首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Despite soil erosion through water being a ubiquitous process and its environmental consequences being well understood, its effects upon the global carbon cycle still remain largely uncertain. How much soil organic carbon (SOC) is removed each year from soils by sheet wash, an important if not the most efficient mechanism of detachment and transport of surficial soil material? What are the main environnemental controls worldwide? These are important questions which largely remain unanswered. Empirical data from 240 runoff plots studied over entire rainy seasons from different regions of the world were analysed to estimate particulate organic carbon (POC) losses (POCL), and POC enrichment in the sediments compared to the bulk soil (ER), which can be used as a proxy of the fate of the eroded POC. The median POCL was 9.9 g C m‐2 y‐1 with highest values observed for semi‐arid soils (POCL = 10.8 g C m‐2 y‐1), followed by tropical soils (POCL = 6.4 g C m‐2 y‐1) and temperate soils (POCL = 1.7 g C m‐2 y‐1). Considering the mean POCL of 27.2 g C m‐2 y‐1, the total amount of SOC displaced annually by sheet erosion from its source would be 1.32 ± 0.20 Gt C, i.e. 14.6% of the net annual fossil fuel induced C emissions of 9 Gt C. Because of low sediment enrichment in POC, erosion‐induced CO2 emissions are likely to be limited in clayey environments while POC burial within hillslopes is likely to constitute an important carbon sink. In contrast, most of the POC displaced from sandy soils is likely to be emitted to the atmosphere. These results underpin the major role sheet wash plays in the displacement of SOC from its source and in the fate of the eroded SOC, with large variations across the different pedo‐climatic regions of the world. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Although the impact of sheet erosion on the selective transportation of mineral soil particles has been widely investigated, little is yet known about the specific mechanisms of organic carbon (OC) erosion, which constitutes an important link in the global carbon cycle. The present study was conducted to quantify the impact of sheet erosion on OC losses from soils. Erosion plots with the lengths of 1‐ and 5‐m were installed at different topographic positions along a hillslope in a mountainous South African region. A total of 32 rainfall events from a three years period (November 2010 up to February 2013), were studied and evaluated for runoff (R), particulate and dissolved organic carbon (POCL and DOCL). In comparison to the 0–0·05 m bulk soil, the sediments from the 1‐m plots were enriched in OC by a factor 2·6 and those from the 5‐m long plots by a factor of 2·2, respectively. These findings suggest a preferential erosion of OC. In addition, total organic carbon losses (TOCL) were incurred mainly in particulate form (~94%) and the increase in TOCL from 14·09 ± 0·68 g C m?1 yr?1 on 1‐m plots to 50·03 ± 2·89 g C m?1 yr?1 on 5‐m plots illustrated an increase in sheet erosion efficiency with increasing slope length. Both TOCL and sediment enrichment in OC correspondingly increased with a decrease in soil basal grass cover. The characteristics of rainstorms had no significant impact on the selectivity of OC erosion. The results accrued in this study investigating the links between sheet erosion and OC losses, are expected to be of future value in the generation of carbon specific erosion models, which can further help to inform and improve climate change mitigation measures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
In Mediterranean mountain agroecosystems, soil erosion associated with the development of ephemeral gullies is a common environmental problem that contributes to a loss of nutrient-rich topsoil. Little is known about the influence of ephemeral gully erosion on particle size distribution and its effect on soil organic (SOC) and inorganic (SIC) carbon among different sized soil particles in agricultural soils. In this study, laboratory tests were conducted using velocity settling tube experiments to examine the effects of erosion on sediment particle size distributions from an incised ephemeral gully, associated with an extreme event (235 mm). We also consider subsequent deposition on an alluvial fan in order to assess the distribution of SOC and SIC concentrations and dissolved carbon before and after the extreme event. Soil fractionation was carried out on topsoil samples (5 cm) collected along an ephemeral gully in a cultivated field, located in the lower part of a Mediterranean mountain catchment. The results of this study showed that the sediment transported downstream by runoff plays a key role in the particle size distribution and transportability of soil particles and associated carbon distribution in carbonate rich soils. The eroding sediment is enriched in clay and silt-sized particles at upslope positions with higher SOC contents and gradually becomes coarser and enriched in SIC at the end of the ephemeral gully because the finest particles are washed-out of the study field. The extreme event was associated with an accumulation of dissolved organic carbon at the distal part of the depositional fan. Assessment of soil particle distribution using settling velocity experiments provides basic information for a better understanding of soil carbon dynamics in carbonate rich soils. Processes of soil and carbon transport and relationships between soil properties, erodibility and aggregate stability can be helpful in the development of more accurate soil erosion models. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
Soil erosion in New Zealand exports much sediment and particulate organic carbon (POC) to the sea. The influence of this carbon export on carbon transfers between soils and the atmosphere has been largely unknown. Erosion models are used to estimate the net carbon transfer between soils and atmosphere due to soil erosion for New Zealand. The models are used to estimate the spatial distribution of erosion, which is combined with a digital map of soil organic carbon content to produce the spatial distribution of carbon erosion. The sequestration of atmospheric CO2 by regenerating soils is estimated by combining carbon recovery data with the age distribution of soils since erosion occurrence. The North Island of New Zealand is estimated to export 1·9 (with uncertainty of ?0·5 and +1·0) million tonnes of POC per year to the sea and to sequester 1·25 (?0·3 /+0·6) million tonnes of carbon per year from the atmosphere through regenerating soils. The South Island of New Zealand is estimated to export 2·9 (?0·7/+1·5) million tonnes of POC per year and to sequester approximately the same amount. Assuming exported carbon is buried at sea with an efficiency of 80% gives New Zealand a net carbon sink of 3·1 (?2·0/+2·5) million tonnes per year; which is equivalent to 45% of New Zealand's fossil fuel carbon emissions in 1990. The net sink primarily results from a conveyor belt transfer of carbon from the atmosphere to soils regenerating from erosion to the sea floor where carbon is permanently buried. The net sink due to soil erosion can be further increased by reforestation of those terrains where erosion is excessive and there is no carbon recovery in the soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper discusses the effects of water quality on the hydrological and erosion response of non‐saline, non‐sodic soils during simulated rain experiments. It is well known that rain water quality affects the behaviour of saline soils. In particular, rain simulation experiments cannot be run using tap water if realistic values of infiltration rates and soil erosion are to be found. This paper reports on similar effects for non‐saline, non‐sodic soils. Two soils – a well‐aggregated clay‐rich soil developed on marine silty clay deposits and a soil developed on silt loam – were selected and subjected to a series of simulated rainstorms using demineralized water and tap water. The experiments were conducted in two different laboratories in order to obtain results independent of the tap water quality or the rainfall simulator characteristics. The results indicate that time‐to‐ponding is largely delayed by solute‐rich water (tap water). When tap water is used, infiltration rates are significantly overestimated, i.e. by more than 100 per cent. Interrill erosion rates increase by a factor of 2·5–3 when demineralized water is used. The silty clay soil was more affected by the water quality than the silt loam soil, with respect to infiltration and runoff production. Regarding interrill erosion rates, the two tested soils were similarly affected by the water quality. Therefore, it can be concluded that rainfall simulation experiments with non‐dispersive soils (e.g. non‐saline, non‐sodic) must also be conducted using water with very low electrical conductivity (i.e. less than 30–50 µS cm−1), close to that of distilled water. The use of tap water certainly hampers comparisons and the relative ranking of the hydrological and erosion response of different soils, while parameter values, such as final infiltration rate or time‐to‐ponding, cannot be extrapolated and extended to natural situations. Therefore, the majority of hydrological and erosion models and parameter values measured during rainfall simulations in the past should be used with caution for all types of soils. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Reliable quantitative data on the extent and rates of soil erosion are needed to understand the global significance of soil‐erosion induced carbon exchange and to underpin the development of science‐based mitigation strategies, but large uncertainties remain. Existing estimates of agricultural soil and soil organic carbon (SOC) erosion are very divergent and span two orders of magnitude. The main objective of this study was to test the assumptions underlying existing assessments and to reduce the uncertainty associated with global estimates of agricultural soil and SOC erosion. We parameterized a simplified erosion model driven by coarse global databases using an empirical database that covers the conterminous USA. The good agreement between our model results and empirical estimates indicate that the approach presented here captures the essence of agricultural erosion at the scales of continents and that it may be used to predict the significance of erosion for the global carbon cycle and its impact on soil functions. We obtained a global soil erosion rate of 10.5 Mg ha‐1 y‐1 for cropland and 1.7 Mg ha‐1 y‐1 for pastures. This corresponds to SOC erosion rates of 193 kg C ha‐1 y‐1 for cropland and 40.4 kg C ha‐1 y‐1 for eroding pastures and results in a global flux of 20.5 (±10.3) Pg y‐1 of soil and 403.5 (±201.8) Tg C y‐1. Although it is difficult to accurately assess the uncertainty associated with our estimates of global agricultural erosion, mainly due to the lack of model testing in (sub‐)tropical regions, our estimates are significantly lower than former assessments based on the extrapolation of plot experiments or global application of erosion models. Our approach has the potential to quantify the rate and spatial signature of the erosion‐induced disturbance at continental and global scales: by linking our model with a global soil profile database, we estimated soil profile modifications induced by agriculture. This showed that erosion‐induced changes in topsoil SOC content are significant at a global scale (an average SOC loss of 22% in 50 years) and agricultural soils should therefore be considered as dynamic systems that can change rapidly. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Wind erosion modelling efforts, both ?eld and wind tunnel studies, have traditionally focused on saltation‐based processes for estimating dust emissions from high wind events. This approach gives generally good results when saltation‐sized particles, 90 µm to 2 mm mean diameter, are prevalent on the exposed soil surface. The Columbia Plateau, located in north‐central Oregon and south‐central Washington, is a region with extensive loess deposits where up to 90 per cent of sieved particles (by mass) are less than 100 µm mean diameter. During high‐wind events, large amounts of soil and ?ne particulate matter are suspended. However, ?eld surfaces typically show little evidence of surface scouring or saltation, e.g. soil drifts or covered furrows. Velocity pro?le analysis of two high‐wind events and additional data from a third event show evidence of direct suspension process where saltation is not a major mechanism for eroding soil or generating dust emissions. Surface roughness heights are less than saltation roughness height estimates during peak wind speeds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
This study simulates how spatial variations in particle‐size emissions from a playa affect bulk and size‐resolved dust concentration profiles during two contrasting wind erosion events (a small local and a large regional event) in the Channel Country, Lake Eyre Basin, Australia. The regional event had higher dust concentration as a result of stronger frontal winds and higher erodibility across the playa. For each event, two emission scenarios are simulated to determine if measured size‐resolved dust concentration profiles can be explained by spatial variability in source area emissions. The first scenario assumes that particle‐size emissions from source areas occur at a uniform rate, while the second scenario assumes that particle‐size emissions vary between and within source areas. The uniform emission scenario, reproduced measured bulk dust concentration profiles (R2 = 0·93 regional and R2 = 0·81 local), however simulated size‐resolved dust concentration profiles had poor statistical fits to measured size‐resolved profiles for each size class (the highest were R2 = 0·5 regional and R2 = 0·3 local). For the differential particle‐size emission scenario, the fit to the measured bulk dust concentration profiles is improved (R2 = 0·97 regional and R2 = 0·83 local). However, the fit to the size‐resolved profiles improved dramatically, with the lowest being R2 = 0·89 (regional) and R2 = 0·80 (local). Particle‐size emission models should therefore be tested against both bulk and size‐resolved dust concentration profiles, since if only bulk dust concentration profiles are used model performance may be over‐stated. As the source areas in the first 90 m upwind of the tower were similar for both events, the percentage contributions of each particle‐size class to total emissions can be compared. The contribution of each particle‐size class was similar even though the wind speed, turbulence and dust concentrations were significantly different; suggesting that the contribution of each particle‐size to the total emitted dusts is not related to wind speed and turbulence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Soil organic carbon (SOC) is an important component of the global carbon cycle yet is rarely quantified adequately in terms of its spatial variability resulting from losses of SOC due to erosion by water. Furthermore, in drylands, little is known about the effect of widespread vegetation change on changes in SOC stores and the potential for water erosion to redistribute SOC around the landscape especially during high‐magnitude run‐off events (flash floods). This study assesses the change in SOC stores across a shrub‐encroachment gradient in the Chihuahuan Desert of the south‐west USA. A robust estimate of SOC storage in surface soils is presented, indicating that more SOC is stored beneath vegetation than in bare soil areas. In addition, the change in SOC storage over a shrub‐encroachment gradient is shown to be nonlinear and highly variable within each vegetation type. Over the gradient of vegetation change, the heterogeneity of SOC increases, and newer carbon from C3 plants becomes dominant. This increase in the heterogeneity of SOC is related to an increase in water erosion and SOC loss from inter‐shrub areas, which is self‐reinforcing. Shrub‐dominated drylands lose more than three times as much SOC as their grass counterparts. The implications of this study are twofold: (1) quantifying the effects of vegetation change on carbon loss via water erosion and the highly variable effects of land degradation on soil carbon stocks is critical. (2) If landscape‐scale understanding of carbon loss by water erosion in drylands is required, studies must characterize the heterogeneity of ecosystem structure and its effects on ecosystem function across ecotones subject to vegetation change. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Soil erosion, transport and deposition by water drastically affect the distribution of soil organic carbon (SOC) within a landscape. Moreover, soil redistribution may have a large impact on the exchange of carbon (C) between the pedosphere and the atmosphere. One of the large information gaps within this research domain, concerns the fate of SOC after erosion by water. According to different (mainly laboratory) studies, soil redistribution leads to aggregate breakdown, thereby exposing the contained SOC to mineralization. Our study aims to quantify the extent to which such increased mineralization occurs in a real field situation. Carbon dioxide (CO2)‐efflux was measured in the field after an important erosion event for a continuous period of 112 days. The specific situation on the field ensured that almost none of eroded SOC was exported from the field. Measurements of CO2‐efflux were done in areas with sediment deposition, as well as in comparable areas without sedimentation. Comparison of these measurements allowed the net effect of soil deposition on CO2‐efflux to be assessed. Field data were complemented by measurements on incubated, undisturbed soil core samples, in order to disentangle the contribution of environmental factors (moisture, temperature) from any erosional effect on CO2‐efflux. Results of these measurements on the field showed that CO2‐efflux was regulated by a complex interplay of different factors (mostly soil porosity, soil moisture and soil temperature). In combination with the incubation measurements, it could be concluded that the processes of erosion and transport indeed led to an increased mineralization of SOC, as a result of aggregate breakdown and exposure of previously encapsulated SOC. This effect was, however, much smaller than observed in previous laboratory studies. Moreover, it was only important in the first weeks, immediately after the erosion event. The calculated net erosional effect on CO2‐efflux represented a mere 1·6% of total SOC, originally present in the soil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Soil redistribution on arable land significantly affects lateral and vertical soil carbon (C) fluxes (caused by C formation and mineralization) and soil organic carbon (SOC) stocks. Whether this serves as a (C) sink or source to the atmosphere is a controversial issue. In this study, the SPEROS‐C model was modified to analyse erosion induced lateral and vertical soil C fluxes and their effects upon SOC stocks in a small agricultural catchment (4·2 ha). The model was applied for the period between 1950 and 2007 covering 30 years of conventional tillage (1950–1979) followed by 28 years of conservation tillage (1980–2007). In general, modelled and measured SOC stocks are in good agreement for three observed soil layers. The overall balance (1950–2007) of erosion induced lateral and vertical C fluxes results in a C loss of ?4·4 g C m–2 a–1 at our test site. Land management has a significant impact on the erosion induced C fluxes, leading to a predominance of lateral C export under conventional and of vertical C exchange between soil and atmosphere under conservation agriculture. Overall, the application of the soil conservation practices, with enhanced C inputs by cover crops and decreased erosion, significantly reduced the modelled erosion induced C loss of the test site. Increasing C inputs alone, without a reduction of erosion rates, did not result in a reduction of erosion induced C losses. Moreover, our results show that the potential erosion induced C loss is very sensitive to the representation of erosion rates (long‐term steady state versus event driven). A first estimate suggests that C losses are very sensitive to magnitude and frequency of erosion events. If long‐term averages are dominated by large magnitude events modelled erosion induced C losses in the catchment were significantly reduced. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The prediction of wind erosion and dust emissions is important for controlling erosion and identifying dust sources in arid and semiarid regions of the world. This study predicts quantitatively wind erosion and dust emissions in Xinjiang Province, central Asia. The wind erosion prediction system (WEPS) was used to simulate annual soil and PM10 (particulate matter ≤10 μm in aerodynamic diameter) loss at 64 meteorological stations across the province. Soil and PM10 loss were simulated from bare surfaces at all 64 stations and from cotton and wheat fields at 11 stations. Simulated annual bare soil and PM10 loss were lowest in the Junggar (soil and PM10 loss were, respectively, 121.7 and 7.6 kg m-2) and Tarim basins (soil loss was 78.2 kg ha-1 and PM10 loss was 6.5 kg m-2) and highest in the Tu-ha Basin (soil and PM10 loss were, respectively, 638.2 and 37.7 kg m-2). Stations with the highest annual soil loss in the Tarim and Tu-ha basins also had the highest number of days with wind speeds >8 m s-1. This indicated wind influenced erosion, but other factors such as soil type also affect wind erosion. The maximum monthly bare soil and PM10 loss occurred in May in the three basins, substantiating that dust storms occur most frequently during spring in the region. Simulated soil and PM10 loss were lower for cotton and wheat than bare soil, thus suggesting that maintaining vegetative cover during a portion of the year provided some protection to the soil surface from wind erosion. © 2018 John Wiley & Sons, Ltd.  相似文献   

13.
Aggregate disintegration is a critical process in soil splash erosion. However, the effect of soil organic carbon (SOC) and its fractions on soil aggregates disintegration is still not clear. In this study, five soils with similar clay contents and different contents of SOC have been used. The effects of slaking and mechanical striking on splash erosion were distinguished by using deionized water and 95% ethanol as raindrops. The simulated rainfall experiments were carried out in four heights (0.5, 1.0, 1.5 and 2.0 m). The result indicated that the soil aggregate stability increased with the increases of SOC and light fraction organic carbon (LFOC). The relative slaking and the mechanical striking index increased with the decreases of SOC and LFOC. The reduction of macroaggregates in eroded soil gradually decreased with the increase of SOC and LFOC, especially in alcohol test. The amount of macroaggregates (>0.25 mm) in deionized water tests were significantly less than that in alcohol tests under the same rainfall heights. The contribution of slaking to splash erosion increased with the decrease of heavy fractions organic carbon. The contribution of mechanical striking was dominant when the rainfall kinetic energy increased to a range of threshold between 9 J m−2 mm−1 and 12 m−2 mm−1. This study could provide the scientific basis for deeply understanding the mechanism of soil aggregates disintegration and splash erosion.  相似文献   

14.
This study concerns the problem of water erosion in the Sahel. Surface water and sediment yields (suspended matter and bedload) were monitored for 3 years (1998–2000) at the outlet of a small grazed catchment (1·4 ha) in the northern part of Burkina Faso. The catchment consists of about 64% sandy deposits (DRY soil surface type), which support most of the vegetation, and about 34% of crusted bare soils (ERO soil surface type). The annual solid‐matter export is more than 90% suspended sediment, varying between 4·0 and 8·4 t ha?1. The bedload represents less than 10% of soil losses. In a single flood event (10 year return period), the sediment yield can reach 4·2 t ha?1. During the period studied, a small proportion (20 to 32%) of the floods was thus responsible for a large proportion (80%) of the solid transport. Seasonal variation of the suspended‐matter content was also observed: high mean values (9 g l?1) in June, decreasing in July and stabilizing in August (between 2 and 4 g l?1). This behaviour may be a consequence of a reorganization of the soil surfaces that have been destroyed by trampling animals during the previous long dry season, vegetation growth (increase in the protecting effect of the herbaceous cover) and, to a lesser extent, particle‐supply limitation (exhaustion of dust deposits during July). The particle‐size distribution in the suspended matter collected at the catchment outlet is 60% made up of clay: fraction ≤2 µ m. The contribution of this clay is maximum when the water rises and its kaolinite/quartz ratio is then close to that of the ERO‐type surfaces. This indicates that these surfaces are the main source of clay within the catchment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
A portable field wind tunnel was used to assess the sediment flux rates of loam and sand textured soils in the Mallee region of southeastern Australia. Three levels of crust disturbance (nil, moderate and severe) simulating stock trampling were investigated. The results demonstrated the importance of cryptogamic crusts in binding the soil surface and providing roughness after the soil was moderately disturbed. On the loamy soil, the crust helped maintain sediment flux rates below the erosion control target to 5 g m−1 s−1 for a 65 km h−1 wind measured at 10 m height. Once the crust was severely disturbed, sediment fluxes increased to 1·6 times the erosion target. On the sandy soil, even with no crust disturbance the sediment flux was 1·6 times the erosion control target. Disturbing the crust increased sediment fluxes to a maximum of 6·7 times the erosion control target. Removal of the crust also decreased the threshold wind velocity that resulted in an increase to the risk of erosion from <5 per cent to 20 per cent. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
Soil carbon storage plays a key role in the global carbon cycle and is important for sustaining forest productivity. Removal of unpaved forest roads has the potential for increasing carbon storage in soils on forested terrain as treated sites revegetate and soil properties improve on the previously compacted road surfaces. We compared soil organic carbon (SOC) content at several depths on treated roads to SOC in adjacent second‐growth forests and old‐growth redwood forests in California, determined whether SOC in the upper 50 cm of soil varies with the type of road treatment, and assessed the relative importance of site‐scale and landscape‐scale variables in predicting SOC accumulation in treated road prisms and second‐growth redwood forests. Soils were sampled at 5, 20, and 50 cm depths on roads treated by two methods (decommissioning and full recontouring), and in adjacent second‐growth and old‐growth forests in north coastal California. Road treatments spanned a period of 32 years, and covered a range of geomorphic and vegetative conditions. SOC decreased with depth at all sites. Treated roads on convex sites exhibited higher SOC than on concave sites, and north aspect sites had higher SOC than south aspect sites. SOC at 5, 20, and 50 cm depths did not differ significantly between decommissioned roads (treated 18–32 years previous) and fully recontoured roads (treated 2–12 years previous). Nevertheless, stepwise multiple regression models project higher SOC developing on fully recontoured roads in the next few decades. The best predictors for SOC on treated roads and in second‐growth forest incorporated aspect, vegetation type, soil depth, lithology, distance from the ocean, years since road treatment (for the road model) and years since harvest (for the forest model). The road model explained 48% of the variation in SOC in the upper 50 cm of mineral soils and the forest model, 54%. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Dust emission from wet and dry playas in the Mojave Desert,USA   总被引:1,自引:0,他引:1  
The interactions between playa hydrology and playa‐surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near‐surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa – surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water‐table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt‐rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

18.
The mineral magnetic properties of deposited dusts collected along a broadly north‐to‐south transect across Niger have been investigated on both a bulk and particle size‐specific basis. Dusts display a general north‐to‐south gradient in fine‐grained ferrimagnetic mineral (magnetite/maghemite) concentrations, with samples south of the Sahara/Sahel transition (south of ~15·5o N) generally containing greater concentrations than dusts from further north where the climate is much drier. This distinction is seen especially clearly in the clay (< 2 µm) fraction, which harbours the products of weathering and pedogenesis. This gradient in ferrimagnetic mineral concentrations broadly parallels that previously reported for surface soils/sands across a similar latitudinal range. We suggest that the regional distinction in both dust and surface soil/sand magnetic properties can be related to differences in weathering regime between the arid Saharan parts of the transect and the Sahel sites where higher rainfall has permitted stronger weathering and pedogenesis. Given that the weathering‐related magnetic signatures in the clays dominate the magnetic properties of the < 16 µm fractions in these samples, and that this particle size component is most likely to be involved in long‐range transport, magnetic measurements hold out the potential of discriminating Sahara and Sahel dusts deposited in remote areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Organic carbon (OC) is easily enriched in sediment particles of different sizes due to aggregate breakdown and selective transport for sheet erosion. However, the transport of aggregate-associated OC has not been thoroughly investigated. To address this issue, 27 simulated rainfall experiments were conducted in a 1 m × 0.35 m box on slope gradients of 15°, 10°, and 15°and under three rainfall intensities of 45 mm h−1, 90 mm h−1 and 120 mm h−1. The results showed that OC was obviously enriched in sediment particles of different sizes under sheet erosion. The soil organic carbon (SOC) concentrations of each aggregate size class in sediments were different from those in the original soil, especially when the rainfall intensity or slope was sufficiently low, such as 45 mm h–1 or 5°, respectively. Under a slope of 5°, the SOC enrichment ratios (ERocs) of small macroaggregates and microaggregates were high but decreased over time. As rainfall intensity increased, OC became enriched in increasingly fine sediment particles. Under a rainfall intensity of 45 mm h–1, the ERocs of the different aggregate size classes were always high throughout the entire erosion process. Under a rainfall intensity of > 45 mm h–1 and slope of > 5°, the ERocs of the different aggregate size classes were close to 1.0, especially those of clay and silt. Therefore, the high ERocs in sediments resulted from the first transport of effective clay. Among total SOC loss, the proportion of OC loss caused by the transport of microaggregates and silt plus clay-sized particles was greater than 50%. We also found that low stream power and low water depth were two requirements for the high ERocs in aggregates. Stream power was closely related to sediment particle distribution. Flow velocity was significantly and positively related to the percentage of OC-enriched macroaggregates in the sediments (P > 0.01). Our study will provide important information for understanding the fate of SOC and building physical-based SOC transport models. © 2019 John Wiley & Sons, Ltd.  相似文献   

20.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号