首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nyangqu River, the largest right bank tributary of the Yarlung Zangbo River in the Qinghai–Tibet Plateau, was representative of an alpine riverine carbon cycle experiencing climate change. In this study, dissolved inorganic carbon (DIC) spatial and seasonal variations, as well as their carbon isotopic compositions (δ13CDIC) in river water and groundwater were systematically investigated to provide constraints on DIC sources, recharge and cycling. Significant changes in the δ13CDIC values (from −2.9‰ to −23.4‰) of the water samples were considered to be the result of different contributions of two dominant DIC origins: soil CO2 dissolution and carbonate weathering. Three types of rock weathering (dissolution of carbonate minerals by H2CO3 and H2SO4, and silicate dissolution by H2CO3) were found to control the DIC input into the riverine system. In DIC cycling, groundwater played a significant role in delivering DIC to the surface water, and DIC supply from tributaries to the main stream increased from the dry season to the wet season. Notably, the depleted δ13CDIC ‘peak’ around the 88.9° longitude, especially in the September groundwater samples, indicated the presence of ‘special’ DIC, which was attributed to the oxidation of methane from the Jiangsa wetland located nearby. This wetland could provide large amounts of soil organic matter available for bacterial degradation, producing 13C-depleted methane. Our study provided insights regarding the role of wetlands in riverine carbon cycles and highlighted the contribution of groundwater to alpine riverine DIC cycles.  相似文献   

2.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
To better understand the mechanisms relating to hydrological regulations of chemical weathering processes and dissolved inorganic carbon (DIC) behaviours, high-frequency sampling campaigns and associated analyses were conducted in the Yu River, South China. Hydrological variability modifies the biogeochemical processes of dissolved solutes, so major ions display different behaviours in response to discharge change. Most ions become diluted with increasing discharge because of the shortened reactive time between rock and water under high-flow conditions. Carbonate weathering is the main source of major ions, which shows strong chemostatic behaviour in response to changes in discharge. Ions from silicate weathering exhibit a significant dilution effect relative to the carbonate-sourced ions. Under high temperatures, the increased soil CO2 influx from the mineralisation of organic material shifts the negative carbon isotope ratios of DIC (δ13CDIC) during the high-flow season. The δ13CDIC values show a higher sensitivity than DIC contents in response to various hydrological conditions. Results from a modified isotope-mixing model (IsoSource) demonstrate that biological carbon is a dominant source of DIC and plays an important role in temporal carbon dynamics. Furthermore, this study provides insights into chemical weathering processes and carbon dynamics, highlighting the significant influence of hydrological variability to aid understanding of the global carbon cycle.  相似文献   

4.
Iwojima volcano, located on the southernmost part of the Izu-Ogasawara arc, is characterized by the extrusion of trachyte or trachy andesite lavas and pyroclastic rocks of Holocene and surface thermal manifestations. Small phreatic explosions have been recorded frequently during the last 100 years with the most recent in 1999 and 2001. In order to elucidate the behavior of volcanic volatiles and to assess the potential activity of this volcano, diffuse CO2 efflux, CO2 content and δ13C–CO2 in soil gas, and soil temperature at 30 cm depth were measured at 272 sites in March 2000, 112 sites in December 2000 and 40 sites in December 2001. We found that high CO2 efflux values, of more than 100 g m−2 day−1, occurred at several locations on Motoyama volcano corresponding with high soil temperatures (more than 60 °C at 30 cm depth) region and with areas where CO2 with magmatic δ13C was observed. Here, the magmatic δ13C determined for fumarolic CO2 data ranged from −2‰ to +3‰, which is clearly higher than magmatic gas values (−8‰ to −2‰) typically found in island arc settings around the world. However, this can be explained in terms of carbon-isotope fractionation between calcite and CO2 under subsurface temperature and pressure conditions at Iwojima. A total efflux of CO2 for Iwojima volcano is estimated to be 760 t day−1, with a magmatic contribution of about 450 t day−1. This value is rather high compared with other volcanoes in island arc settings. Since Iwojima has no visible plume, almost all volcanic CO2 is released as diffuse efflux through the volcanic edifice.  相似文献   

5.
The stable isotopic composition of dissolved inorganic carbon (δ13C‐DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C‐DIC increased between 3–5‰ from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in δ13C‐DIC of 2·4 ± 0·1‰ per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased δ13C‐DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream δ13C‐DIC values, points of localized groundwater seepage into the stream were identified by decreases in δ13C‐DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, δ13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Dissolved inorganic carbon (DIC) is the most important carbon component in karst aquatic system where fluid is highly transmissive, but has rarely been examined in the subtropical karst critical zone (K-CZ). In this study, concentrations of dissolved solutes and isotopic compositions of DIC (δ13CDIC) at 11 sites of a 73.4 km2 karstic catchment in Southwestern China were analysed monthly in order to uncover the spatiotemporal variations of both DIC and its dominant sources, and to identify relevant controlling factors. Both DIC concentrations and δ13CDIC were highly variable, ranging from 2.52 to 5.85 mmol l−1 and from −15.7 to −4.5‰, respectively. DIC in underground water (UGW) was higher in concentration and more depleted in 13C compared to surface water (SFS). DIC concentrations showed an inconsistent seasonal trend with other solutes, with higher values in the wet season at some sites. δ13CDIC values were lower in the wet season than in the dry season. The results of mixing model IsoSource revealed spatiotemporal patterns of DIC sources. During the dry season, carbonate weathering was the primary contributor to DIC in UGW (excluding in the middle reaches). However, during the wet season, soil CO2 was the dominant source of DIC in both UGW and SFS, and it was higher than in the dry season. Overall, there are significant spatiotemporal disparities and highly transmissive characteristics of both DIC and its sources in the K-CZ, which are controlled by multiple factors. This study also highlights that rainfall may play a crucial role in accelerating carbon dynamics in the K-CZ. High-frequency sampling campaigns in high-flow periods and deep analyses are needed in future work to elucidate the related processes and mechanisms. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
We measured the concentrations of dissolved inorganic carbon (DIC) and major ions and the stable carbon isotope ratios of DIC (δ13CDIC) in two creeks discharging from carbonate‐rich sulphide‐containing mine tailings piles. Our aim was to assess downstream carbon evolution of the tailings discharge as it interacted with the atmosphere. The discharge had pH of 6.5–8.1 and was saturated with respect to carbonates. Over the reach of one creek, the DIC concentrations decreased by 1.1 mmol C/l and δ13CDIC increased by ~4.0‰ 200 m from the seep source. The decrease in the DIC concentrations was concomitant with decreases in the partial pressure of CO2(aq) because of the loss of excess CO2(aq) from the discharge. The corresponding enrichment in the δ13CDIC is because of kinetic isotope fractionation accompanying the loss of CO2(g). Over the reach of the other creek, there was no significant decrease in the DIC concentrations or notable changes in the δ13CDIC. The insignificant change in the DIC concentrations and the δ13CDIC is because the first water sample was collected 160 m away from the discharge seep, not accessible during this research. In this case, most of the excess CO2(aq) was lost before our first sampling station. Our results indicate that neutral discharges from tailings piles quickly lose excess CO2(aq) to the atmosphere and the DIC becomes enrich in 13C. We suggest that a significant amount of carbon cycling in neutral discharges from tailings piles occur close to the locations where the discharge seeps to the surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The impact of landfill contaminated groundwater along a reach of a small stream adjacent to a municipal landfill was investigated using stable carbon isotopes as a tracer. Groundwater below the stream channel, groundwater seeping into the stream, groundwater from the stream banks and stream water were sampled and analysed for dissolved inorganic carbon (DIC) and the isotope ratio of DIC (δ13CDIC). Representative samples of groundwater seeping into the stream were collected using a device (a ‘seepage well’) specifically designed for collecting samples of groundwater seeping into shallow streams with soft sediments. The DIC and δ13CDIC of water samples ranged from 52 to 205 mg C/L and ?16·9 to +5·7‰ relative to VPDB standard, respectively. Groundwater from the stream bank adjacent to the landfill and some samples of groundwater below the stream channel and seepage into the stream showed evidence of δ13C enriched DIC (δ13CDIC = ?2·3 to +5·7‰), which we attribute to landfill impact. Stream water and groundwater from the stream bank opposite the landfill did not show evidence of landfill carbon (δ13CDIC = ?10·0 to ?16·9‰). A simple mixing model using DIC and δ13CDIC showed that groundwater below the stream and groundwater seeping into the stream could be described as a mixture of groundwater with a landfill carbon signature and uncontaminated groundwater. This study suggests that the hyporheic zone at the stream–groundwater interface probably was impacted by landfill contaminated groundwater and may have significant ecological implications for this ecotone. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
Globally, dissolved inorganic carbon (DIC) accounts for more than half the annual flux of carbon exported from terrestrial ecosystems via rivers. Here, we assess the relative influences of biogeochemical and hydrological processes on DIC fluxes exported from a tropical river catchment characterized by distinct land cover, climate and geology transition from the wet tropical mountains to the low‐lying savanna plains. Processes controlling changes in river DIC were investigated using dissolved organic carbon, particulate organic carbon and DIC concentrations and stable isotope ratios of DIC (δ13CDIC) at two time scales: seasonal and diel. The recently developed Isotopic Continuous Dissolved Inorganic Carbon Analyser was used to measure diel DIC concentration and δ13CDIC changes at a 15‐min temporal resolution. Results highlight the predominance of biologically mediated processes (photosynthesis and respiration) controlling diel changes in DIC. These resulted in DIC concentrations varying between 3.55 and 3.82 mg/l and δ13CDIC values ranging from ?19.7 ± 0.31‰ to ?17.1 ± 0.08‰. In contrast, at the seasonal scale, we observed wet season DIC variations predominantly from mixing processes and dry season DIC variations due to both mixing processes and biological processes. The observed wet season increases in DIC concentrations (by 6.81 mg/l) and δ13CDIC values of river water (by 5.4‰) largely result from proportional increases in subsurface inflows from the savanna plains (C4 vegetation) region relative to inflows from the rainforest (C3 vegetation) highlands. The high DIC river load during the wet season resulted in the transfer of 97% of the annual river carbon load. Therefore, in this gaining river, there are significant seasonal variations in both the hydrological and carbon cycles, and there is evidence of substantial coupling between the carbon cycles of the terrestrial and the fluvial environments. Recent identification of a substantial carbon sink in the savannas of northern Australia during wetter years in the recent past does not take into account the possibility of a substantial, rapid, lateral flux of carbon to rivers and back to the atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
This paper reports a detailed geochemical study of thermal occurrences as observed in the edifice and on the flanks of Mendeleev Volcano, Kunashir Island in August and September 2015. We showed that three main types of thermal water are discharged there (neutral chloride sodium, acid chloride sulfate, and acid sulfate types); these waters exhibit a zonality that is typical of volcano-hydrothermal island arc systems. Spontaneous and solfataric gases have relatively low 3He/4He ratios, ranging between 5.4Ra and 5.6Ra, and δ13C-CO2 between –4.8‰ and –3.1‰, and contain a light isotope of carbon in methane (δ13C ≈ –40‰). Gas and isotope geothermometers yield relatively low temperatures around 200°C. The isotope compositions in all types of water are similar to that of local meteoric water. The distribution of microcomponents varies among different types. The isotope composition of dissolved Sr varies considerably, from 0.7034 as observed in Kunashir rocks on an average to 0.7052 in coastal springs, which may have resulted from admixtures of seawater. The total hydrothermal transport rates of magmatic Cl and SO4, as observed for Mendeleev Volcano, are 7.8 t/d and 11.6 t/d, respectively. The natural outward transport of heat by the volcano’s hydrothermal system is estimated as 21 MW.  相似文献   

11.
Utilising newly available instrumentation, the carbon balance in two small tropical catchments was measured during two discharge events at high temporal resolution. Catchments share similar climatic conditions, but differ in land use with one draining a pristine rainforest catchment, the other a fully cleared and cultivated catchment. The necessity of high resolution sampling in small catchments was illustrated in each catchment, where significant chemical changes occurred in the space of a few hours or less. Dissolved and particulate carbon transport dominated carbon export from the rainforest catchment during high flow, but was surpassed by degassing of CO2 less than 4 h after the discharge peak. In contrast, particulate organic carbon dominated export from the cleared catchment, in all flow conditions with CO2 evasion accounting for 5–23% of total carbon flux. Stable isotopes of dissolved inorganic carbon (DIC) in the ephemeral rainforest catchment decreased quickly from ~1.5 ‰ to ~ ?16 ‰ in 5 h from the flood beginning. A two‐point mixing model revealed that in the initial pulse, over 90% of the DIC was of rainwater origin, decreasing to below 30% in low flow. In the cultivated catchment, δ13CDIC values varied significantly less (?11.0 to ?12.2 ‰) but revealed a complex interaction between surface runoff and groundwater sources, with groundwater DIC becoming proportionally more important in high flow, due to activation of macropores downstream. This work adds to an increasing body of work that recognises the importance of rapid, short‐lived hydrological events in low‐order catchments to global carbon dynamics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We measured spatial and temporal variations in carbon concentrations, isotopic compositions and exports during a complete hydrological cycle in nine watercourses draining a lowland forested podzolized catchment, flowing into the Arcachon lagoon (France). In addition, integrated fluxes of CO2 across the water-atmosphere interface were estimated to assess the relative importance of CO2 evasion versus lateral carbon transport at the catchment scale. Watercourse similarities and specificities linked to the local catchment characteristics are discussed and compared with other riverine systems. Low concentrations of suspended particulate matter and particulate organic carbon (POC) were generally measured in all the watercourses (8.4 ± 3.4 and 1.6 ± 0.6 mg L?1, respectively), reflecting limited mechanical soil erosion. The generally high POC content in the suspended matter (20 %), low Chl a concentrations (1.3 ± 1.4 μg L?1) and the relatively constant δ13C-POC value (near ?28 ‰) throughout the year reveal this POC originates from terrestrial C3 plant and soil detritus. The presence of podzols leads to high levels of dissolved organic carbon (DOC; 6.6 ± 2.2 mg L?1). Similarly, high dissolved inorganic carbon (DIC) concentrations were measured in the Arcachon lagoon catchment (5.9 ± 2.2 mg L?1). The δ13C-DIC value around ?20 ‰ throughout the year in many small watercourses reveals the predominance of terrestrial carbon mineralisation and silicate rock weathering in soils as the major DIC source. With pCO2 between 1,000 and 10,000 ppmv, all watercourses were a source of CO2 to the atmosphere, particularly during the low river stage. Organic carbon parameters remained relatively stable throughout the year, whereas DIC parameters showed strong seasonal contrasts closely linked to the hydrological regime and hyporheic flows. In total, the carbon export from the Arcachon watershed was estimated at 15,870 t C year?1 or 6 t C km?2 year?1, mostly exported to the lagoon as DOC (35 %), DIC (24 %) and lost as CO2 degassing to the atmosphere (34 %).  相似文献   

13.
Estimates of greenhouse gas evasion from rivers have been refined over the past decades to constrain their role in global carbon cycle processes. However, despite 55% of the human population living in urban areas, urban rivers have had limited attention. We monitored carbon dynamics in an urbanized river (River Kelvin, 331 km2, UK) to explore the drivers of dissolved carbon lateral and vertical export. Over a 2-year sampling period, riverine methane (CH4) and carbon dioxide (CO2) concentrations were consistently oversaturated with respect to atmospheric equilibria, leading to continual degassing to the atmosphere. Carbon stable isotopic compositions (δ13C) indicated that terrestrially derived carbon comprised most of the riverine CH4 and dissolved CO2 (CO2*) load while dissolved inorganic carbon (DIC) from groundwater was the main form of riverine DIC. The dynamics of CH4, CO2*, and DIC in the river were primarily hydrology-controlled, that is, [CH4] and [CO2*] both increased with elevated discharge, total [DIC] decreased with elevated discharge while the proportion of biologically derived DIC increased with increasing discharge. The concentration of dissolved organic carbon (DOC) showed a weak relationship with river hydrology in summer and autumn and was likely influenced by the combined sewer overflows. Carbon emission to the atmosphere is estimated to be 3.10 ± 0.61 kg C·m−2·yr−1 normalized to water surface area, with more than 99% emitted as CO2. Annual carbon loss to the coastal estuary is approximately 4.69 ± 0.70 Gg C yr−1, with annual DIC export approximately double that of DOC. Per unit area, the River Kelvin was a smaller carbon source to the atmosphere than natural rivers/streams but shows elevated fluxes of DIC and DOC under comparable conditions. This research illustrates the role urban systems may have on riverine carbon dynamics and demonstrates the potential tight link between urbanization and riverine carbon export.  相似文献   

14.
Dissolved inorganic carbon isotope (δ13CDIC) is an important tool to reveal the carbon cycle in lake systems. However, there are only few studies focusing on the spatial variation of δ13CDIC of closed lakes. Here we analyze the characteristics of δ13CDIC of 24 sampled lakes (mainly closed lakes) across the Qiangtang Plateau (QTP) and identify the driving factors for its spatial variation. The δ13CDIC value of these observed lakes varies in the range of ? 15·0 to 3·2‰, with an average value of ? 1·2‰. The δ13CDIC value of closed lakes is close to the atmospheric isotopic equilibrium value, much higher than that in rivers and freshwater lakes reported before. The high δ13CDIC value of closed lakes is mainly attributed to the significant contribution of carbonate weathering in the catchment and the evasion of dissolved CO2 induced by the strong evaporation of lake water. The δ13CDIC value of closed lakes has a logarithmic correlation with water chemistry (TDS, DIC and pCO2), also suggesting that the evapo‐concentration of lake water can influence the δ13CDIC value. The δ13CDIC value shows two opposite logarithmic correlations with lake size depending on the δ13CDIC range. This study suggests that the δ13C in carbonates in lacustrine sediments can be taken as an indicator of lake volume variation in closed lakes on QTP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
To assess the environmental perturbation induced by the impact event that marks the Cretaceous–Tertiary (K–T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K–T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record δ13C values of plant-derived organic matter, reflecting the δ13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the δ13C values of organic matter derived from plants and microbiota. The microbiota δ13C value reflects not only the δ13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds.Across the freshwater K–T boundary at Brownie Butte, the δ13C values decrease by 2.6‰ (from − 26.15‰ below the boundary clay to − 28.78‰ above the boundary clay), similar to the trend in carbonate at marine K–T sites. This means that the organic δ13C values reflect the variation of δ13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in δ13C values is observed across the K–T boundary at Dogie Creek (from − 25.32‰ below the boundary clay to − 26.11‰ above the boundary clay), the degree of δ13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate.About 2‰ decrease in δ13C of atmospheric CO2 was expected from the δ13C variation of marine carbonate at the K–T boundary. This δ13C-decrease of atmospheric CO2 should affect the δ13C values of organic matter derived from plant tissue. As such a decrease in δ13C value was not observed at Dogie Creek, a process that compensates the δ13C-decrease of atmospheric CO2 should be involved. For example, the enhanced contribution of 13C-enriched organic matter derived from algae in a high-productivity environment could be responsible. The δ13C values of algal organic matter become higher than, and thus distinguishable from, those of plant organic matter in situations with high productivity, where dissolved HCO3 becomes an important carbon source, as well as dissolved CO2. As the δ13C-decrease of atmospheric CO2 reflected a reduction of marine productivity, the compensation of the δ13C decrease by the enhanced activity of the terrestrial microbiota means that the microbiota at freshwater environment recovered more rapidly than those in the marine environment.A distinct positive δ13C excursion of 2‰ in the K–T boundary clays is superimposed on the overall decreasing trend at Dogie Creek; this coincides with an increase in the content of organic carbon. We conclude that the K–T boundary clays include 13C-enriched organic matter derived from highly productive algae. Such a high biological productivity was induced by phenomena resulting from the K–T impact, such as nitrogen fertilization and/or eutrophication induced by enhanced sulfide formation. The high productivity recorded in the K–T boundary clays means that the freshwater environments (in contrast to marine environments) recovered rapidly enough to almost immediately (within 10 yr) respond to the impact-related environmental perturbations.  相似文献   

16.
河流及水库等水生态系统中的溶解性无机碳(DIC)是全球碳循环与大气、陆地和海洋之间碳相互作用的重要组成部分.以澜沧江云南段上游天然河段及下游梯级水库群形成的连续体为研究对象,分析了河库连续体表层水体中水化学特征、溶解性无机碳浓度及其碳同位素时空分布特征.研究结果表明:河库连续体水体中溶解无机碳(DIC)及其同位素(δ13 C DIC)组成特征总体表现为:DIC浓度丰水期较低,枯水期较高,平均值分别为2.59±0.44和3.30±0.37 mmol/L;δ13 C DIC值丰水期偏负、枯水期偏正,平均值分别为-8.52‰±0.38‰和-6.95‰±0.53‰,与自然河流的季节变化特征相似.水体DIC来源主要包括土壤及水体有机质分解生成的CO 2、碳酸盐风化和水气界面CO 2的交换过程.澜沧江河库连续体中DIC浓度及δ13 C DIC组成的时空异质性特征与流域岩性、土壤生物地球化学过程以及微生物活动强度等均有较大关系.当前,澜沧江梯级水库群建库时间短,梯级联合运行下调度复杂,水文条件多变,梯级水库对河流重要生源要素——碳累积影响方面的“水库效应”还不明显.  相似文献   

17.
Non-dispersive infrared(NDIR) and cavity ring-down spectroscopy(CRDS) CO_2 analyzers use 12CO_2 isotopologue absorption lines and are insensitive to all or part of other CO_2-related isotopologues. This may produce biases in CO_2 mole fraction measurements of a sample if its carbon isotopic composition deviates from that of the standard gases being used. To evaluate and compare the effects of carbon isotopic composition on NDIR and CRDS CO_2 analyzers, we prepared three test sample air cylinders with varying carbon isotopic abundances and calibrated them against five standard cylinders with ambient carbon isotopic composition using CRDS and NDIR systems. We found that the CO_2 mole fractions of the sample cylinders measured by G1301(CRDS) were in good agreement with those measured by Lo Flo(NDIR). The CO_2 values measured by both instruments were higher than that of a CO_2 isotope measured by G2201i(CRDS) analyzer for a test cylinder with depleted carbon isotopic composition δ~(13)C =-36.828‰, whereas no obvious difference was found for other two test cylinders with δ~(13)C=-8.630‰ and δ~(13)C=-15.380‰, respectively. According to the theoretical and experimental results, we concluded that the total CO_2 mole fractions of samples with depleted isotopic compositions can be corrected on the basis of their 12CO_2 values calibrated by standard gases using Lo Flo and G1301 if the δ~(13)C and δ18O values are known.  相似文献   

18.
19.
According to gas compositional and carbon isotopic measurement of 114 gas samples from the Kuqa depression, accumulation of the natural gases in the depression is dominated by hydrocarbon gases, with high gas dryness (C1/C1–4) at the middle and northern parts of the depression and low one towards east and west sides and southern part. The carbon isotopes of methane and its homologues are relatively enriched in 13C, and the distributive range of δ 13C1, δ 13C2 and δ 13C3 is ?32‰–?36‰, ?22‰–?24‰ and ?20‰–?22‰, respectively. In general, the carbon isotopes of gaseous alkanes become less negative with the increase of carbon numbers. The δ 13 \(C_{CO_2 } \) value is less than ?10‰ in the Kuqa depression, indicating its organogenic origin. The distributive range of 3He/4He ratio is within n × 10?8 and a decrease in 3He/4He ratio from north to south in the depression is observed. Based on the geochemical parameters of natural gas above, natural gas in the Kuqa depression is of characteristics of coal-type gas origin. The possible reasons for the partial reversal of stable carbon isotopes of gaseous alkanes involve the mixing of gases from one common source rock with different thermal maturity or from two separated source rock intervals of similar kerogen type, multistages accumulation of natural gas under high-temperature and over-pressure conditions, and sufficiency and diffusion of natural gas.  相似文献   

20.
Geochemical and 13C/12C-isotopical Investigation of Mineral Waters in Northern Hessia (Germany) and the Origin of their CO2 Content The dissolved carbonate originates from three sources: 1. biogenetic soil-CO2, 2. volcanic CO2 related to the evaporites of the Zechstein formation, and 3. carbonate derived from the dissolution of limestones and dolomites. Miocenic basaltic melts penetrated the evaporites of the Zechstein, and the related CO2 was trapped in the intra- and intergranulars of the salt minerals. Circulating meteoric waters dissolve the salt minerals releasing CO2 gas. Thus, the occurrence of basalt is related to the CO2 contents of the evaporites, and the dissolution of only small amounts of salts rich in CO2 may result in a high concentration of carbonic acid. In waters rich in carbonate, where volcanic CO2 dominates over the other two sources of carbon, a δ13C-value of “salt-CO2” of about –1‰ (PDB) is obtained. Water with less dissolved carbonate species have smaller quantities of salt-CO2 down to about 20%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号