首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence of regional and global satellite‐based rainfall products with high spatial and temporal resolution has opened up new large‐scale hydrological applications in data‐sparse or ungauged catchments. Particularly, distributed hydrological models can benefit from the good spatial coverage and distributed nature of satellite‐based rainfall estimates (SRFE). In this study, five SRFEs with temporal resolution of 24 h and spatial resolution between 8 and 27 km have been evaluated through their predictive capability in a distributed hydrological model of the Senegal River basin in West Africa. The main advantage of this evaluation methodology is the integration of the rainfall model input in time and space when evaluated at the sub‐catchment scale. An initial data analysis revealed significant biases in the SRFE products and large variations in rainfall amounts between SRFEs, although the spatial patterns were similar. The results showed that the Climate Prediction Center/Famine Early Warning System (CPC‐FEWS) and cold cloud duration (CCD) products, which are partly based on rain gauge data and produced specifically for the African continent, performed better in the modelling context than the global SRFEs, Climate Prediction Center MORPHing technique (CMORPH), Tropical Rainfall Measuring Mission (TRMM) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN). The best performing SRFE, CPC‐FEWS, produced good results with values of R2NS between 0·84 and 0·87 after bias correction and model recalibration. This was comparable to model simulations based on traditional rain gauge data. The study highlights the need for input specific calibration of hydrological models, since major differences were observed in model performances even when all SRFEs were scaled to the same mean rainfall amounts. This is mainly attributed to differences in temporal dynamics between products. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The infrared‐microwave rainfall algorithm (IMRA) was developed for retrieving spatial rainfall from infrared (IR) brightness temperatures (TBs) of satellite sensors to provide supplementary information to the rainfall field, and to decrease the traditional dependency on limited rain gauge data that are point measurements. In IMRA, a SLOPE technique (ST) was developed for discriminating rain/no‐rain pixels through IR image cloud‐top temperature gradient, and 243K as the IR threshold temperature for minimum detectable rainfall rate. IMRA also allows for the adjustment of rainfall derived from IR‐TB using microwave (MW) TBs. In this study, IMRA rainfall estimates were assessed on hourly and daily basis for different spatial scales (4, 12, 20, and 100 km) using NCEP stage IV gauge‐adjusted radar rainfall data, and daily rain gauge data. IMRA was assessed in terms of the accuracy of the rainfall estimates and the basin streamflow simulated by the hydrologic model, Sacramento soil moisture accounting (SAC‐SMA), driven by the rainfall data. The results show that the ST option of IMRA gave accurate satellite rainfall estimates for both light and heavy rainfall systems while the Hessian technique only gave accurate estimates for the convective systems. At daily time step, there was no improvement in IR‐satellite rainfall estimates adjusted with MW TBs. The basin‐scale streamflow simulated by SAC‐SMA driven by satellite rainfall data was marginally better than when SAC‐SMA was driven by rain gauge data, and was similar to the case using radar data, reflecting the potential applications of satellite rainfall in basin‐scale hydrologic modelling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The present work develops an approach to seamlessly blend satellite, available radar, climatological and gauge precipitation products to fill gaps in ground‐based radar precipitation field. To mix different precipitation products, the error of any of the products relative to each other should be removed. For bias correction, the study uses an ensemble‐based method that aims to estimate spatially varying multiplicative biases in SPEs using a radar precipitation product. A weighted successive correction method (SCM) is used to make the merging between error corrected satellite and radar precipitation estimates. In addition to SCM, we use a combination of SCM and Bayesian spatial model for merging the rain gauges (RGs) and climatological precipitation sources with radar and SPEs. We demonstrated the method using a satellite‐based hydro‐estimator; a radar‐based, stage‐II; a climatological product, Parameter‐elevation Regressions on Independent Slopes Model and a RG dataset for several rain events from 2006 to 2008 over an artificial gap in Oklahoma and a real radar gap in the Colorado River basin. Results show that: the SCM method in combination with the Bayesian spatial model produced a precipitation product in good agreement with independent measurements. The study implies that using the available radar pixels surrounding the gap area, RG, Parameter‐elevation Regressions on Independent Slopes Model and satellite products, a radar‐like product is achievable over radar gap areas that benefit the operational meteorology and hydrology community. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

This study aims to quantify the spatial distribution of errors in two climate reanalysis (ERA5 and CFSR) and two satellite (TMPA-RT and TMPA-V7) precipitation products over Bangladesh. The datasets are assessed against ground-based rain gauge observations to capture the extreme rainfall accumulations at daily temporal scale over a 5-year period (January 2010–December 2014). The bias ratio scores indicate that CFSR and TMPA-RT seriously overestimate the rainfall values over much of the study area. Whilst TMPA-V7 performs better than the other precipitation products, all datasets lose their detection skills substantially for higher quantile thresholds (i.e. above 50th and 75th percentiles). With respect to rainfall detection metrics – probability of detection (POD) and volumetric hit index (VHI) – both ERA5 and CFSR show superior performance (in the range 0.9–1.0 for all the analysis grid boxes). All rainfall datasets are equally good in terms of false alarm ratio (FAR) and volumetric FAR (VFAR), even though the lowest values are associated with ERA5 for higher quantiles. All products demonstrate a decrease in skill to capture the amount of rainfall but show satisfactory results to detect the rainfall events when using higher quantile thresholds (i.e. rainfall above the 50th and 75th percentiles) to sample the data before computing product skill.  相似文献   

5.
The importance of satellite datasets as alternative sources of precipitation information has been argued in numerous studies. Future developments in satellite precipitation algorithms as well as utilization of satellite data in operational applications rely on a more in‐depth understanding of satellite errors and biases across different spatial and temporal scales. This paper investigates the capability of satellite precipitation data sets with respect to detecting heavy precipitation rates over different temporal accumulations. In this study, the performance of Tropical Rainfall Measuring Mission real time (TRMM‐RT), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks and CPC MORPHing (CMORPH) is compared against radar‐based gauge‐adjusted Stage IV data. The results show that none of the high temporal resolution (3‐h) datasets are ideal for detecting heavy precipitation rates. In fact, the detection skill of all products drops as the precipitation thresholds (i.e. 75 and 90 percentiles) increase. At higher temporal accumulations (6, 12 and 24 h), the detection skill improves for all precipitation products, with CMORPH showing a better detection skill compared to all other products. On the other hand, all precipitation products exhibit high false alarm ratios above the heavy precipitation thresholds, although TRMM‐RT lead to a relatively smaller level of false alarms. These results indicate that further efforts are necessary to improve the precipitation algorithms so that they can capture heavy precipitation rates more reliably. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper reports the results of an investigation into flood simulation by areal rainfall estimated from the combination of gauged and radar rainfalls and a rainfall–runoff model on the Anseong‐cheon basin in the southern part of Korea. The spatial and temporal characteristics and behaviour of rainfall are analysed using various approaches combining radar and rain gauges: (1) using kriging of the rain gauge alone; (2) using radar data alone; (3) using mean field bias (MFB) of both radar and rain gauges; and (4) using conditional merging technique (CM) of both radar and rain gauges. To evaluate these methods, statistics and hyetograph for rain gauges and radar rainfalls were compared using hourly radar rainfall data from the Imjin‐river, Gangwha, rainfall radar site, Korea. Then, in order to evaluate the performance of flood estimates using different rainfall estimation methods, rainfall–runoff simulation was conducted using the physics‐based distributed hydrologic model, Vflo?. The flood runoff hydrograph was used to compare the calculated hydrographs with the observed one. Results show that the rainfall field estimated by CM methods improved flood estimates, because it optimally combines rainfall fields representing actual spatial and temporal characteristics of rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Nozzle‐type rainfall simulators are commonly used in hydrologic and soil erosion research. Simulated rainfall intensity, originating from the nozzle, increases as the distance between the point of measurement and the source is decreased. Hence, rainfall measured using rain gauges would systematically overestimate the rainfall received at the ground level. A simple model was developed to adjust rainfall measured anywhere under the simulator to plot‐wide average rainfall at the ground level. Nozzle height, plot width, gauge diameter and height, and gauge location are required to compute this adjustment factor. Results from 15 runs at different rain intensities and durations, and with different rain gauge layouts, showed that a simple average of measured rain would overestimate the plot‐wide rain by about 20 per cent. Using the adjustment factor to convert measured rainfall for individual gauges before averaging improved the estimate of plot‐wide rainfall considerably. For the 15 runs considered, overall discrepancy between actual and measured rain is reduced to less than 1 per cent with a standard error of 0·97 mm. This model can be easily tested in the ?eld by comparing rainfall depths of different sized gauges. With the adjustment factor they should all give very similar values. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
With high spatio‐temporal resolution and wide coverage, satellite‐based precipitation products can potentially fill the deficiencies of traditional in situ gauge precipitation observations and provide an alternative data source for ungauged areas. However, due to the relatively poor accuracy and high uncertainty of satellite‐based precipitation products, it remains necessary to assess the quality and applicability of the products for each investigated area. This study evaluated the accuracy and error of the latest Tropical Rainfall Measuring Mission Multi‐satellites Precipitation Analysis 3B42‐V7 satellite‐based precipitation product and validated the applicability of the product for the Beijiang and Dongjiang River Basins, downstream of the Pearl River Basin in China. The study first evaluated the accuracy, error, and bias of the 3B42‐V7 product during 1998–2006 at daily and monthly scale via comparison with in situ observations. The study further validated the applicability of the product via hydrologic simulation using the variable infiltration capacity hydrological model for three hydrological stations in the Beijiang River Basin, considering two scenarios: a streamflow simulation with gauge‐calibrated parameters (Scenario I) and a simulation after recalibration with the 3B42‐V7 product (Scenario II). The results revealed that (a) the 3B42‐V7 product produced acceptable accuracy both at the daily scale and high accuracy at the monthly scale while generally tending to overestimate precipitation; (b) the product clearly overestimated the frequency of no rainfall events at the grid cell scale and light rainfall (<1 mm/day) events at the region scale and also overestimated the amount of heavy rain (25–50 mm/day) and hard rain (≥50 mm/day) events; (c) under Scenario I, the 3B42‐V7 product performed poorly at three stations with gauge‐calibrated parameters; under Scenario II, the recalibrated model provided significantly improved performance of streamflow simulation with the 3B42‐V7 product; (d) the variable infiltration capacity model has the ability to reveal the hydrological characteristics of the karst landform in the Beijiang Basin when using the 3B42‐V7 product.  相似文献   

9.
Precipitation is a key control on watershed hydrologic modelling output, with errors in rainfall propagating through subsequent stages of water quantity and quality analysis. Most watershed models incorporate precipitation data from rain gauges; higher‐resolution data sources are available, but they are associated with greater computational requirements and expertise. Here, we investigate whether the Multisensor Precipitation Estimator (MPE or Stage IV Next‐Generation Radar) data improve the accuracy of streamflow simulations using the Soil and Water Assessment Tool (SWAT), compared with rain gauge data. Simulated flows from 2002 to 2010 at five timesteps were compared with observed flows for four nested subwatersheds of the Neuse River basin in North Carolina (21‐, 203‐, 2979‐, and 10 100‐km2 watershed area), using a multi‐objective function, informal likelihood‐weighted calibration approach. Across watersheds and timesteps, total gauge precipitation was greater than radar precipitation, but radar data showed a conditional bias of higher rainfall estimates during large events (>25–50 mm/day). Model parameterization differed between calibrations with the two datasets, despite the fact that all watershed characteristics were the same across simulation scenarios. This underscores the importance of linking calibration parameters to realistic processes. SWAT simulations with both datasets underestimated median and low flows, whereas radar‐based simulations were more accurate than gauge‐based simulations for high flows. At coarser timesteps, differences were less pronounced. Our results suggest that modelling efforts in watersheds with poor rain gauge coverage can be improved with MPE radar data, especially at short timesteps. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
Rainfall network design using kriging and entropy   总被引:4,自引:0,他引:4  
The spatial distribution of rainfall is related to meteorological and topographical factors. An understanding of the weather and topography is required to select the locations of the rain gauge stations in the catchment to obtain the optimum information. In theory, a well‐designed rainfall network can accurately represent and provide the needed information of rainfall in the catchment. However, the available rainfall data are rarely adequate in the mountainous area of Taiwan. In order to provide enough rainfall data to assure the success of water projects, the rainfall network based on the existing rain gauge stations has to be redesigned. A method composed of kriging and entropy that can determine the optimum number and spatial distribution of rain gauge stations in catchments is proposed. Kriging as an interpolator, which performs linear averaging to reconstruct the rainfall over the catchment on the basis of the observed rainfall, is used to compute the spatial variations of rainfall. Thus, the rainfall data at the locations of the candidate rain gauge stations can be reconstructed. The information entropy reveals the rainfall information of the each rain gauge station in the catchment. By calculating the joint entropy and the transmitted information, the candidate rain gauge stations are prioritized. In addition, the saturation of rainfall information can be used to add or remove the rain gauge stations. Thus, the optimum spatial distribution and the minimum number of rain gauge stations in the network can be determined. The catchment of the Shimen Reservoir in Taiwan is used to illustrate the method. The result shows that only seven rain gauge stations are needed to provide the necessary information. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, three satellite derived precipitation datasets (TRMM, CMORPH, PERSIANN) are used to drive the Hillslope River Routing (HRR) model in the Congo Basin. The precipitation data are compared spatially and temporally in two forms: (1) precipitation magnitudes, and (2) resulting streamflow and water storages. Simulated streamflow is assessed using historical monthly discharge data from in situ stream gauges and recent stage data based on water surface elevations derived from ENVISAT radar altimetry data. Simulated total water storage is assessed using monthly storage change values derived from GRACE data. The results show that the three precipitation datasets vary significantly in terms of magnitudes but generally produce a reasonable hydrograph throughout much of the basin, with the exception of the equatorial regions of the watershed. The satellite datasets provide unreasonably high values for specific periods (e.g. all three in Oct–Nov; only CMORPH and PERSIANN in Mar–Apr) in the equatorial regions. Overall, TRMM (3B42) provides the best spatial and temporal distributions and magnitudes or rainfall based on the assessment measures used here. Both CMORPH and PERSIANN tend to overestimate magnitudes, especially in the equatorial regions of the Basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Observation of a storm approaching from the ocean to the in-land area is very important for the flood forecasting. Radar is generally used for this purpose. However, as rain gauges are mostly located within the in-land area, detection of the mean-field bias of radar rain rate cannot be easily made. This problem is obviously different from that with evenly-spaced rain gauges over the radar umbrella. This study investigated the detection problem of mean-field bias of radar rain rate when rain gauges are available within a small portion of radar umbrella. To exactly determine the mean-field bias, i.e. the difference between the radar rain rate and the rain gauge rain rate, the variance of the difference between two observations must be small; thus, a sufficient number of observations are indispensable. Therefore, the problem becomes determining the number of rain gauges that will satisfy the given accuracy, that being the variance of the difference between two observations. The dimensionless error variance derived by dividing the expected value of the error variance by the variance of the areal average rain rate was introduced as a criteria to effectively detect the mean field bias. Here, the variance of the areal average rain rate was assumed to be the climatological one and the expectation for the error variance could be changed depending one the sampling characteristics. As an example, this study evaluated the rainfall observation over the East Sea by the Donghae radar. About 6.8 % of the entire radar umbrella covered in-land areas, where the rain gauges were available. It was found that, to limit the dimensionless error variance to 2 %, a total of 26 rain gauges are required for the entire radar umbrella; whereas, a total of 24 rain gauges would be required within the in-land area with available for the rain gauge data.  相似文献   

13.
Rainfall products can contain significantly different spatiotemporal estimates, depending on their underlying data and final constructed resolution. Commonly used products, such as rain gauges, rain gauge networks, and weather radar, differ in their information content regarding intensities, spatial variability, and natural climatic variability, therefore producing different estimates. Landscape evolution models (LEMs) simulate the geomorphic changes in landscapes, and current models can simulate timeframes from event level to millions of years and some use rainfall inputs to drive them. However, the impact of different rainfall products on LEM outputs has never been considered. This study uses the STREAP rainfall generator, calibrated using commonly used rainfall observation products, to produce longer rainfall records than the observations to drive the CAESAR-Lisflood LEM to examine how differences in rainfall products affect simulated landscapes. The results show that the simulation of changes to basin geomorphology is sensitive to the differences between rainfall products, with these differences expressed linearly in discharges but non-linearly in sediment yields. Furthermore, when applied over a 1500-year period, large differences in the simulated long profiles were observed, with the simulations producing greater sediment yields showing erosion extending further downstream. This suggests that the choice of rainfall product to drive LEMs has a large impact on the final simulated landscapes. The combination of rainfall generator model and LEMs represents a potentially powerful method for assessing the impacts of rainfall product differences on landscapes and their short- and long-term evolution. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

14.
Rajib Maity 《水文研究》2012,26(21):3182-3194
In this paper, Split Markov Process (SMP) is developed to assess one‐step‐ahead variation of daily rainfall at a rain gauge station. SMP is an advancement of general Markov Process and specially developed for probabilistic assessment of change in daily rainfall magnitude. The approach is based on a first‐order Markov chain to simulate daily rainfall variation at a point through state/sub‐state transitional probability matrix (TPM). The state/sub‐state TPM is based on the historical transitions from a particular state to a particular sub‐state, which is the basic difference between SMP and general Markov Process. The cumulative state/sub‐state TPM is represented in a contour plot at different probability levels. The developed cumulative state/sub‐state TPM is used to assess the possible range of rainfall in next time step, in a probabilistic sense. Application of SMP is investigated for daily rainfall at four rain gauge stations – Khandwa, Jabalpur, Sambalpur, and Puri, located at various parts in India. There are 99 years of record available out of which approximately 80% of data are used for calibration, and 20% of data are used to assess the performance. Thus, 80 years of daily monsoon rainfall is used to develop the state/sub‐state TPM, and 19 years data are used to investigate its performance. Model performance is assessed in terms of hit rate (HR), false alarm rate (FAR), and percentage captured. It is found that percentage captured is maximum for Khandwa (70%) and minimum for Sambalpur (44%) whereas hit rate is maximum for Sambalpur and minimum for Khandwa (73%). FAR is around 30% or below for Jabalpur, Sambalpur, and Puri. FAR is maximum for Khandwa (37%). Overall, the assessed range, particularly the upper limit, provides a quantification possible extreme value in the next time step, which is a very useful information to tackle the extreme events, such as flooding, water logging and so on. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Merging multiple precipitation sources for flash flood forecasting   总被引:3,自引:0,他引:3  
We investigated the effectiveness of combining gauge observations and satellite-derived precipitation on flood forecasting. Two data merging processes were proposed: the first one assumes that the individual precipitation measurement is non-bias, while the second process assumes that each precipitation source is biased and both weighting factor and bias parameters are to be calculated. Best weighting factors as well as the bias parameters were calculated by minimizing the error of hourly runoff prediction over Wu-Tu watershed in Taiwan. To simulate the hydrologic response from various sources of rainfall sequences, in our experiment, a recurrent neural network (RNN) model was used.

The results demonstrate that the merged method used in this study can efficiently combine the information from both rainfall sources to improve the accuracy of flood forecasting during typhoon periods. The contribution of satellite-based rainfall, being represented by the weighting factor, to the merging product, however, is highly related to the effectiveness of ground-based rainfall observation provided gauged. As the number of gauge observations in the basin is increased, the effectiveness of satellite-based observation to the merged rainfall is reduced. This is because the gauge measurements provide sufficient information for flood forecasting; as a result the improvements added on satellite-based rainfall are limited. This study provides a potential advantage for extending satellite-derived precipitation to those watersheds where gauge observations are limited.  相似文献   


16.
Rain‐gauge catch efficiencies are affected by wind. Wind makes raindrops fall at an angle of inclination and the effective diameter of the rain gauge orifice smaller than if raindrops fall into the gauge vertically. Two spherical and two semi‐spherical orifices were designed to modify standard gauges and others in use today. The two spherical orifices catch rain with an effective diameter always equal to the actual diameter regardless of wind speed and direction. The semi‐spherical orifices, used side‐by‐side with a standard gauge, correct 50% of catch deficiencies made by the standard gauge. Tests based on 115 storms show that the four new gauges caught more rainfall than the standard gauge, with an average catch increase ranging from 8% to 16%. Compared with the pit gauge, average deficiency in catch ranged from ?1% (spherical rain gauge orifice with cylinders) to 4%, whereas the deficiency for the standard gauge was ?10%. Percentage deficiencies of the new gauges were positively affected by wind speed, raindrop inclination and rainfall intensity. Although the new gauges tended to underestimate the standard gauge in small storms (<0·25 cm) and overestimated the pit gauge under strong winds, their deviations are small. Underestimates for small storms could be improved by using gauge materials that reduce surface temperature, evaporation and water retention. The gauges are simple in design, easy to operate and inexpensive. In order to maintain a historically consistent set of rainfall data, a dual‐gauge (standard gauge + spherical gauge) is recommended for existing rainfall stations. The new rain gauge orifices are suitable for large‐scale applications. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
J. I. PARK  V. P. SINGH 《水文研究》1996,10(9):1155-1171
An investigation into rainfall variability in time and space in the Nam River dam basin of Korea is made with the use of the coefficient of variation and the correlation coefficient. The Nam River dam basin is a small mountainous watershed where wind direction and orography are the dominant influences on the pattern and distribution of rainfall. Rainfall distribution was found to vary with elevation, position, wind direction and distance from a reference station. The results of this study can be used in the design of rain gauge network, hydrological forecasting and for other applications in the Nam River dam basin.  相似文献   

18.
The accurate measurement of precipitation is essential to understanding regional hydrological processes and hydrological cycling. Quantification of precipitation over remote regions such as the Tibetan Plateau is highly unreliable because of the scarcity of rain gauges. The objective of this study is to evaluate the performance of the satellite precipitation product of tropical rainfall measuring mission (TRMM) 3B42 v7 at daily, weekly, monthly, and seasonal scales. Comparison between TRMM grid precipitation and point‐based rain gauge precipitation was conducted using nearest neighbour and bilinear weighted interpolation methods. The results showed that the TRMM product could not capture daily precipitation well due to some rainfall events being missed at short time scales but provided reasonably good precipitation data at weekly, monthly, and seasonal scales. TRMM tended to underestimate the precipitation of small rainfall events (less than 1 mm/day), while it overestimated the precipitation of large rainfall events (greater than 20 mm/day). Consequently, TRMM showed better performance in the summer monsoon season than in the winter season. Through comparison, it was also found that the bilinear weighted interpolation method performs better than the nearest neighbour method in TRMM precipitation extraction.  相似文献   

19.
ABSTRACT

Multisource rainfall products can be used to overcome the absence of gauged precipitation data for hydrological applications. This study aims to evaluate rainfall estimates from the Chinese S-band weather radar (CINRAD-SA), operational raingauges, multiple satellites (CMORPH, ERA-Interim, GPM, TRMM-3B42RT) and the merged satellite–gauge rainfall products, CMORPH-GC, as inputs to a calibrated probability distribution model (PDM) on the Qinhuai River Basin in Nanjing, China. The Qinhuai is a middle-sized catchment with an area of 799 km2. All sources used in this study are capable of recording rainfall at high spatial and temporal resolution (3 h). The discrepancies between satellite and radar data are analysed by statistical comparison with raingauge data. The streamflow simulation results from three flood events suggest that rainfall estimates using CMORPH-GC, TRMM-3B42RT and S-band radar are more accurate than those using the other rainfall sources. These findings indicate the potential to use satellite and radar data as alternatives to raingauge data in hydrological applications for ungauged or poorly gauged basins.  相似文献   

20.
This study evaluated four possible cases of comparing radar and rain gauge rain rate for the detection of mean‐field bias. These four cases, or detection designs, consider in this study are: (1) design 1‐uses all the data sets available, including zero radar rain rate and zero rain gauge rain rate, (2) design 2—uses the data sets of positive radar rain rate and zero or positive rain gauge rain rate, (3) design 3—uses the data sets of zero or positive radar rain rate and positive rain gauge rain rate and (4) design 4—uses the data sets of positive radar rain rate and positive rain gauge rain rate. A theoretical review of these four detection designs showed that only the design 1 causes no design bias, but designs 2, 3 and 4 can cause positive, negative and negative design biases, respectively. This theoretical result was also verified by applying these four designs to the rain rate field generated by a multi‐dimensional rain rate model, as well as to that of the Mt Gwanak radar in Korea. The results from both applications showed that especially the design 4, which is generally used for the detection of mean‐field bias of radar rain rate, causes a serious design bias; therefore, is inappropriate as a design for detecting the mean‐field bias of radar rain rate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号