首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil and vadose zone profiles are used as an archive of changes in groundwater recharge and water quality following changes in land use in an area of the Loess Plateau of China. A typical rain‐fed loess‐terrace agriculture region in Hequan, Guyuan, is taken as an example, and multiple tracers (chloride mass balance, stable isotopes, tritium and water chemistry) are used to examine groundwater recharge mechanisms and to evaluate soil water chloride as an archive for recharge rate and water quality. Results show that groundwater recharge beneath natural uncultivated grassland, used as a baseline, is about 94–100 mm year?1 and that the time it takes for annual precipitation to reach water table through the thick unsaturated zone is from decades to hundreds of years (tritium free). This recharge rate is 2–3 orders of magnitude more than in the other semiarid areas with similar annual rainfall but with deep‐rooted vegetation and relatively high temperature. Most of the water that eventually becomes recharge originally infiltrated in the summer months. The conversion from native grassland to winter wheat has reduced groundwater recharge by 42–50% (50–55 mm year?1 for recharge), and the conversion from winter wheat to alfalfa resulted in a significant chloride accumulation in the upper soil zone, which terminated deep drainage. The paper also evaluates the time lag between potential recharge and actual recharge to aquifer and between increase in solute concentration in soil moisture and that in the aquifer following land‐use change due to the deep unsaturated zone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Regional estimates of aquifer recharge are needed in data-scarce regions such as the Basin of Mexico, where nearly 20 million people are located and where the Basin’s aquifer system represents the main water source. In order to develop the spatio-temporal estimates of aquifer recharge and to analyze to what extent urban growth has affected aquifer recharge, this work presents a daily soil water balance which uses different vegetation and soil types as well as the effect of topography on climatological variables and evapotranspiration. The soil water balance was applied on a daily time step in the Basin of Mexico for the period 1975–1986, obtaining an annually-lumped potential recharge flow of 10.9–23.8 m3/s (35.9–78.1 mm) in the entire Basin, while the monthly values for the year with the largest lumped recharge value (1981 = 78.1 mm) range from 1 m3/s (0.3 mm) in December to 87.9 m3/s (23.7 mm) in June. As aquifer recharge in the Basin mainly occurs by subsurface flow from its enclosing mountains as Mountain Block Recharge, urban growth has had a minimal impact on aquifer recharge, although it has diminished recharge in the alluvial plain.  相似文献   

4.
Understanding recharge mechanisms and controls in karst regions is extremely important for managing water resources because of the dynamic nature of the system. The objective of this study was to evaluate water percolation through epikarst by monitoring water flow into a cave and conducting artificial irrigation and tracer experiments, at Sif Cave in Wadi Sussi, Israel from 2005 through 2007. The research is based on continuous high‐resolution direct measurements of both rainfall and water percolation in the cave chamber collected by three large PVC sheets which integrate drips from three different areas (17, 46, and 52 m2). Barrels equipped with pressure transducers record drip rate and volume for each of the three areas. The combined measured rainfall and cave data enables estimation of recharge into the epikarst and to better understand the relationship of rainfall‐recharge. Three distinct types of flow regimes were identified: (1) ‘Quick flow’ through preferential flow paths (large fractures and conduits); (2) ‘Intermediate flow’ through a secondary crack system; and (3) ‘Slow flow’ through the matrix. A threshold of ~100 mm of rain at the beginning of the rainy season is required to increase soil water content allowing later rainfall events to percolate deeper through the soil and to initiate dripping in the cave. During winter, as the soil water content rises, the lag time between a rain event and cave drip response decreases. Annual recharge (140–160 mm in different areas in the cave) measured represents 30–35% of annual rainfall (460 mm). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We assess the relative merits of application of the most commonly used field methods (soil‐water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro‐irrigated and non‐irrigated areas of a semi‐arid coastal orchard located in a relatively complex geological environment. Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil‐water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non‐irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non‐irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year. The SWB method, constructed for a 15‐year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 – 98 and 1996 – 98 periods, respectively. Assuming similar soil‐water holding capacity, these recharge rates applied to both irrigated and non‐irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil‐water holding capacity and estimation of rainfall interception – runoff losses. Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 – 1998 period in both the orchards and non‐irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed by progressive wetting during the winter rainy season was observed in both irrigated and non‐irrigated soil profiles, confirming that groundwater recharge was rainfall driven and that micro‐irrigation did not ‘predispose’ the soil profile to excess rainfall recharge. The ability to make this recharge assessment, however, depended on making multiple field measurements associated with all three methods, suggesting that any one should not be used alone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Groundwater recharge and mounding of water‐table is a complex phenomenon involving time‐ and space‐dependent hydrologic processes. The effect of long‐term groundwater mounding in the aquifer depends on soil, aquifer geometry and the area contributing to recharge. In this paper, a GIS‐based spatio‐temporal algorithm has been developed for the groundwater mound dynamics to estimate the potential rise in the water‐table and groundwater volume balance residual in an unconfined aquifer. The recharge and mound dynamics as predicted using the methodology recommended here were compared with those using the Hantush equation, and the differences were quite significant. The significance of the study is to assess the effectiveness of the basin in terms of its hydrologic and hydraulic properties for sustainable management of groundwater recharge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Modelling blue and green water resources availability in Iran   总被引:7,自引:0,他引:7  
Knowledge of the internal renewable water resources of a country is strategic information which is needed for long‐term planning of a nation's water and food security, among many other needs. New modelling tools allow this quantification with high spatial and temporal resolution. In this study we used the program Soil and Water Assessment Tool (SWAT) in combination with the Sequential Uncertainty Fitting program (SUFI‐2) to calibrate and validate a hydrologic model of Iran based on river discharges and wheat yield, taking into consideration dam operations and irrigation practices. Uncertainty analyses were also performed to assess the model performance. The results were quite satisfactory for most of the rivers across the country. We quantified all components of the water balance including blue water flow (water yield plus deep aquifer recharge), green water flow (actual and potential evapotranspiration) and green water storage (soil moisture) at sub‐basin level with monthly time‐steps. The spatially aggregated water resources and simulated yield compared well with the existing data. The study period was 1990–2002 for calibration and 1980–1989 for validation. The results show that irrigation practices have a significant impact on the water balances of the provinces with irrigated agriculture. Concerning the staple food crop in the country, 55% of irrigated wheat and 57% of rain‐fed wheat are produced every year in water‐scarce regions. The vulnerable situation of water resources availability has serious implications for the country's food security, and the looming impact of climate change could only worsen the situation. This study provides a strong basis for further studies concerning the water and food security and the water resources management strategies in the country and a unified approach for the analysis of blue and green water in other arid and semi‐arid countries. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Characteristics of Groundwater Recharge on the North China Plain   总被引:1,自引:0,他引:1  
Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large‐scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001–2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge.  相似文献   

9.
Jordan is classified as an arid to semi‐arid country with a population according to 1999 estimates of 4·8 millions inhabitants and a growth rate of 3·4%. Efficient use of Jordan's scarce water is becoming increasingly important as the urban population grows. This study was carried out within the framework of the joint European Research project ‘Groundwater recharge in the eastern Mediterranean’ and describes a combined methodology for groundwater recharge estimation in Jordan, the chloride method, as well as isotopic and hydrochemical approaches. Recharge estimations using the chloride method range from 14 mm year?1 (mean annual precipitation of 500 mm) for a shallow and stony soil to values of 3·7 mm year?1 for a thick desert soil (mean annual precipitation of 100 mm) and values of well below 1 mm year?1 for thick alluvial deposits (mean annual rainfall of 250 mm). Isotopically, most of the groundwater in the Hammad basin, east Jordan, falls below the global meteoric water line and far away from the Mediterranean meteoric water line, suggesting that the waters are ancient and were recharged in a climate different than Mediterranean. Tritium levels in the groundwater of the Hammad basin are less than the detection limit (<1·3 TU). However, three samples in east Hammad, where the aquifer is unconfined, present tritium values between 1 and 4 TU. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
Groundwater is not a sustainable resource, unless abstraction is balanced by recharge. Identifying the sources of recharge in a groundwater basin is critical for sustainable groundwater management. We studied the importance of river water recharge to groundwater in the south‐eastern San Joaquin Valley (24,000 km2, population 4 million). We combined dissolved noble gas concentrations, stable isotopes, tritium, and carbon‐14 analyses to analyse the sources, mechanisms, and timescales of groundwater recharge. Area‐representative groundwater sampling and numerical model input data enabled a stable isotope mass balance and quantitative estimates of river and local recharge. River recharge, identified by a lighter stable isotope signature, represents 47 ± 4% of modern groundwater in the San Joaquin Valley (recharged after 1950) but only 26 ± 4% of premodern groundwater (recharged before 1950). This implies that the importance of river water recharge in the San Joaquin valley has nearly doubled and is likely the result of a 40% increase in total recharge, caused by river water irrigation return flows and increased stream depletion and river recharge due to groundwater pumping. Compared with the large and long‐duration capacity for water storage in the subsurface, storage of water in rivers is limited in time and volume, as evidenced by cold river recharge temperatures resulting from fast infiltration and recharge. Groundwater banking of seasonal surface water flows and expansion of managed aquifer recharge practices therefore appear to be a natural and promising method for increasing the resilience of the San Joaquin Valley water supply system.  相似文献   

11.
It is very interesting and meaningful to investigate the rainfall-groundwater recharge process under the humid climatic condition of Japan, where mean annual precipitation is about 1600 mm. The present study has investigated soil water movement in the unsaturated zones of a volcanic ash layer, called the ‘Kanto Loam formation’, using environmental tritium as a tracer. The site selected is a flat ground surface on a terraced upland which has a deep unsaturated zone (about 20 m) with a relatively high water content (about 70 per cent) consisting of nearly uniform Kanto Loam formation. The tritium concentrations in groundwater, soil waters having different matric potentials, precipitation, and the seepage water moving through the formation into a man-made cave were measured to characterize the rainfall-groundwater recharge process and the effect of large pore spaces in the formation mentioned by previous studies. Because of the humid climate of Japan, there appears to be a unique soil water flow characteristic which may involve percolation through large pore spaces during heavy rainfall. However, in a fine grained and high water content soil like the Kanto Loam formation, the existence of this flow through large pore spaces does not have a significant effect upon the whole recharge process. The recharge model of displacement flow with dispersion is useful in estimating the tritium concentration profile of soil water. The calculated result shows a recharge rate of 2.5 mm/day. The value obtained reflects the hydrological characteristics of the uplands covered with volcanic ash.  相似文献   

12.
Understanding the principal causes and possible solutions for groundwater depletion in India is important for its water security, especially as it relates to agriculture. A study was conducted in an agricultural watershed in Andhra Pradesh, India to assess the impacts on groundwater of current and alternative agricultural management. Hydrological simulations were used as follows: (1) to evaluate the recharge benefits of water‐harvesting tillage through a modified Soil and Water Assessment Tool (SWAT) model and (2) to predict the groundwater response to changing extent and irrigation management of rice growing areas. The Green–Ampt infiltration routine was modified in SWAT was modified to represent water‐harvesting tillage using maximum depression storage parameter. Water‐harvesting tillage in rainfed croplands was shown to increase basin‐scale groundwater recharge by 3% and decrease run‐off by 43% compared with existing conventional tillage. The groundwater balance (recharge minus irrigation withdrawals), negative 11 mm/year under existing management changed to positive (18–45 mm/year) when rice growing areas or irrigation depths were reduced. Groundwater balance was sensitive to changes in rice cropland management, meaning even small changes in rice cropland management had large impacts on groundwater availability. The modified SWAT was capable of representing tillage management of varying maximum depression storage, and tillage for water‐harvesting was shown to be a potentially important strategy for producers to enhance infiltration and groundwater recharge, especially in semi‐arid regions where rainfall may be becoming increasingly variable. This enhanced SWAT could be used to evaluate the landscape‐scale impacts of alternative tillage management in other regions that are working to develop strategies for reducing groundwater depletion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
The evapotranspiration and groundwater recharge from two natural areas with high (oak) and low (heath) vegetation were estimated by calibrating a semi-physical numerical soil water and heat model to fit 8 and 7 years of TDR-measurements of water content, respectively. The measurements were made between the surface and 7 m depth. For the oak stand, the estimated annual recharge for the years 1992–1999 is 390 mm, the evaporation from soil and interception is 205 mm, and the transpiration is 285 mm. For the heath area estimation was carried out for the years 1993–1999. However, the heath was struck by a heavy beetle attack in 1994, which strongly affected the vegetation and thus the water balance for the following 3 years. For years not affected, the estimated recharge is 733 mm (about 50% larger than for the oak stand for the same years), the evaporation is 316 mm, and the transpiration is 128 mm. The estimated recharge values compare fairly well to estimates obtained from bromide tracer experiments. However, the recharge estimates obtained from the tracer experiments are very uncertain. The uncertainty is mainly due to spatial heterogeneity making the three replicate samples taken here for each time and depth insufficient.

The analyses of TDR-measurements and tracer data showed that water front movement depends on the antecedent soil water content. Some layers are bypassed, especially at low water contents, and at high soil water contents preferential flow was observed at the heath site.  相似文献   


14.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The development of intense agriculture in semiarid areas modifies intensity and spatial distribution of groundwater recharge by summing irrigation return flow to limited rainfall infiltration. Environmental tracers provide key information, but their interpretation is complicated by more complex groundwater flow patterns. In multilayered aquifers, the real origin of the groundwater samples is hard to assess because of local mixing processes occurring inside long‐screened boreholes. We use environmental tracers (14C, 13C, 2H, 18O, 3H) to investigate the long‐term evolution of recharge in the five‐layer Campo de Cartagena aquifer in South‐Eastern Spain, in addition to high‐resolution temperature loggings to identify the depth of origin of groundwater. Despite the complex background, this methodology allowed a reliable interpretation of the geochemistry and provided a better understanding of the groundwater flow patterns. The tritium method did not give good quantitative results because of the high variability of the recharge signal but remained an excellent indicator of recent recharge. Nonetheless, both pre‐anthropization and post‐anthropization recharge regime could be identified and quantified by radiocarbon. Before the development of agriculture, recharge varied from 17 mm.year‐1 at the mountain ranges to 6 mm.year‐1 in the plain, whereas the mean annual rainfall is about 300 mm. In response to the increase of agricultural activity, recharge fluxes to the plain were amplified and nowadays reach up to 210 mm.year‐1 in irrigated areas. These values are strengthened by global water budget and local unsaturated zone studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In a tropical rainforest catchment, shallow piezometers respond almost instantaneously to rainfall, but the dominant ground water recharge mechanisms are not well understood. To improve understanding, the downward movement of soil water on a runoff plot was traced using tritiated water injected at 0·20 m below the surface which marks the lower boundary of active subsurface storm flow. The tritium pulse was translated slowly down the profile, apparently dominated by interstitial piston flow on the lines described by Zimmermann's theoretical model. This recharge mechanism accounted for about 35 per cent of rainfall or 50 per cent of throughfall. The pulse's advance may have also been delayed by the upward movement of soil water indicated by the distribution of hydraulic potential under different hydrological conditions. The result was an increase in soil water transit time particularly below 1·0 m. There was also evidence in the tracer profiles for rapid by-pass flow but the volumes concerned could not be quantified in this experiment.  相似文献   

17.
The present study examined groundwater recharge/discharge mechanisms in the regional Central Sudan Rift Basins (CSRB). Aquifers in CSRB constitute poorly sorted silisiclastics of sand, clay and gravels deposited in closed hydrologic systems of the Cretaceous–Pleistocene fluviolacustrine environments. CSRB are bounded to the north by the highlands of the Central African Shear Zone (CAZS) that represents the surface and groundwater divides. Sporadic recharge in the peripheries of the basins along the CASZ occurs subsequent to decadal and centennial storm events. Inflow from the Nile into the aquifers represents an additional source of recharge. Thus, groundwater resources cannot be labelled fossil nor can they be readily recharged. Closed hydrologic troughs located adjacent to the influent Nile system mark areas of main groundwater discharge characterized by lower hydraulic heads. This study has examined mechanisms that derive the discharge of the groundwater in these closed basins and concluded that only evapotranspirative discharge can provide a plausible explanation. Groundwater abstraction is mainly through deep‐rooted trees and effective evaporation. The increase of TDS along the flow indicates local recharge at the peripheries of basins and shows the influence of evaporation and rock/water interaction. The decline in groundwater level along a flow path was calculated using Darcy's law to estimate average recharge and evapotranspirative discharge, which are equal under natural equilibrium and make the only fluxes in CSRB. Steady‐state 2D flow modelling has demonstrated that an average recharge of 4–8 mm yr?1 and evapotranspirative discharge of 1–22 mm yr?1 will maintain natural equilibrium in CSRB. Sporadic storms provide recharge in the highlands to preserve the current hydraulic gradient and maintain aquifer dynamics. Simulated recharge from the Nile totals about 17·5 mm yr?1 and is therefore a significant contributor to the water balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

19.
Accurate estimation of groundwater recharge (GR) and evapotranspiration (ET) are essential for sustainable management of groundwater resources, especially in arid and semi-arid regions. In the Manas River Basin (MRB), water shortage is the main factor restricting sustainable development of irrigated agriculture, which relies heavily on groundwater. Film-mulched drip irrigation significantly changes the pattern and dominant processes of water flow in the unsaturated zone, which increases the difficulty of GR and ET estimation. To better estimate GR and ET under film-mulched drip irrigation in the MRB, bromide tracer tests and soil lithologic investigation were conducted at 12 representative sites. A one-dimensional variably saturated flow model (HYDRUS-1D) was calibrated at each site using soil evaporation data inferred from the bromide tracer tests. The results showed that average annual soil evaporation in uncultivated lands calculated from bromide trace tests was 25.55 mm. The annual GR ranged from 5.5 to 37.0 mm under film-mulched drip irrigation. The annual ET ranged from 507.0 to 747.1 mm, with soil evaporation between 35.7 and 117.0 mm and transpiration between 460.9 and 642.3 mm. Soil evaporation represented 7% to 16% of the total ET and more than 70% of precipitation and irrigation water was used by cotton plants. Spatial variations of soil lithology, water table depth and initial soil water content led to the spatial differences of GR and ET in the MRB. Our study indicated that bromide tracer tests are useful for inferring ET in the arid and semi-arid oases. The combination of bromide tracer tests and HYDRUS-1D enhances reliability for estimation of GR and ET under film-mulched drip irrigation in the MRB and shows promise for other similar arid inland basins around the world.  相似文献   

20.
Epikarst exerts a strong control on run‐off generation in karst regions, but it is still unclear in karst regions. Our study aimed to demonstrate the effect of epikarst on near‐surface hydrological processes in a subtropical cockpit karst region of southwest China, using plot‐scale rainfall simulation experiments with different rainfall intensities (low and high) and antecedent moisture conditions (dry and wet). A trench excavated to the epikarst lower boundary allowed identification of flow pathways in the entire soil–epikarst architecture system, thus facilitating the water balance calculations using a conceptual model with the assumption of a two‐stage hydrological evolution. More than 70% of the total rainfall water moved vertically through the shallow soil layer and then was redistributed by the epikarst as subsurface flow occurring on the soil–epikarst interface, depression filling on epikarst surface, water held by epikarst and deep percolation. Epikarst water regulation capacity, defined as the sum of depression filling on epikarst surface, water held by epikarst, epikarst seepage flow and deep percolation, was 58 mm (wet antecedent condition) and 223 mm (dry antecedent condition). Total run‐off from the soil–epikarst system was dominated by saturated subsurface flow showing a threshold process controlled by epikarst storage capacity (storing as much as 181 mm of rainfall water under dry antecedent condition). Our study proved that despite the epikarst being relatively poorly developed and covered by a soil mantle, it still exerted a strong influence on near‐surface hydrological processes and thus should be adequately considered in future modelling of water recharge and depletion dynamics in this integrated soil–epikarst system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号