首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The groundwater of the Korba plain represents major water resources in Tunisia. The Plio‐Quaternary unconfined aquifer of the Cap‐Bon (north‐east Tunisia) is subject to the intensive agricultural activities and high groundwater pumping rates due to the increasing of the groundwater extraction. The degradation of the groundwater quality is characterized by the salinization phenomena. Groundwater were sampled and analysed for physic‐chemical parameters: Ca2+, Mg2+, Na+, K+, Cl, SO42‐, HCO3, NO3, pH, electrical conductivity (EC), and the temperature (T°). The hydrochemical analysis is coupled with the calculation of the saturation indexes (SI gypsum, SI halite, SI calcite and SI dolomite), ionic derivation and with the ion correlations compared to chloride concentrations: Na+/ Cl, Ca2+/ Cl and Mg2+/ Cl ratios. Seawater fractions in the groundwater were calculated using the chloride concentration. Those processes can be used as indicators of seawater intrusion progression. EC methods were also conducted to obtain new informations on the spatial scales and dynamics of the fresh water–seawater interface of coastal groundwater exchange. The mixing zone between freshwater and saltwater was clearly observed from the EC profile in the investigated area where a strong increase in EC with depth was observed, corresponding to the freshwater and saltwater interface. Results of hydrochemical study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with cations exchange. These results, together with EC investigation, indicated that the groundwater is affected by seawater intrusion and is still major actor as a source of salinization of the groundwater in Korba coastal plain. Further isotopic and hydrological investigations will be necessary to identify and more understood the underlying mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Effects of Recharge Wells and Flow Barriers on Seawater Intrusion   总被引:2,自引:0,他引:2  
The installation of recharge wells and subsurface flow barriers are among several strategies proposed to control seawater intrusion on coastal groundwater systems. In this study, we performed laboratory‐scale experiments and numerical simulations to determine the effects of the location and application of recharge wells, and of the location and penetration depth of flow barriers, on controlling seawater intrusion in unconfined coastal aquifers. We also compared the experimental results with existing analytical solutions. Our results showed that more effective saltwater repulsion is achieved when the recharge water is injected at the toe of the saltwater wedge. Point injection yields about the same repulsion compared with line injection from a screened well for the same recharge rate. Results for flow barriers showed that more effective saltwater repulsion is achieved with deeper barrier penetration and with barriers located closer to the coast. When the flow barrier is installed inland from the original toe position however, saltwater intrusion increases with deeper barrier penetration. Saltwater repulsion due to flow barrier installation was found to be linearly related to horizontal barrier location and a polynomial function of the barrier penetration depth.  相似文献   

4.
Coastal aquifers are at threat of salinization in most parts of the world. This work investigated the seasonal hydrochemical evolution of coastal groundwater resources in Urmia plain, NW Iran. Two recently proposed methods have been used to comparison, recognize and understand the temporal and spatial evolution of saltwater intrusion in a coastal alluvial aquifer. The study takes into account that saltwater intrusion is a dynamic process, and that seasonal variations in the balance of the aquifer cause changes in groundwater chemistry. Pattern diagrams, which constitute the outcome of several hydrochemical processes, have traditionally been used to characterize vulnerability to sea/saltwater intrusion. However, the formats of such diagrams do not facilitate the geospatial analysis of groundwater quality, thus limiting the ability of spatio-temporal mapping and monitoring. This deficiency calls for methodologies which can translate information from some diagrams such Piper diagram into a format that can be mapped spatially. Distribution of groundwater chemistry types in Urmia plain based on modified Piper diagram using GQIPiper(mix) and GQIPiper(dom) indices that Mixed Ca–Mg–Cl and Ca-HCO3 are the dominant water types in the wet and dry seasons, respectively. In this study, a groundwater quality index specific to seawater intrusion (GQISWI) was used to check its efficiency for the groundwater samples affected by Urmia hypersaline Lake, Iran. Analysis of the main processes, by means of the Hydrochemical Facies Evolution Diagram (HFE-Diagram), provides essential knowledge about the main hydrochemical processes. Subsequently, analysis of the spatial distribution of hydrochemical facies using heatmaps helps to identify the general state of the aquifer with respect to saltwater intrusion during different sampling periods. The HFE-D results appear to be very successful for differentiating variations through time in the salinization processes caused by saltwater intrusion into the aquifer, distinguishing the phase of saltwater intrusion from the phase of recovery, and their respective evolutions. Both GQI and HFE-D methods show that hydrochemical variations can be read in terms of the pattern of saltwater intrusion and groundwater quality status. But generally, in this case (i.e. saltwater and not seawater intrusion) the HFE-D method was presented better efficiency than GQI method (including GQIPiper and GQISWI).  相似文献   

5.
The southern coastal plain of Laizhou Bay, which is the area most seriously affected by salt water intrusion in north China, is a large alluvial depression, which represents one of the most important hydrogeological units in the coastal region of northern China. Chlorofluorocarbons (CFCs, including CFC‐11, CFC‐12 and CFC‐113) and tritium were used together for dating groundwater up to 50 years old in the study area. There are two cones of depression, caused by intensive over‐exploitation of fresh groundwater in the south and brine water in the north. The assigned CFC apparent ages for shallow groundwater range from 8 a to >50 a. A binary mixing model based on CFC‐113 and CFC‐12 concentrations in groundwater was used to estimate fractions of young and pre‐modern water in shallow aquifers and to identify groundwater mixing processes during saltwater intrusion. Discordance between concentrations of different CFC compounds indicate that shallow groundwater around the Changyi cone of depression is vulnerable to contamination. Pumping activities, CFC contamination, mixing and/or a large unsaturated zone thickness (e.g. >20 m) may be reasons for some groundwater containing CFCs without tritium. Saline intrusion mainly occurs because of large head gradients between fresh groundwater in the south and saline water bodies in the north, forming a wedge of saline water below/within fresh aquifer layers. Both CFC and tritium dates indicate that the majority of the saline water is from >50 a, with little or no modern seawater component. Based on the distribution of CFC apparent ages, tritium contents plus chemical and physical data, a conceptual model of groundwater flow along the investigated Changyi‐Xiaying transect has been developed to describe the hydrogeological processes. Three regimes are identified from south to north: (i) fresh groundwater zone, with a mixing fraction of 0.80–0.65 ‘young’ water calculated with the CFC binary mixing model (groundwater ages <34 a) and 1.9–7.8TU of tritium; (ii) mixing zone characterized by a mixing fraction of 0.05–0.65 young groundwater (ages of 23–44 a), accompanied by local vertical recharge and upward leakage of older groundwater; and (iii) salt water zone, mostly comprising waters with ages beyond the dating range of both CFCs and tritium. Some shallow groundwater in the north of the Changyi groundwater depression belongs to the >50a water group (iii), indicating slow velocity of groundwater circulation and possible drawing in of saline or deep groundwater that is tracer‐free. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Coastal areas are usually the preferred place of habitation for human beings. Anthropogenic activities such as the construction of high‐rise buildings and underground transport systems usually require extensive deep foundations and ground engineering works, which may unintentionally modify the coastal groundwater system because the construction materials of foundations are usually of low hydraulic conductivity. In this paper, the impact of these building foundations on the groundwater regime is studied using hypothetical flow and transport models. Various possible realizations of foundation distributions are generated using stochastic parameters derived from a topographical map of an actual coastal area in Hong Kong. The effective hydraulic conductivity is first calculated for different realizations and the results show that the effective hydraulic conductivity can be reduced significantly. Then a hypothetical numerical model based on FEFLOW is set up to study the change of hydraulic head, groundwater discharge, and saltwater‐fresh water interface. The groundwater level and flow are modified to various degrees, depending on the foundations percentage and the distribution pattern of the buildings. When the foundations percentage is high and the building foundations are aggregated, the hydraulic head is raised significantly and the originally one‐dimensional groundwater flow field becomes complicated. Seaward groundwater discharge will be reduced and some groundwater may become seepage through the ground surface. The transport model shows that, after foundations are added, overall the seawater and fresh groundwater interface moves landward, so extensive foundations may induce seawater intrusion. It is believed that the modification of the coastal groundwater system by building foundations may have engineering and environmental implications, such as submarine groundwater discharge, foundation corrosion, and slope stability. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Intensive pumping in urban coastal areas is a common threat to water resource quality due to seawater intrusion. In those areas where subsurface water resources are not usually used for human consumption or irrigation, intensive pumping is associated with other activities like the lowering of the water table necessary to support underground structures and building foundations. This activity also increases the likelihood of soil settlement that affects building stability and the corrosion of concrete structures due to groundwater salinity. Under these circumstances, the awareness of a certain municipality (Calonge, NE Spain) of the potential effects of groundwater withdrawal upon foundations has led to an integrated approach to anticipate seawater intrusion related to urban development. Geological mapping and correlation of borehole logs, electrical resistivity tomography, and hydrochemical data provide comprehensive knowledge of the geology and hydrogeology of the area and act as screening tools necessary to discern the influence of hydrological processes in coastal areas. Developing Strack's analytical solution, new comprehensive, dimensionless expressions are herein derived to determine the critical pumping rate necessary to prevent seawater intrusion, as well as to reproduce the evolution of the wedge toe and the water table stagnation point under different withdrawal rates. Furthermore, the Dupuit–Forchheimer well discharge formula allows the estimation of the effects of the water table lowering due to such critical pumping in the surrounding building foundations. Field data from the Calonge coastal plain illustrate this approach and provide assessment criteria for future urban development and planning. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Coastal groundwater discharge (CGD) plays an important role in coastal hydrogeological systems as they are a water resource that needs to be managed, particularly in wetland areas. Despite its importance, identifying and monitoring CGD often presents physical and logistical constraints, restraining the application of more traditional submarine groundwater discharge surveying techniques. Here we investigate the capability of electrical resistivity imaging (ERI) in the Peníscola wetland (Mediterranean coast, Spain). ERI surveying made it possible to identify and delineate an ascending regional groundwater flow of thermal and Ra‐enriched groundwater converging with local flows and seawater intrusion. The continuous inputs of Ra‐rich groundwater have induced high activities of Ra isotopes and 222Rn into the marsh area, becoming among the highest previously reported in wetlands and coastal lagoons. Geoelectrical imaging enabled inferring focused upward discharging areas, leaking from the aquifer roof through a confining unit and culminating as spring pools nourishing the wetland system. Forward modelling over idealized subsurface configurations, borehole datasets, potentiometric records from standpipe piezometers, petrophysical analysis, and four natural and independent tracers (224Ra, 222Rn, temperature and salinity) permitted assessing the geoelectrical model and a derived hydrogeological pattern. The research highlights the potential of ERI to improve hydrogeological characterization of subsurface processes in complex contexts, with different converging flows. Additionally, a hydrogeological conceptual model for a groundwater‐fed coastal wetland was proposed, based on the integration of surveying datasets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
The aquifer of Nador has suffered significant salinization due to seawater intrusion. It was strongly exploited during the 1980s and 1990s. A piezometric analysis in April 2012 showed the piezometric level to lie at 0 m a.s.l. over the plain; as a result, this aquifer is highly sensitive to the marine intrusion with an electrical conductivity of the groundwater in of exceeds 2500 μS/cm and so there are no abstractions for irrigation or drinking purpose from these sectors. The geoelectric study also showed the lateral variation in the electrical resistivity for two moments separated in time by more than 45 years. The fall in resistivity may be due to the encroachment of seawater into previously freshwater zones and/or infiltration during the era of pumped abstractions downstream. The resistivity surveys reveal two distinct sectors: the saturated aquifer in brackish and saltwater having resistivity values to 36-10 Ωm, which extends nearly 1600 m inland.  相似文献   

10.
We examined the fire‐induced changes in groundwater recharge rate. This aspect is particularly important in the case of large forested areas growing over a coastal aquifer affected by saltwater intrusion. In the Ravenna coastal area (Italy), pine forests grow on coastal dune belts, overlying a sandy unconfined aquifer, which is strongly affected by marine ingression. Three groundwater profiles across the forest and perpendicular to the coastline were monitored for groundwater level, physical, and chemical parameters. The aims were to define groundwater quality, recharge rate, freshwater volume, and highlight change, which occurred after a forest fire with reference to pre‐fire conditions. Analytical solutions based on Darcy Law and the Dupuit Equation were applied to calculate unconfined flow and compare recharge rates among the profiles. The estimated recharge rates increased in the partially and completely burnt areas (219 and 511 mm year?1, respectively) compared with the pristine pine forest area (73 mm year?1). Although pre‐fire conditions were similar in all monitored profiles, a post‐fire decrease in salinity was observed across the burnt forest, along with an increase in infiltration and freshwater lens thickness. This was attributed to decrease canopy interception and evapotranspiration caused by vegetation absence after the fire. This research provided an example of positive forest fire feedback on the quantity and quality of fresh groundwater resources in a lowland coastal aquifer affected by saltwater intrusion, with limited availability of freshwater resources. The fire provided an opportunity to evaluate a new forest management approach and consider the restoration and promotion of native dune herbaceous vegetation.  相似文献   

11.
Abstract

The Wadi Al Ayn plain is a coastal system on the eastern coast of Cap Bon in northeastern Tunisia. The area is known for its intensive agriculture, which is based mainly on groundwater exploitation. The aim of this study is to identify the sources of groundwater salinization in the Wadi Al Ayn aquifer system and deduce the processes that drive the mineralization. Surface water and groundwater samples were taken and analysed for major ions and stable isotopes. The geochemical data were used to characterize and classify the water samples based on a variety of ion plots and diagrams. Stable isotopes are useful tools to help us understand recharge processes and to differentiate between salinity origins. The oilfield brines infiltrated from the sandy bed of Wadi Al Ayn comprise the main source of groundwater salinization in the central part of the plain, while seawater intrusion is mainly responsible for the increased salinity in the groundwater of the coastal part of the plain (at Daroufa).

Citation Chekirbane, A., Tsujimura, M., Kawachi, A., Isoda, H., Tarhouni, J., and Benalaya, A., 2013. Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon, Tunisia. Hydrological Sciences Journal, 58 (5), 1097–1110.  相似文献   

12.
We use electrical resistivity tomography to obtain a 6.8‐km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater‐ and freshwater‐saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole–dipole, Wenner, Wenner‐gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south.  相似文献   

13.
The paper presents an attempt to determine the characteristics of karst aquifers using information on groundwater level (GWL) in natural holes and boreholes with different data quantity and time resolution of GWL measurements. In this paper the particulars of karst aquifers were analysed for four examples from the Dinaric karst. In all four study areas, aquifers are formed in bare, deep and well‐developed Dinaric karst consisting of Cretaceous limestones. The first example represents a wide area of Imotsko polje in the karst. The aquifer was analysed on the basis of infrequent water level monitoring in natural karst water features (jamas, lakes, wells) and discharges of springs and rivers. The karst aquifer in this example is complex, non‐homogenous and variable in space and time, which is frequent in the Dinaric karst. Regardless of the aforementioned it was possible to determine its elementary characteristics. The second example represents 10 wells used for the water supply for the city of Pula. The GWL and salinity were measured once a week in the period between 1981 and 1996. Even though these measurements were relatively infrequent in space and time, they served as bases for assessment of average and maximum aquifer conditions as well as boundaries of saltwater intrusion. In the third example only a portion of aquifer of the karst spring Blaz, which is in the contact with the Adriatic Seas, has been analyzed. It is a spring with an intrusion of salt water. For purposes of study of saltwater intrusion, 26 piezometers were drilled in its vicinity in which GWL, salinity and temperature were measured once a day during 168 days, a period comprising one complete cycle of seawater intrusion and retreat. These measurements proved the existence of dispersed discharge from the aquifer into the sea and its non‐homogeneity in space. In the fourth example GWL was measured continuously in 10 deep (up to 300 m) piezometers in the hinterland of the Ombla Spring catchment. The measurement period lasted 2 years (January 1988 to December 1989). The analyses are made with hourly data. The results made it possible to determine numerous characteristics of the karst aquifer and a significant non‐homogeneity of groundwater distribution in karst aquifers, depending more on the underground karst phenomena than the surface karst forms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

15.
The proper management of coastal aquifers commonly requires an understanding of regional mass flow and complete seawater–freshwater circulation. In this study, time series observations of seawater intrusion and refreshing were conducted using a column experiment based on natural flow conditions in coastal groundwater and a sampled medium from a coastal sandy aquifer without chemical treatment. Ranges of hydrodynamic and hydrochemical variables were tested and analysed. The results showed that the zeta potential of suspended colloids in aqueous solution in an aquifer polluted with 0.5 g/kg of heavy metals exhibited an isoelectric point for pH values ranging from 5.70 to 6.07 when freshwater or seawater completely occupied the aquifer pores, which is representative of natural hydrochemical conditions. In this scenario, a high background concentration of heavy metals induced colloidal immobilization. Otherwise, seawater–freshwater circulation enabled colloid mobilization due to ionic strength and pH fluctuations. The migration of multiple heavy metals occurred at a characteristic time of approximately 1 pore volume after each intrusion stage began and when the peak rate of colloid release was reached. At these times, the colloid behaviour determined the quantity and pathway of heavy metal transport. On the basis of the influences of seawater and freshwater interactions, the quantity of mobilized particles generally decreased and was uniformly distributed in each fraction due to particle loss and decreased porous connectivity. We speculate that the decrease in the total surface area of the migratory colloids may cause colloid‐associated heavy metal transport to decrease. The experimental results provide a useful basis for testing coastal groundwater flow and mass transport models because these phenomena require full characterization to precisely evaluate the associated fluxes from the field scale to the microscopic dimension.  相似文献   

16.
Abstract

Saltwater intrusion is a naturally occurring phenomenon that is exacerbated significantly by excessive groundwater exploitation in coastal aquifers. In order to determine the extent of saltwater intrusion in a karstified coastal aquifer in Crete, Greece, a three-dimensional, density-dependent groundwater flow and transport model was developed and compared to the more traditional sharp-interface approach. The karstified medium was modelled using a combination of the equivalent porous medium approach (for lower-order fractures) and a discrete fracture approach (for the main fractures/faults). The model takes into consideration the geomorphologic characteristics of the karstic system, such as the depth and orientation of the fault network, and the diffusion phenomena associated with the variable densities of freshwater and saltwater—parameters that create a complex system, inducing uncertainty in the model. The model results showed that the orientation of the fractures, the pumping activity and the fluid density effects drive the seawater intrusion front asymmetrically inland.

Editor Z.W. Kundzewicz

Citation Dokou, Z. and Karatzas, G.P., 2012. Saltwater intrusion estimation in a karstified coastal system using density-dependent modelling and comparison with the sharp-interface approach. Hydrological Sciences Journal, 57 (5), 985–999.  相似文献   

17.
Measurements of electrical resistivity have long been used to find freshwater resources below the earth's surface. Recently, offshore resistivity and electromagnetic techniques have been used to map occurrences of submarine groundwater originating from the offshore extension of terrestrial aquifers. In many cases, observations of a high resistivity (low conductivity) anomaly in the seafloor are sufficient to suggest the presence of fresh (and less conductive) pore waters. Data from offshore Wrightsville Beach, NC show highly variable resistivity structure, with moderately high resistivity at depths of ~20 m subsurface that is at least in part caused by lithologic complexity in an underlying limestone unit, the Castle Hayne. These offshore results suggest caution in the interpretation of resistivity anomalies simply in terms of groundwater volumes. In contrast, low onshore resistivities show evidence for intrusion of saltwater into the subsurface beneath the beach, adjacent to areas of pumping for water supply.  相似文献   

18.
This paper provides for the first time an experimental study where the impact of sea‐level fluctuations and inland boundary head‐level variations on freshwater–saltwater interface toe motion and transition zone dynamics was quantitatively analysed under transient conditions. The experiments were conducted in a laboratory flow tank where various (inland and coastal) head changes were imposed to the system and the response of the key seawater intrusion parameters was analysed with high spatial and temporal resolution. Two homogeneous aquifer systems of different grain size were tested. The numerical code SEAWAT was used for the validation. The results show that in cases of sea‐level variations, the intruding wedge required up to twice longer time to reach a new steady‐state condition than the receding wedge, which thereby extend the theory of timescale asymmetry between saltwater intrusion and retreat processes in scenarios involving sea‐level fluctuations. The intruding and receding rates of the saltwater wedge were respectively similar in the scenario involving sea‐level and the freshwater‐level changes, despite change in transmissivity. The results show that, during the intrusion phase, the transition zone remains relatively insensitive, regardless of where the boundary head change occurs (i.e., freshwater drop or sea‐level rise) or its magnitude. By contrast, a substantial widening of the transition zone was observed during the receding phase, with almost similar amplitude in the scenario involving a rise of the freshwater level compared with that caused by a drop of the saltwater level, provided that an equivalent absolute head change magnitude was used. This transition zone widening (occurring during saltwater retreat) was greater and extended over longer period in the low hydraulic conductivity aquifer, for both freshwater‐level rise and sea‐level drop scenarios. The concentration maps revealed that the widening mechanism was also enhanced by the presence of some freshwater sliding and into the wedge during saltwater retreat, which was thereafter sucked upward towards the interface because of density difference effects.  相似文献   

19.
We conducted various field studies at the seawater intrusion monitoring wells located in the eastern part of Jeju Island, Korea, to observe the tidal effect on groundwater–seawater flow in the coastal aquifer. Studies included monitoring the fluctuations of groundwater and tide levels, electrical and temperature logging, and 2-D heat-pulse flowmeter tests. According to time-series analysis, tidal effects on groundwater level reached up to 3 km inland from the coastline. Water-level variation was more sensitive to tidal fluctuations near the coast, and more related to rainfall toward inland areas. Temporal and spatial variations in the shape and location of the freshwater–saltwater interface were analyzed using data from nine monitoring wells. The results indicated that the interface toe is located at a distance of 6–8 km from the coastline and its location was related to geological layers present. Long-term seasonal variations revealed no major changes in the interface; minor variations were due to moving boundary conditions induced by tidal fluctuations. Using the two-dimensional heat-pulse flowmeter, groundwater flow directions and velocities at four tidal stages were measured on three monitoring wells drilled into the multilayered aquifers. This direct measurement enabled us to relate the differences of flow velocities and directions with geology and tidal fluctuations. Combining the results of EC logging and flowmeter tests, we found a zone where freshwater and saltwater moved alternately in opposite directions, as influenced by the tidal fluctuations. Integrating various physical logging and flowmeter data with water-level fluctuations improved our understanding of the behavior of fresh and seawater flow in the coastal aquifers.  相似文献   

20.
Population growth and changing climate continue to impact on the availability of natural resources. Urbanization of vulnerable coastal margins can place serious demands on shallow groundwater. Here, groundwater management requires definition of coastal hydrogeology, particularly the seawater interface. Electrical resistivity imaging (ERI) appears to be ideally suited for this purpose. We investigate challenges and drivers for successful electrical resistivity imaging with field and synthetic experiments. Two decades of seawater intrusion monitoring provide a basis for creating a geo-electrical model suitable for demonstrating the significance of acquisition and inversion parameters on resistivity imaging outcomes. A key observation is that resistivity imaging with combinations of electrode arrays that include dipole–dipole quadrupoles can be configured to illuminate consequential elements of coastal hydrogeology. We extend our analysis of ERI to include a diverse set of hydrogeological settings along more than 100 km of the coastal margin passing the city of Perth, Western Australia. Of particular importance are settings with: (1) a classic seawater wedge in an unconfined aquifer, (2) a shallow unconfined aquifer over an impermeable substrate, and (3) a shallow multi-tiered aquifer system over a conductive impermeable substrate. We also demonstrate a systematic increase in the landward extent of the seawater wedge at sites located progressively closer to the highly urbanized center of Perth. Based on field and synthetic ERI experiments from a broad range of hydrogeological settings, we tabulate current challenges and future directions for this technology. Our research contributes to resolving the globally significant challenge of managing seawater intrusion at vulnerable coastal margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号