首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proposals are developed to update Tables 11.4‐1 and 11.4‐2 of Minimum Design Loads for Buildings and Other Structures published as American Society of Civil Engineers Structural Engineering Institute standard 7‐10 (ASCE/SEI 7–10). The updates are mean next generation attenuation (NGA) site coefficients inferred directly from the four NGA ground motion prediction equations used to derive the maximum considered earthquake response maps adopted in ASCE/SEI 7–10. Proposals include the recommendation to use straight‐line interpolation to infer site coefficients at intermediate values of (average shear velocity to 30‐m depth). The NGA coefficients are shown to agree well with adopted site coefficients at low levels of input motion (0.1 g) and those observed from the Loma Prieta earthquake. For higher levels of input motion, the majority of the adopted values are within the 95% epistemic‐uncertainty limits implied by the NGA estimates with the exceptions being the mid‐period site coefficient, Fv, for site class D and the short‐period coefficient, Fa, for site class C, both of which are slightly less than the corresponding 95% limit. The NGA data base shows that the median value of 913 m/s for site class B is more typical than 760 m/s as a value to characterize firm to hard rock sites as the uniform ground condition for future maximum considered earthquake response ground motion estimates. Future updates of NGA ground motion prediction equations can be incorporated easily into future adjustments of adopted site coefficients using procedures presented herein. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Earthquake Engineering & Structural Dynamics published by John Wiley & Sons Ltd.  相似文献   

2.
3.
Controlled rocking steel braced frames (CRSBFs) have been proposed as a low‐damage seismic force resisting system with reliable self‐centring capabilities. Vertical post‐tensioning tendons are designed to self‐centre the system after rocking, and energy dissipation may be provided to limit the peak displacements. The post‐tensioning and energy dissipation can be designed using simple methods that rely primarily on the first‐mode response. However, the frame member forces are highly influenced by the higher‐mode response, resulting in more complex methods to design the frame members. This paper examines previous proposals and also proposes two new capacity design methods for CRSBFs. The first is a dynamic procedure that requires a truncated response spectrum analysis on a model of the frame with modified boundary conditions to consider the rocking behaviour. The second is an equivalent static method that does not require any modifications to the elastic frame model, instead using theory‐based lateral force distributions to consider the higher modes of the rocking structure. Neither method requires empirical calibration. The dynamic procedure is used to design two sets of CRSBFs with three, six, nine, twelve and eighteen stories, one set using a response modification factor of R = 8 and the other using up to R = 20. Based on the results of 800 nonlinear time history analyses, both methods are generally more accurate than the previous capacity design methods and at least as simple to implement. Finally, the displacement results suggest that taller CRSBFs designed using could still limit interstorey drifts to approximately 2.5% at the maximum considered earthquake level in the cases considered. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A simple relationship is proposed in this paper to construct damage‐based inelastic response spectra including the effect of ground motion duration that it can be used for damage control in seismic design of structures. This relation is established for three groups of ground motions with short‐duration, moderate‐duration, and long‐duration ranges. To develop the model, the duration effect is included in the cyclic ductility of structures by an energy‐based method, and then strength reduction factors are computed based on this modified ductility (named ). The strength reduction factors were calculated for 44 stiffness‐degrading oscillators having vibration periods between 0.05 and 4.0 s, four ultimate ductility capacities, and five damage levels subjected to 296 earthquake records. The results showed that ductility capacity, damage level, and ground motion duration are effective parameters in the energy dissipation of structures, which affect the spectra. The values of short‐period oscillators (e.g., low‐rise structures) under short‐duration records are generally greater than those under moderate‐duration and long‐duration records. Residual analysis has been made in terms of magnitude and distance to examine the validity of the proposed simple expression. Finally, the introduced spectra were compared with three previously published proposals. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper investigates circumstances behind the occurrence of negative ε (the normalized difference between the spectral acceleration of a recorded ground motion and the median response predicted by a ground motion prediction equation) in probabilistic seismic hazard deaggregation. Negative ε values are of engineering interest because of their impact on the conditional mean spectrum (CMS), which is a proposed alternative to the uniform hazard spectrum (UHS) as a target spectrum for ground motion selection. In the case where target ε values from deaggregation are positive, the CMS calculation produces relatively lower response spectra than the UHS. Positive target ε values occur almost universally in active seismic regions at long return periods of engineering interest, but the possibility of negative target ε values is important because in the case of negative target ε, some relationships between the CMS and UHS would reverse. This paper describes the calculation of target ε, performs parametric studies to determine when negative ε values occur in deaggregation, and investigates the potential impact on target spectrum calculation and ground motion selection. The case studies indicate that special seismicity models and certain ground motion prediction equations have the most significant effect on ε values and a combination of these characteristics in Eastern North America creates the most likely situation for negative target ε to occur. CMS results are nonintuitive when the target ε is negative, but it is not clear that this is a common practical concern because negative target ε occurs only in well‐constrained areas. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
7.
This study uses instrumented buildings and models of code‐based designed buildings to validate the results of previous studies that highlighted the need to revise the ASCE 7 Fp equation for designing nonstructural components (NSCs) through utilizing oversimplified linear and nonlinear models. The evaluation of floor response spectra of a large number of instrumented buildings illustrates that, unlike the ASCE 7 approach, the in‐structure and the component amplification factors are a function of the ratio of NSC period to the supporting building modal periods, the ground motion intensity, and the NSC location. It is also shown that the recorded ground motions at the base of instrumented buildings in most cases are significantly lower than design earthquake (DE) ground motions. Because ASCE 7 is meant to provide demands at a DE level, for a more reliable evaluation of the Fp equation, 2 representative archetype buildings are designed based on the ASCE 7‐16 seismic provisions and exposed to various ground motion intensity levels (including those consistent with the ones experienced by instrumented buildings and the DE). Simulation results of the archetype buildings, consistent with previous numerical studies, illustrate the tendency of the ASCE 7 in‐structure amplification factor, [1 + 2(z/h)] , to significantly overestimate demands at all floor levels and the ASCE 7 limit of to in many cases underestimate the calculated NSC amplification factors. Furthermore, the product of these 2 amplification factors (that represents the normalized peak NSC acceleration) in some cases exceeds the ASCE 7 equation by a factor up to 1.50.  相似文献   

8.
Probabilistic seismic analysis of structures involves the construction of seismic demand models, often stated as probabilistic models of structural response conditioned on a seismic intensity measure. The uncertainty introduced by the model is often a result of the chosen intensity measure. This paper introduces the concept of using fractional order intensity measures (IMs) in probabilistic seismic demand analysis and uses a single frame integral concrete box‐girder bridge class and a seismically designed multispan continuous steel girder bridge class as case studies. The fractional order IMs considered include peak ground response and spectral accelerations at 0.2 and 1.0 s considering a single degree of freedom system with fractional damping, , as well as a linear single degree of freedom system with fractional response, . The study reveals the advantage of fractional order IMs relative to conventional IMs such as peak ground acceleration, peak ground velocity, or spectral acceleration at 0.2 and 1.0 s. Metrics such as efficiency, sufficiency, practicality, and proficiency are measured to assess the optimal nature of fractional order IMs. The results indicate that the proposed fractional order IMs produce significant improvements in efficiency and proficiency, whereas maintaining practicality and sufficiency, and thus providing superior demand models that can be used in probabilistic seismic demand analysis. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Scenario‐based earthquake simulations at regional scales hold the promise in advancing the state‐of‐the‐art in seismic risk assessment studies. In this study, a computational workflow is presented that combines (i) a broadband Green's function‐based fault‐rupture and ground motion simulation—herein carried out using the “UCSB (University of California at Santa Barbara) method”, (ii) a three‐dimensional physics‐based regional‐scale wave propagation simulation that is resolved at  Hz, and (iii) a local soil‐foundation‐structure finite element analysis model. These models are interfaced with each other using the domain reduction method. The innermost local model—implemented in ABAQUS—is additionally enveloped with perfectly matched layer boundaries that absorb outbound waves scattered by the structures contained within it. The intermediate wave propagation simulation is carried out using Hercules , which is an explicit time‐stepping finite element code that is developed and licensed by the CMU‐QUAKE group. The devised workflow is applied to a  km region on the European side of Istanbul, which was modeled using detailed soil stratigraphy data and realistic fault rupture properties, which are available from prior microzonation surveys and earthquake scenario studies. The innermost local model comprises a chevron‐braced steel frame building supported by a shallow foundation slab, which, in turn, rests atop a three‐dimensional soil domain. To demonstrate the utility of the workflow, results obtained using various simplified soil‐structure interaction analysis techniques are compared with those from the detailed direct model. While the aforementioned demonstration has a limited scope, the devised workflow can be used in a multitude of ways, for example, to examine the effects of shallow‐layer soil nonlinearities and surface topography, to devise site‐ and structure‐specific seismic fragilities, and for calibrating regional loss models, to name a few.  相似文献   

10.
T. H. Brikowski 《水文研究》2015,29(7):1746-1756
Adaptation and mitigation efforts related to global trends in climate and water scarcity must often be implemented at the local, single‐catchment scale. A key requirement is understanding the impact of local climate and watershed characteristics coupled with these regional trends. For surface water, determination of multi‐parameter runoff elasticities is a promising tool for achieving such understanding, as explored here for two surface‐water dependent basins in Texas. The first basin is the water supply for Dallas‐Ft. Worth (DFW), and exhibits relatively high precipitation elasticity (proportional change in runoff to change in precipitation) εP = 2.64, and temperature elasticity εT = ? 0.41. Standard precipitation–temperature elasticity diagrams exhibit unusual concave contours of runoff change, indicating influence of additional parameters, which can be isolated using multi‐parameter approaches. The most influential local parameter in DFW is unexpected reduced runoff fraction in cooler wetter years. Those years exhibit increased summer (JJA) precipitation fraction, but predominant cracking soils in DFW minimize JJA runoff, yielding negative . A comparative basin near Houston shows positive , reflecting the local impact of tropical cyclones and lesser abundance of cracking soils. Both basins exhibit positive elasticity to 1‐year previous precipitation (e.g. DFW εP ? 1 = 1.24), reflecting the influence of soil moisture storage. Only DFW exhibits negative elasticity to 2‐year previous precipitation (εP ? 2 = ? 0.65), reflecting multi‐year influence of vegetation growth and increased evapotranspiration. Using these elasticities, analysis of historical multi‐decadal climate departures for DFW indicates the 80% decrease in runoff during the 1950–1957 drought of record was primarily caused by reduced precipitation. Runoff 56% above‐normal during an unprecedented 1986–1998 wet period was primarily caused by increased precipitation. Since 2000, despite precipitation slightly above normal, runoff has decreased 20%, primarily in response to ~ 1°C warming. Future precipitation droughts superimposed on this new drier normal are likely to be much more severe than historical experience would indicate. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Spectral shape,epsilon and record selection   总被引:4,自引:0,他引:4  
Selection of earthquake ground motions is considered with the goal of accurately estimating the response of a structure at a specified ground motion intensity, as measured by spectral acceleration at the first‐mode period of the structure, Sa(T1). Consideration is given to the magnitude, distance and epsilon (ε) values of ground motions. First, it is seen that selecting records based on their ε values is more effective than selecting records based on magnitude and distance. Second, a method is discussed for finding the conditional response spectrum of a ground motion, given a level of Sa(T1) and its associated mean (disaggregation‐based) causal magnitude, distance and ε value. Records can then be selected to match the mean of this target spectrum, and the same benefits are achieved as when records are selected based on ε. This mean target spectrum differs from a Uniform Hazard Spectrum, and it is argued that this new spectrum is a more appropriate target for record selection. When properly selecting records based on either spectral shape or ε, the reductions in bias and variance of resulting structural response estimates are comparable to the reductions achieved by using a vector‐valued measure of earthquake intensity. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
We present deterministic ground motion simulations that account for the cyclic multiaxial response of sediments in the shallow crust. We use the Garner Valley in Southern California as a test case. The multiaxial constitutive model is based on the bounding surface plasticity theory in terms of total stress and is implemented in a high‐performance computing finite‐element parallel code. A major advantage of this model is the small number of free parameters that need to be calibrated given a shear modulus reduction curve and the ultimate soil strength. This, in turn, makes the model suitable for regional‐scale simulations, where geotechnical data in the shallow crust are scarce. In this paper, we first describe a series of numerical experiments designed to verify the model implementation. This is followed by a series of idealized large‐scale simulations in a 35 26 4.5 km domain that encompasses the Garner Valley downhole array site, which is an instrumented and well‐characterized site in Southern California. Material properties were extracted from the Southern California Earthquake Center Community velocity model, CVM‐S4.26, considering its optional geotechnical layer, while the modulus reduction curves and soil strength were selected empirically to constrain the nonlinear soil model parameters. Our nonlinear simulations suggest that peak ground displacements within the valley increase relative to the linear case, while peak ground accelerations can increase or decrease, depending on the frequency content of the excitation. The comparisons of our simulations against hybrid three‐dimensional–one‐dimensional site response analyses suggest the inadequacy of the latter to capture the complexity of fully three‐dimensional simulations.  相似文献   

13.
Soils in post‐wildfire environments are often characterized by a low infiltration capacity with a high degree of spatial heterogeneity relative to unburned areas. Debris flows are frequently initiated by run‐off in recently burned steeplands, making it critical to develop and test methods for incorporating spatial variability in infiltration capacity into hydrologic models. We use Monte Carlo simulations of run‐off generation over a soil with a spatially heterogenous saturated hydraulic conductivity (Ks) to derive an expression for an aerially averaged saturated hydraulic conductivity ( ) that depends on the rainfall rate, the statistical properties of Ks, and the spatial correlation length scale associated with Ks. The proposed method for determining is tested by simulating run‐off on synthetic topography over a wide range of spatial scales. Results provide a simplified expression for an effective saturated hydraulic conductivity that can be used to relate a distribution of small‐scale Ks measurements to infiltration and run‐off generation over larger spatial scales. Finally, we use a hydrologic model based on to simulate run‐off and debris flow initiation at a recently burned catchment in the Santa Ana Mountains, CA, USA, and compare results to those obtained using an infiltration model based on the Soil Conservation Service Curve Number.  相似文献   

14.
Release of nitrogen compounds into groundwater, particularly those compounds from excessive agricultural fertilization, is a major concern in an aquifer recharge. Among the nitrogen compounds, ammonium ( ) is a common one. In order to assess the risk of agricultural fertilizer contamination to an aquifer through infiltration, adsorption onto a loamy agricultural soil profile (0–0.60 m depth) was studied using a soil column experiment and modelling simulation. The soil used in the experiment was drawn from an agricultural field in Xinzhen, Fangshan district, Beijing, China, and reconstituted in laboratory soil columns. Column experiments were conducted using bromide (conservative tracer) and ‐bearing aqueous solutions. The ammonium concentrations in the soil water samples were measured, and their values were plotted as the breakthrough curves. The chemical's soil–water distribution coefficients (Kd) were calculated using breakthrough curves. Then the retardation factor (R) in saturated soil was calculated. For the ‐bearing aqueous solutions, the strongest adsorption occurred at the soil depth of 0.30–0.45 m. The convection–dispersion equation model and chemical non‐equilibrium model in Hydrus‐1D were used to simulate transport in the loamy soil. The two‐site chemical non‐equilibrium model in Hydrus‐1D was best to simulate transport through the soil column. Parameter sensitivity study was conducted to investigate the influences of solute transport by Kd, the fraction of exchange sites assuming to be in equilibrium with the solution phase (f), the longitudinal dispersivity (λ), and the first‐order rate coefficients (ω). The sensitivity analysis results indicate Kd is the most critical parameter.  相似文献   

15.
In the framework of the revision of Part 1 of Eurocode 8, this study aims at developing new empirical correlations to compute peak values of ground velocity (PGV) and displacement (PGD) as a function of elastic spectral ordinates for design. At variance with the expressions for PGV and PGD currently adopted in the Eurocode 8, based solely on the peak ground acceleration (PGA), in this paper reference is made to spectral ordinates of the short and intermediate period range, namely Ss, which is the constant acceleration spectral ordinate, and S1, which is the spectral ordinate at 1 s. On the one hand, a relationship between PGV and the product (Ss?S1) was found based on the regression analysis on a high‐quality strong‐motion dataset. On the other hand, the PGD was estimated by extrapolating to long periods the constant displacement branch of the elastic response spectrum, introducing a correlation between the corner period TD and S1. For this purpose, results of a long period probabilistic seismic hazard assessment study for Italy, encompassing low to high seismicity areas, were considered. Furthermore, verification of the proposed relationship against strong‐motion records was carried out, and differences justified in terms of the concept of uniform hazard spectrum.  相似文献   

16.
Linear prediction filters are an effective tool for reducing random noise from seismic records. Unfortunately, the ability of prediction filters to enhance seismic records deteriorates when the data are contaminated by erratic noise. Erratic noise in this article designates non‐Gaussian noise that consists of large isolated events with known or unknown distribution. We propose a robust fx projection filtering scheme for simultaneous erratic noise and Gaussian random noise attenuation. Instead of adopting the ?2‐norm, as commonly used in the conventional design of fx filters, we utilize the hybrid ‐norm to penalize the energy of the additive noise. The estimation of the prediction error filter and the additive noise sequence are performed in an alternating fashion. First, the additive noise sequence is fixed, and the prediction error filter is estimated via the least‐squares solution of a system of linear equations. Then, the prediction error filter is fixed, and the additive noise sequence is estimated through a cost function containing a hybrid ‐norm that prevents erratic noise to influence the final solution. In other words, we proposed and designed a robust M‐estimate of a special autoregressive moving‐average model in the fx domain. Synthetic and field data examples are used to evaluate the performance of the proposed algorithm.  相似文献   

17.
The atmospheric chloride mass balance (CMB) method allows spatial evaluations of the average diffuse aquifer recharge by rainfall () in large and varied territories when long‐term steady conditions can be assumed. Often, the distributed average CMB variables necessary to calculate have to be estimated from the available variable‐length data series, which may be of suboptimal quality and spatial coverage. This paper explains the use of these data and the reliability of the results in continental Spain, chosen as a large and varied territory. The CMB variables have been regionalized by ordinary kriging at the same 4976 nodes of a 10 km × 10 km grid. Nodal values vary from 14 to 810 mm year–1, 90% ranging from 30 to 300 mm year–1. The recharge‐to‐precipitation ratios vary from 0.03 in low‐permeability formations and semiarid areas to 0.65 in some carbonate massifs. Integrated average results for the whole of continental Spain yield a potential aquifer recharge of 64 km3 year?1, the net recharge over permeable formations (40% of the territory) being 32 km3 year?1. Two main sources of uncertainty affecting (given by the coefficient of variation, CV), induced by the inherent natural variability of the variables (CVR) and from mapping (), have been segregated. The average CVR is 0.13 and could be improved with longer data series. The average is 0.07 and may be decreased with better data coverage. The estimates were compared with other regional and local recharge estimates, being 4% and 1% higher, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Although changes in rainfall characteristics have been noted across the world, few studies have reported those in mountainous areas. This study was undertaken to clarify spatial and temporal variations in rainfall characteristics such as annual rainfall amount (Pr), mean daily rainfall intensity (η), and ratio of rain days (λ) in mountainous and lowland areas in Taiwan. To this aim, we examined spatial and year‐to‐year variations and marginal long‐term trends in Pr, η, and λ, based on rainfall data from 120 stations during the period 1978–2008. The period mean rainfall () at the lowland stations had strong relationships with the period mean daily rainfall intensity () and the period mean ratio of rain days () during those 31 years. Meanwhile, was only strongly related to at mountainous stations, indicating that influences on spatial variations in were different between lowland and mountainous stations. Year‐to‐year variations in Pr at each station were primarily determined from the variation in η at most stations for both lowland and mountainous stations. Long‐term trend analysis showed that Pr and η increased significantly at 10% and 31% of the total 120 stations, respectively, and λ decreased significantly at 6% of the total. The increases in Pr were mostly accompanied by increases in η. Although stations with significant η increases were slightly biased toward the western lowland area, increases or decreases in Pr and λ were not common. These results contribute to understanding the impacts of possible climate changes on terrestrial hydrological cycles. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper aims at implementing and introducing the use of conditional mean spectrum (CMS) and conditional spectrum (CS) as the main input parameters in the practice of seismic safety evaluation (SSE) in China, instead of the currently used uniform hazard spectrum (UHS). For this purpose, a procedure for M-R-epsilon seismic hazard deaggregation in China was first developed. For illustration purposes, two different typical sites in China, with one to two dominant seismic zones, were considered as examples to carry out seismic hazard deaggregation and illustrate the construction of CMS/CS. Two types of correlation coefficients were used to generate CMS and the results were compared over a vibration period range of interest. Ground motion records were selected from the NSMONS (2007–2015) and PEER NGA-West2 databases to correspond to the target CMS and CS. Hazard consistency of the spectral accelerations of the selected ground motion records was evaluated and validated by computing the annual exceedance probability rate of the response spectra and comparing the results to the hazard curve corresponding to each site of concern at different periods. The tools developed in this work and their illustrative application to specific case studies in China are a first step towards the adoption of CMS and CS into the practice of seismic safety evaluation in this country.  相似文献   

20.
Although most rocks are complex multi‐mineralic aggregates, quantitative interpretation workflows usually ignore this complexity and employ Gassmann equation and effective stress laws that assume a micro‐homogeneous (mono‐mineralic) rock. Even though the Gassmann theory and effective stress concepts have been generalized to micro‐inhomogeneous rocks, they are seldom if at all used in practice because they require a greater number of parameters, which are difficult to measure or infer from data. Furthermore, the magnitude of the effect of micro‐heterogeneity on fluid substitution and on effective stress coefficients is poorly understood. In particular, it is an open question whether deviations of the experimentally measurements of the effective stress coefficients for drained and undrained elastic moduli from theoretical predictions can be explained by the effect of micro‐heterogeneity. In an attempt to bridge this gap, we consider an idealized model of a micro‐inhomogeneous medium: a Hashin assemblage of double spherical shells. Each shell consists of a spherical pore surrounded by two concentric spherical layers of two different isotropic minerals. By analyzing the exact solution of this problem, we show that the results are exactly consistent with the equations of Brown and Korringa (which represent an extension of Gassmann's equation to micro‐inhomogeneous media). We also show that the effective stress coefficients for bulk volume α, for porosity n? and for drained and undrained moduli are quite sensitive to the degree of heterogeneity (contrast between the moduli of the two mineral components). For instance, while for micro‐homogeneous rocks the theory gives n? = 1, for strongly micro‐inhomogenous rocks, n? may span a range of values from –∞ to ∞ (depending on the contrast between moduli of inner and outer shells). Furthermore, the effective stress coefficient for pore volume (Biot–Willis coefficient) α can be smaller than the porosity ?. Further studies are required to understand the applicability of the results to realistic rock geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号