首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquifer parameter estimation using an incremental area method   总被引:2,自引:0,他引:2  
Theoretical well functions have been derived over the years to predict ground water level behaviour in aquifer systems under stress owing to groundwater extraction. The drawdown data collected during pump tests are typically analysed using graphical curve‐matching procedures to estimate aquifer parameters based on these well functions. Difficulty in aquifer characteristic identification and parameter estimation may arise when the field data do not perfectly match the drawdown curves obtained from the well functions. The present study provides a new method for the interpretation of aquifer pump tests which supplements the existing curve‐matching procedures in case ideal conditions do not exist; the proposed method provides a greater degree of flexibility in the data analysis for diagnostic tool purposes. The method, referred to as the Incremental Area Method (IAM) is based on integrating the logarithmic‐based drawdown curves within a discrete time and matching the results with a corresponding time integral of the Theis ( 1935 ) Well Function which governs ideal confined aquifers. The application of the proposed method to synthetically generated data and field data showed that IAM represents a viable method which yields information on potential non‐idealness of the aquifer and provides aquifer parameter estimates thus potentially overcoming drawdown data curve‐matching difficulties. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
A mathematical model that describes the drawdown due to constant pumpage from a finite radius well in a two‐zone leaky confined aquifer system is presented. The aquifer system is overlain by an aquitard and underlain by an impermeable formation. A skin zone of constant thickness exists around the wellbore. A general solution to a two‐zone leaky confined aquifer system in Laplace domain is developed and inverted numerically to the time‐domain solution using the modified Crump (1976) algorithm. The results show that the drawdown distribution is significantly influenced by the properties and thickness of the skin zone and aquitard. The sensitivity analyses of parameters of the aquifer and aquitard are performed to illustrate their effects on drawdowns in a two‐zone leaky confined aquifer system. For the negative‐skin case, the drawdown is very sensitive to the relative change in the formation transmissivity. For the positive‐skin case, the drawdown is also sensitive to the relative changes in the skin thickness, and both the skin and formation transmissivities over the entire pumping period and the well radius and formation storage coefficient at early pumping time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract. Two useful programs have been developed for the Hewlett Packard HP41CV programmable calculator. The THEIS program is designed to simulate a well pumping from a confined or unconfined aquifer. Drawdown, residual drawdown, t/t1 and t/r2 are calculated. The BOUN program is designed to solve for drawdown in a well pumping from an aquifer bounded by two parallel impermeable barriers. The programs can be used in aquifer pumping test design, pumping test analysis, and aquifer response predictions.  相似文献   

4.
Abstract

Unconfined aquifer parameters, viz. transmissivity, storage coefficient, specific yield and delay index from a pumping test are estimated using the genetic algorithm optimization (GA) technique. The parameter estimation problem is formulated as a least-squares optimization, in which the parameters are optimized by minimizing the deviations between the field-observed and the model-predicted time–drawdown data. Boulton's convolution integral for the determination of drawdown is coupled with the GA optimization technique. The bias induced by three different objective functions: (a) the sum of squares of absolute deviations between the observed and computed drawdown; (b) the sum of squares of normalized deviations with respect to the observed drawdown; and (c) the sum of squares of normalized deviations with respect to the computed drawdown, is statistically analysed. It is observed that, when the time–drawdown data contain no errors, the objective functions do not induce any bias in the parameter estimates and the true parameters are uniquely identified. However, in the presence of noise, these objective functions induce bias in the parameter estimates. For the case considered, defining the objective function as the sum of the squares of absolute deviations between the observed and simulated drawdowns resulted in the best possible estimates. A comparison of the GA technique with the curve-matching procedure and a conventional optimization technique, such as the sequential unconstrained minimization technique (SUMT), is made in estimating the aquifer parameters from a reported field pumping test in an unconfined aquifer. For the case considered, the GA technique performed better than the other two techniques in parameter estimation, with the sum-of-squares errors obtained from the GA about one fourth of those obtained by the curve matching procedure, and about half of those obtained by SUMT.

Citation Rajesh, M., Kashyap, D. & Hari Prasad, K. S. (2010) Estimation of unconfined aquifer parameters by genetic algorithms. Hydrol. Sci. J. 55(3), 403–413.  相似文献   

5.
Transmissivity is often estimated using specific capacity data when standard pumping test data are not available or the drawdown is stabilized early, as in this study. Previous researchers studied the relationship between transmissivity and specific capacity in the leaky aquifer system of volcanic rocks on Jeju Island, Korea, using the Cooper–Jacob equation. The current study utilizes the Moench leaky aquifer model. The linear relationship between transmissivity and specific capacity on a log–log scale for volcanic aquifers on Jeju Island is remarkably strong, with a correlation coefficient of 0.94. The width of the 90% prediction interval is about 0.89 log cycles, indicating a ±0.44 order of magnitude uncertainty when transmissivity is estimated using specific capacity.  相似文献   

6.
In this study, we attempted to analyse a drawdown pattern around a pumping well in an unconfined sandy gravelly aquifer constructed in a laboratory tank by means of both experimental and numerical modelling of groundwater flow. The physical model consisted of recharge, aquifer and discharge zones. Permeability and specific yield of the aquifer material were determined by Dupuit approximation under steady‐state flow and stepwise gravitational drainage of groundwater, respectively. The drawdown of water table in pumping and neighbouring observation wells was monitored to investigate the effect of no‐flow boundary on the drawdown pattern during pumping for three different boundary conditions: (i) no recharge and no discharge with four no‐flow boundaries (Case 1); (ii) no recharge and reservoir with three no‐flow boundaries (Case 2); (iii) recharge and discharge with two no‐flow boundaries (Case 3). Based on the aquifer parameters, numerical modelling was also performed to compare the simulated drawdown with that observed. Results showed that a large difference existed between the simulated drawdown and that observed in wells for all cases. The reason for the difference could be explained by the formation of a curvilinear type water table between wells rather than a linear one due to a delayed response of water table in the capillary fringe. This phenomenon was also investigated from a mass balance study on the pumping volume. The curvilinear type of water table was further evidenced by measurement of water contents at several positions in the aquifer between wells using time domain reflectometry (TDR). This indicates that the existing groundwater flow model applicable to an unconfined aquifer lacks the capacity to describe a slow response of water table in the aquifer and care should be taken in the interpretation of water table formation in the aquifer during pumping. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   

8.
Air flows from the atmosphere into an unconfined aquifer when the water table falls during pumping tests. Pumping test results in unconfined aquifers may be significantly affected by low‐permeability zones (LPZs) near the initial water table position, because they restrict the downward movement of air. A transient, three‐dimensional air–water two‐phase flow model is employed to investigate numerically the effects of local heterogeneity on pumping test results in unconfined aquifers. Two cases of local heterogeneities are considered herein: a LPZ around the pumping well and on one side of the pumping well. Results show that the drawdown with the LPZ is significantly greater than that of the homogeneous aquifer. The differences in drawdown are the most significant at intermediate times and gradually diminish at later times. The LPZ significantly reduces air flow from the atmosphere to the aquifer. The pore air velocity in the LPZ is very low. The air pressure at the observation point under the LPZ when air begins to enter is significantly lower than the air pressure of the homogeneous aquifer at the same point. After that, the air pressure increases quickly and then increases slowly. The time for the air pressure to reach the atmospheric pressure is significantly longer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
根据含水层数学模型的降深-时间双对数和半对数曲线特征,可以确定含水层类型;依据选定的含水层模型,调整其中水文地质参数以拟合抽水试验中观测井降深-时间实测数据,可以反演水文地质参数。将以上方法应用于天津地区6组工程抽水试验,获得试验含水层类型及其水文地质参数。该方法可用于其他相关工程,天津地区和工程建设有关的50m埋深范围内含水层属性及其水文地质参数取值范围,可参考借鉴本文计算结果。  相似文献   

10.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents an analytical model for describing the tidal effects in a two‐dimensional leaky confined aquifer system in an estuarine delta where ocean and river meet. This system has an unconfined aquifer on top and a confined aquifer on the bottom with an aquitard in between the two. The unconfined and confined aquifers interact with each other through leakage. It was assumed that the aquitard storage was negligible and that the leakage was linearly proportional to the head difference between the unconfined and confined aquifers. This model's solution was based on the separation of variables method. Two existing solutions that deal with the head fluctuation in one‐dimensional or two‐dimensional leaky confined aquifers are shown as special cases in the present solution. Based on this new solution, the dynamic effect of the water table's fluctuations can be clearly explored, as well as the influence of leakage on the behaviour of fluctuations in groundwater levels in the leaky aquifer system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Peiyue Li  Hui Qian  Jianhua Wu 《水文研究》2014,28(4):2293-2301
Accurate knowledge of hydrogeological parameters is essential for groundwater modeling, protection and remediation. Three methods (type curve fitting method, inflection point method and global curve‐fitting method (GCFM)) which are frequently applied in the estimation of leaky aquifer parameters were compared using synthetic pumping tests. The results revealed GCFM could provide best parameter estimation among the three methods with fewer uncertainties associated with the processes of parameter estimation. GCFM was also found to be both time saving and of low cost and is thus more preferable for hydrogeological parameter estimation than the other two methods. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

14.
We analyze the optimal design of a pumping test for estimating hydrogeologic parameters that are subsequently used to predict stream depletion caused by groundwater pumping in a leaky aquifer. A global optimization method is used to identify the test’s optimal duration and the number and locations of observation wells. The objective is to minimize predictive uncertainty (variance) of the estimated stream depletion, which depends on the sensitivities of depletion and drawdown to relevant hydrogeologic parameters. The sensitivities are computed analytically from the solutions of Zlotnik and Tartakovsky [Zlotnik, V.A., Tartakovsky, D.M., 2008. Stream depletion by groundwater pumping in leaky aquifers. ASCE Journal of Hydrologic Engineering 13, 43–50] and the results are presented in a dimensionless form, facilitating their use for planning of pumping test at a variety of sites with similar hydrogeological settings. We show that stream depletion is generally very sensitive to aquitard’s leakage coefficient and stream-bed’s conductance. The optimal number of observation wells is two, their optimal locations are one close to the stream and the other close to the pumping well. We also provide guidelines on the test’s optimal duration and demonstrate that under certain conditions estimation of aquitard’s leakage coefficient and stream-bed’s conductance requires unrealistic test duration and/or signal-to-noise ratio.  相似文献   

15.
In the past, graphical or computer methods were usually employed to determine the aquifer parameters of the observed data obtained from field pumping tests. Since we employed the computer methods to determine the aquifer parameters, an analytical aquifer model was required to estimate the predicted drawdown. Following this, the gradient‐type approach was used to solve the nonlinear least‐squares equations to obtain the aquifer parameters. This paper proposes a novel approach based on a drawdown model and a global optimization method of simulated annealing (SA) or a genetic algorithm (GA) to determine the best‐fit aquifer parameters for leaky aquifer systems. The aquifer parameters obtained from SA and the GA almost agree with those obtained from the extended Kalman filter and gradient‐type method. Moreover, all results indicate that the SA and GA are robust and yield consistent results when dealing with the parameter identification problems. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
C. J. Hemker 《Ground water》1985,23(2):247-253
Abstract. Although determination of aquifer characteristics from pumping test data is generally carried out using type curves or other graphical techniques, a number of computer methods have been developed recently for this purpose. Based on the principle of least squares, these methods of nonlinear regression analysis can be applied to any flow system for which analytical expressions of the drawdown distribution are known. In view of the growing general interest in the application of microcomputers in ground-water hydrology, a BASIC routine has been developed for estimating any number of aquifer parameters. The least squares solution is calculated by Marquardt's algorithm, using the singular-value decomposition of the Jacobian matrix. The robust computing method obtained can be applied to all kinds of pumping tests. Aquifer characteristics as well as their standard deviations are computed with optimal speed and accuracy. The technique is demonstrated by a simple application to steady flow in a leaky aquifer and an example is provided. Other applications are easily implemented and programs for unsteady-state aquifer tests, recovery tests and multiple aquifer tests are available.  相似文献   

17.
An analytical model of stream/aquifer interaction is proposed that predicts drawdown in an aquifer with leakage from a finite-width stream induced by pumping from a well. The model is formulated based on the assumptions of stream partial penetration, a semipervious streambed, and distributed recharge across a finite-width stream. Advantages of the analytical solution include its simple structure, consisting of the Theis well function with integral modifications. The solution is derived for the semi-infinite domain between the stream and pumping well, which is of primary interest to hydrogeologists. Previous stream/aquifer analytical models are compared to the analytical solution based on dimensionless drawdown profiles. Drawdown in the aquifer near a wide stream was found to be less than that predicted by a solution that ignored stream width. Deviations between the proposed analytical solutions and previous solutions increase as stream width increases. For a hypothetical stream/aquifer system, the proposed analytical solution was equivalent to prior solutions when the ratio of the distance between the stream and aquifer to the stream width was greater than 25. This analytical solution may provide improved estimates of aquifer and streambed leakage parameters by curve fitting experimental field drawdown data.  相似文献   

18.
An analytical model is presented for the analysis of constant flux tests conducted in a phreatic aquifer having a partially penetrating well with a finite thickness skin. The solution is derived in the Laplace transform domain for the drawdown in the pumping well, skin and formation regions. The time-domain solution in terms of the aquifer drawdown is then obtained from the numerical inversion of the Laplace transform and presented as dimensionless drawdown–time curves. The derived solution is used to investigate the effects of the hydraulic conductivity contrast between the skin and formation, in addition to wellbore storage, skin thickness, delayed yield, partial penetration and distance to the observation well. The results of the developed solution were compared with those from an existing solution for the case of an infinitesimally thin skin. The latter solution can never approximate that for the developed finite skin. Dimensionless drawdown–time curves were compared with the other published results for a confined aquifer. Positive skin effects are reflected in the early time and disappear in the intermediate and late time aquifer responses. But in the case of negative skin this is reversed and the negative skin also tends to disguise the wellbore storage effect. A thick negative skin lowers the overall drawdown in the aquifer and leads to more persistent delayed drainage. Partial penetration increases the drawdown in the case of a positive skin; however its effect is masked by the negative skin. The influence of a negative skin is pronounced over a broad range of radial distances. At distant observation points the influence of a positive skin is too small to be reflected in early and intermediate time pumping test data and consequently the type curve takes its asymptotic form.  相似文献   

19.
Groundwater in coastal areas is commonly disturbed by tidal fluctuations. A two‐dimensional analytical solution is derived to describe the groundwater fluctuation in a leaky confined aquifer system near open tidal water under the assumption that the groundwater head in the confined aquifer fluctuates in response to sea tide whereas that of the overlying unconfined aquifer remains constant. The analytical solution presented here is an extension of the solution by Sun for two‐dimensional groundwater flow in a confined aquifer and the solution by Jiao and Tang for one‐dimensional groundwater flow in a leaky confined aquifer. The analytical solution is compared with a two‐dimensional finite difference solution. On the basis of the analytical solution, the groundwater head distribution in a leaky confined aquifer in response to tidal boundaries is examined and the influence of leakage on groundwater fluctuation is discussed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Abstract. A method to calculate aquifer transmissivity, storage coefficient, and the leakage coefficient from pumping test data for a leaky aquifer is presented. The method is carried out by a computer program and is based on a minimization of the sum of squares of differences between drawdown in the observation well and the theoretical values from the Hantush and Jacob formula. No user defined starting points are necessary. Random error estimates for the parameters are given. Applications of the method are illustrated using data from pumping tests performed in leaky aquifers at the Cauca River Valley, Colombia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号