estimated at 0.6–2.4 mmol N m?2 day?1, and the experimental determination of this N transformation gave 0.6–3.2 mmol N m?2 day?1. Denitrification accounted for 3–75% of net N mineralization. The diffusive flux of ammonium and nitrate across the sediment/water interface was 0.1–0.7 and 0.1–0.6 mmol N m?2 day?1, respectively.  相似文献   

9.
Denitrification influences the nitrogen budget in estuaries by removing fixed nitrogen from the inorganic pool; rates are dependent on both geological and geographic conditions as well as increasing anthropogenic impacts. In this study the effects of copper (Cu), chromium (Cr), zinc (Zn), cadmium (Cd) and lead (Pb), on the denitrification pathway were evaluated in subtidal and intertidal sediments of the Douro River estuary. Dinitrogen, N2O and NO2 production rates were measured in triplicate slurries of field samples under different treatments of metal concentrations. Results demonstrated that similar metal amendments led to different site responses for denitrification, suggesting that variations in sediment properties (metal concentrations, grain size, organic matter content, etc.) and/or differences in denitrifying community tolerance modulate the level of metal toxicity. Denitrifying communities in subtidal muddy sediments were not affected by increasing concentrations of metals. In contrast, intertidal sandy sites revealed high sensitivity to almost all trace metals tested; almost complete inhibition by Cr (95%) and Cu (85%) was observed for 98 and 79 μg per gram of wet sediment respectively, and by Zn (92%) at the highest concentration added (490 μg per gram of wet sediment). Moreover, the addition of trace metals stimulated N2O and NO2 accumulation in intertidal sandy (Zn, Cu, Cr and Cd) and muddy sediments (Cu and Zn), demonstrating a pronounced inhibitory effect on specific steps within the denitrification enzymatic system. In summary, the results obtained suggest that, according to the type of estuarine sediment, trace metals cannot only reduce total N removal from an estuary via denitrification but also can enhance the release of N2O, a powerful greenhouse gas.  相似文献   

10.
A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 – 0.6 mmol lipid-C m−2 day−1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m−2 day−1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 – 0.00003 mmol lipid-C m−2 day−1. Lipids comprised ≈ 11–23% of Corg in net-plankton, 10–30% in particles exiting the euphotic zone, 2–4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C15 and C17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C39 alkenones of marine origin and long-chain C20-C30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.  相似文献   

11.
Rates of sediment accumulation and microbial mineralization were examined at three Kandelia candel forests spanning the intertidal zone along the south coastline of the heavily urbanized Jiulongljiang Estuary, Fujian Province, China. Mass sediment accumulation rates were rapid (range: 10–62 kg m−2 y−1) but decreased from the low- to the high-intertidal zone. High levels of radionuclides suggest that these sediments originate from erosion of agricultural soils within the catchment. Mineralization of sediment carbon and nitrogen was correspondingly rapid, with total rate of mineralization ranging from 135 to 191 mol C m−2 y−1 and 9 to 11 mol N m−2 y−1; rates were faster in summer than in autumn/winter. Rates of mineralization efficiency (70–93% for C; 69–92% for N) increased, as burial efficiency (7–30% for C; 8–31% for N) decreased, from the low-to the high-intertidal mangroves. Sulphate reduction was the dominant metabolic pathway to a depth of 1 m, with rates (19–281 mmol S m−2 d−1) exceeding those measured in other intertidal deposits. There is some evidence that Fe and Mn reduction-oxidation cycles are coupled to the activities of live roots within the 0–40 cm depth horizon. Oxic respiration accounted for 5–12% of total carbon mineralization. Methane flux was slow and highly variable when detectable (range: 5–66 μmol CH4 m−2 d−1). Nitrous oxide flux was also highly variable, but within the range (1.6–106.5 μmol N2O m−2 d−1) measured in other intertidal sediments. Rates of denitrification were rapid, ranging from 1106 to 3780 μmol N2 m−2 d−1, and equating to 11–20% of total sediment nitrogen inputs. Denitrification was supported by rapid NH4 release within surface deposits (range: 3.6–6.1 mmol m−2 d−1). Our results support the notion that mangrove forests are net accumulation sites for sediment and associated elements within estuaries, especially Kandelia candel forests receiving significant inputs as a direct result of intense human activity along the south China coast.  相似文献   

12.
Laboratory and in situ experiments were performed to assess the use of bromide as a tracer forin situ studies of benthic solute exchange. Bromide was used in the benthic chamber lander ‘ Elinor ’ for flux measurements in coastal sediments of the German Bight, Kiel Bight and Skagerrak (28–700 m water depth). Tracer and total oxygen uptake were monitored simultaneously in the same chamber incubation. Concurrently, in situ oxygen micro-profiles were recorded at the same locations by the profiling lander ‘ Profilur ’. Deployment in an anoxic silt (Kiel Bight) confirmed that in the absence of bioturbation and advection, tracer transport into the sediment was driven solely by molecular diffusion. This flux could be well described by a simple box model accounting for molecular diffusion only. In oxic sediments (German Bight and Skagerrak) enhanced exchange of bromide tracer due to bioirrigation parallelled enhanced oxygen uptake equivalent to a 4-fold molecular diffusive flux. Our experiments showed that incubations can be short. Depending on irrigation activity of the fauna, however, incubation length should exceed 3 h in order to provide a useful data base for flux calculations. The method demonstrating caveats is discussed and indicate possible improvements. The results show how the bromide tracer addition can be used as a tool for determining solute fluxes exceeding diffusive flux in benthic chamber incubations.  相似文献   

13.
The hydrodynamic properties and the capability to measure sediment-water solute fluxes, at assumed steady state conditions, were compared for three radically different benthic chamber designs: the “Microcosm”, the “Mississippi” and the “Göteborg” chambers. The hydrodynamic properties were characterized by mounting a PVC bottom in each chamber and measuring mixing time, diffusive boundary layer thickness (DBL thickness) shear velocity (u∗), and total pressure created by the water mixing. The Microcosm had the most even distribution of DBL thickness and u∗, but the highest differential pressure at high water mixing rates. The Mississippi chamber had low differential pressures at high u∗. The Göteborg chamber was in between the two others regarding these properties. DBL thickness and u∗ were found to correlate according to the following empirical formula: DBL=76.18(u∗)−0.933. Multiple flux incubations with replicates of each of the chamber types were carried out on homogenized, macrofauna-free sediments in four tanks. The degree of homogeneity was determined by calculating solute fluxes (of oxygen, silicate, phosphate and ammonium) from porewater profiles and by sampling for porosity, organic carbon and meiofauna. All these results, except meiofauna, indicated that there were no significant horizontal variations within the sediment in any of the parallel incubation experiments. The statistical evaluations also suggested that the occasional variations in meiofauna abundance did not have any influence on the measured solute fluxes. Forty-three microelectrode profiles of oxygen in the DBL and porewater were evaluated with four different procedures to calculate diffusive fluxes. The procedure presented by Berg, Risgaard-Petersen and Rysgaard, 1989 [Limnol. Oceanogr. 43, 1500] was found to be superior because of its ability to fit measured profiles accurately, and because it takes into consideration vertical zonation with different oxygen consumption rates in the sediment. During the flux incubations, the mixing in the chambers was replicated ranging from slow mixing to just noticeable sediment resuspension. In the “hydrodynamic characterizations” these mixing rates corresponded to average DBL thickness from 120 to 550 μm, to u∗ from 0.12 to 0.68 cm/s, and to differential pressures from 0-3 Pa. Although not directly transferable, since the incubations were done on a “real” sediment with a rougher surface while in the characterizations a PVC plate simulated the sediments surface, these data give ideas about the prevailing hydrodynamic condition in the chambers during the incubations. The variations in water mixing did not generate statistically significant differences between the chamber types for any of the measured fluxes of oxygen or nutrients. Consequently it can be concluded that, for these non-permeable sediments and so long as appropriate water mixing (within the ranges given above) is maintained, the type of stirring mechanism and chamber design used were not critical for the magnitude of the measured fluxes. The average measured oxygen flux was 11.2 ± 2.7 (from 40 incubations), while the diffusive flux calculated (from 43 profiles using the Berg et al., 1989 [Limnol. Oceanogr. 43, 1500] procedure) was 11.1 ± 3.0 mmol m−2 day−1. This strongly suggests that accurate oxygen flux measurements were obtained with the three types of benthic chambers used and that the oxygen uptake is diffusive.  相似文献   

14.
Denitrification, anammox (Anx) and di-nitrogen fixation were examined in two mangrove ecosystems- the anthropogenically influenced Divar and the relatively pristine Tuvem. Stratified sampling at 2 cm increments from 0 to 10 cm depth revealed denitrification as the main process of N2 production in mangrove sediments. At Divar, denitrification was ∼3 times higher than at Tuvem with maximum activity of 224.51 ± 6.63 nmol N2 g−1 h−1 at 0–2 cm. Denitrifying genes (nosZ) numbered up to 2 × 107 copies g−1 sediment and belonged to uncultured microorganisms clustering within Proteobacteria. Anammox was more prominent at deeper depths (8–10 cm) mainly in Divar with highest activity of 101.15 ± 87.73 nmol N2 g−1 h−1 which was 5 times higher than at Tuvem. Di-nitrogen fixation was detected only at Tuvem with a maximum of 12.47 ± 8.36 nmol N2 g−1 h−1. Thus, in these estuarine habitats prone to high nutrient input, N2-fixation is minimal and denitrification rather than Anx serves as an important mechanism for counteracting N loading.  相似文献   

15.
Recent constructions of the global nitrogen budget estimate that at least half of the ocean's fixed nitrogen is lost by sedimentary denitrification, the majority of which occurs in continental shelves. The Arctic contains approximately 20% of the world's continental shelf, suggesting it is a substantial contributor to the global sedimentary denitrification rate. During two cruises in the summer and spring of 2002 and 2004, respectively, denitrification rates were calculated from the downward diffusive flux of nitrate in the shelf and slope sediments of the Chukchi Sea in the western Arctic. Additionally, in the spring of 2004, denitrification rates were determined by whole-core incubations in which the flux of nitrogen gas out of the sediments was measured. Measurements were made along three transects crossing the shelf and slope (50–3000 m), each transect having different overlying water characteristics. Denitrification rates generally decreased with increasing water depth: rates varied from about 1.6 mmol N m−2 d−1 for the shallow-water sediments to undetectable in deep-water sediments. Rates showed little variation between the two seasons. However, rates were found to correspond with differences in annual overlying primary productivities and particulate organic carbon export fluxes. An extrapolation to the whole Arctic yielded an average Arctic sedimentary denitrification rate of 13 Tg N yr−1. Taken in the context of the global nitrogen budget, it is about 4–13% of the total sink of fixed nitrogen in the ocean.  相似文献   

16.
Carbon dioxide flux techniques performed during GasEx-98   总被引:2,自引:0,他引:2  
A comprehensive study of air–sea interactions focused on improving the quantification of CO2 fluxes and gas transfer velocities was performed within a large open ocean CO2 sink region in the North Atlantic. This study, GasEx-98, included shipboard measurements of direct covariance CO2 fluxes, atmospheric CO2 profiles, atmospheric DMS profiles, water column mass balances of CO2, and measurements of deliberate SF63He tracers, along with air–sea momentum, heat, and water vapor fluxes. The large air–sea differences in partial pressure of CO2 caused by a springtime algal bloom provided high signals for accurate CO2 flux measurements. Measurements were performed over a wind speed range of 1–16 m s−1 during the three-week process study. This first comparison between the novel air-side and more conventional water column measurements of air–sea gas transfer show a general agreement between independent air–sea gas flux techniques. These new advances in open ocean air–sea gas flux measurements demonstrate the progress in the ability to quantify air–sea CO2 fluxes on short time scales. This capability will help improve the understanding of processes controlling the air–sea fluxes, which in turn will improve our ability to make regional and global CO2 flux estimates.  相似文献   

17.
The accumulation rates of sediment cores in Osaka Bay have been determined by using210Pb dating technique. In the upper 10 cm210Pbex contents show a constant value with depth. The accumulation rates below the homogeneous layer of sediments ranging from 0.12 to 0.61cm y–1 (0.067–0.34 g cm–2 y–1) were obtained. The higher contents of Zn, Cu, Pb and Cr were observed in the upper 10 to 30 cm of sediments. Assuming that the increment of heavy metal content in sediments is due to anthropogenic origin, the amount of anthropogenic input of heavy metals into sediments were estimated to be 1,300–2,700g cm–2 for Zn, 150 – 480 for Cu, 360 – 410 for Pb and 320 – 480 for Cr. The increment appears to start about 100 years ago. In surfical sediments most of heavy metal contents exceeded the background content, and then most part of Osaka Bay is polluted by heavy metals.  相似文献   

18.
We investigated the composition, recycling, and mass accumulation rates of sediments along a transect in the Southern Ocean located from 66°S to 57°S at 170°W. This transect also corresponds to the location of a sediment trap mooring line. The sediments at the seven sites studied range from largely terrigenous material to nearly pure (>90%) biogenic silica. CaCO3 is a minor but persistent component at most sites. Mass accumulation rates have been determined on the basis of excess 230Th in the sediments, i.e., 230Th-normalized accumulation rates. The influence of redistribution of sediments on the sea floor has been estimated from 14C analyses. The recycling of material delivered to the sediments has been characterized on the basis of pore water studies that make extensive use of both in situ sampling and shipboard extractions. The influence of the highly variable rates of input of particulate matter that characterize much of the Southern Ocean upon pore water gradients and fluxes across the sediment water interface has been considered.We find only poor correspondence between BSiO2 burial fraction (=burial/particulate flux), a quantifiable measure of preservation efficiency, and BSiO2 particulate rain along the transect. However, preservation does appear to be closely linked to a combination of sedimentation rate and particulate rain.The burial fraction of BSiO2 is small relative to benthic rain (5–19%). Despite the small fraction buried, burial flux normalized to (sedimentation rate)1/2 appears to provide a very consistent means of predicting benthic particulate rain over a large range of rain rates, including data from a number of different studies and environments. At sites with BSiO2 rain 250 mmol m−2 yr−1 the average difference between predicted and observed rain is 25–30%. Such rain rates occur in many marine areas, particularly the Southern Ocean, with the result that this relationship potentially provides a means of estimating BSiO2 benthic rain over prolonged periods in the past on the basis of readily measured sediment parameters.At the southern-most deep ocean station, the particulate flux was characterized by an extremely high Corg/CaCO3 ratio (>10), but this high ratio does not appear to have a substantial influence on CaCO3 burial. CaCO3 is preserved in the sediments at this site despite a particulate flux with a 10-fold excess of Corg above that required for complete dissolution in the sediments. The unexpectedly high preservation of CaCO3 is due largely to the very steep Corg oxidation rate profile at this site. As a result, a large fraction of the organic matter oxidized in the sediments does so in close proximity to the sediment–water interface where most of the metabolic CO2 is neutralized by CO32− from the overlying water, rather than by the dissolution of sedimentary CaCO3.Diagenetic modeling indicates that at several of the stations, the remineralization fluxes of carbonate species across the sediment–water interface may not have been at steady state as a result of the highly pulsed nature of particulate rain in this environment. We estimate that at the time of our sampling it is possible that near-interface fluxes could have been a factor of 1.6–2 times the annual average.At every site on the transect, the burial fluxes of detrital material are substantially greater than the detrital particulate rain measured in the sediment traps, by as much as a factor of 40. Detrital burial is bimodal, being greatest at the southern and northern extremes of the transect. We postulate that the excess of burial over particulate rain in the south reflects the contribution of ice rafted debris at these high latitudes. Increases in the supply at the northern stations must have a different source. We believe that the excess at these stations is material eroded from the sea floor to the west, possibly on the Campbell Plateau, and advected by currents to the northern portion of the transect at depths below the shallow traps.  相似文献   

19.
Benthic Nutrient Recycling in Port Phillip Bay, Australia   总被引:8,自引:0,他引:8  
Benthic chamber measurements of the reactants and products involved with biogenic matter remineralization (oxygen, ammonium, nitrate, nitrite, phosphate, silicate, TCO2and alkalinity) were used to define solute exchange rates between the sediment and overlying water column of Port Phillip Bay, Australia. Measurements at various sites throughout the bay, conducted during the summers of 1994 and 1995, indicate that the variability in flux values within a site is comparable to year-to-year variability (±50%). Four regions of the bay were distinguished by sediment properties and the northern region was identified as having 3–30 times greater nutrient regeneration rates than the other regions. Benthic recycling accounted for 63 and 72% of the annualized N and P input, respectively, to the entire bay as determined by summing benthic, dissolved riverine, atmospheric and dissolved effluent sources. However, bay-wide sedimentary denitrification accounted for a loss of 63% of the potentially recyclable N. This fraction is higher than many other coastal regions with comparable carbon loading. Denitrification efficiency is apparently not enhanced by benthic productivity nor by bio-irrigation. The rate of bio-irrigation is negatively correlated with denitrification efficiency. Bio-irrigation was studied using radon-222 and CsCl spike injection chamber measurements. Radon fluxes from sediments in Port Phillip Bay were enhanced over the diffusive flux by 3–16 times. The modelled rate of loss of Cs from chamber water was positively correlated with radon flux enhancement results. Both methods identify regions within Port Phillip Bay that have particularly high rates of non-diffusive pore-water overlying water solute exchange.  相似文献   

20.
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号