首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural bedrock rivers flow in self‐formed channels and form diverse erosional morphologies. The parameters that collectively define channel morphology (e.g. width, slope, bed roughness, bedrock exposure, sediment size distribution) all influence river incision rates and dynamically adjust in poorly understood ways to imposed fluid and sediment fluxes. To explore the mechanics of river incision, we conducted laboratory experiments in which the complexities of natural bedrock channels were reduced to a homogenous brittle substrate (sand and cement), a single sediment size primarily transported as bedload, a single erosion mechanism (abrasion) and sediment‐starved transport conditions. We find that patterns of erosion both create and are sensitive functions of the evolving bed topography because of feedbacks between the turbulent flow field, sediment transport and bottom roughness. Abrasion only occurs where sediment impacts the bed, and so positive feedback occurs between the sediment preferentially drawn to topographic lows by gravity and the further erosion of these lows. However, the spatial focusing of erosion results in tortuous flow paths and erosional forms (inner channels, scoops, potholes), which dissipate flow energy. This energy dissipation is a negative feedback that reduces sediment transport capacity, inhibiting further incision and ultimately leading to channel morphologies adjusted to just transport the imposed sediment load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
《国际泥沙研究》2020,35(5):455-466
Assessments of a stable channel were done to evaluate the conditions of three rivers in Malaysia, using an analytical method that modifies the stable channel flowchart developed by Chang (1988) and Ariffin (2004). The analytical approach was selected to calculate the suitable dimensions for a stable channel, using equations that describe the physical relation of sediment transport, flow resistance, and dynamic equilibrium. Measured field data were used as the input data for the stable channel program, which then processed the data until the input discharge was equal to the output discharge. However, this method depends on the accuracy of the sediment transport equation that is used in the stable channel design. Existing equations recommended by the Department of Irrigation and Drainage (DID), Malaysia, were found to be unsuitable because of their low discrepancy ratio (DR) values, which were below 42%. These are the equations of Engelund and Hansen (1967) and Yang (1979), as well as existing local equations from Ariffin (2004) and Sinnakaudan et al. (2006). Therefore, revised equations were developed in the current study to increase the accuracy of the total bed material load equations for use in Malaysian rivers. The newly revised Ariffin (2004) and Sinnakaudan et al. (2006) equations yielded better DRs of 66.34 and 64.49%, respectively. River assessments done on the Kurau River (a small river), the Muda River (a medium-size river), and the Langat River (a large river) show that these rivers have experienced different levels of erosion. Only the Kurau River was found to have minimal erosion and sedimentation levels. Conversely, stable channel assessments for the Muda River and the Langat River revealed that both rivers had experienced severe erosion, due to excessive sand mining. Almost all the cross section sampling points on the Muda River and Langat River were deeper than the suggested stable channel heights.  相似文献   

4.
I INTRODUCTIONThe volume and regime of sediment load are the most important factors, which are responsible for theformation, direction and deformation rate of the river channels. Despite the long history of study anddevelopment of sediment load calculation methodology, there are still numerous problems that remain tobe solved such as river pattern and sediment movement and so on (Wang et al, 1997).In this respect, the comparative analysis of sediment load and river channel processes of la…  相似文献   

5.
As with most Italian rivers, the Reno River has a long history of human modification, related also to morphological changes of the lower Po River since Roman times, but in the last decades, significant land use changes in the headwaters, dam construction, torrent control works and extensive bed material mining have caused important channel morphology and sediment budget changes. In this paper, two main types of channel adjustment, riverbed incision and channel narrowing, are analysed. Riverbed degradation is discussed by comparing four different longitudinal profiles surveyed in 1928, 1951, 1970 and 1998 in the 120 km long reach upstream of the outlet. The analysis of channel narrowing is carried out by comparing a number of cross‐sections surveyed in different years across the same downstream reach. Field sediment transport measurements of seven major floods that occurred between 2003 and 2006 are compared with the bedload transport rates predicted by the most renowned equations. The current low bedload yield is discussed in terms of sediment supply limited conditions due to land use changes, erosion‐control works and extensive and out of control bed material mining that have affected the Reno during the last decades. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

7.
Bed load transport rate was measured in ten self-formed small-scale gravel braided streams developed in a laboratory flume at several different values of steady discharge and flume gradient. The streams are approximate Froude models of typical prototype braided streams but of no particular river. Slight viscous effects may be present in the models because particle Reynolds numbers are close to 70. Total bed load discharge was measured every fifteen minutes throughout each 60 hour run. In addition, 80 channel cross-sections were measured in each run to establish the average channel geometry. Total bed load transport rate correlates well with total discharge and total stream power, although at a given stream power bed load discharge is greater when braiding is less intense and the width/depth ratio is lower. Analysis using unit stream power and cross-section average bed shear stress reveals that the laboratory data conform to existing empirical bed load transport relationships. However, comparison with field data from gravel-bed rivers shows discrepancies that may be due to differences in bed material size gradation and bed sediment structure. At constant discharge, wide fluctuations in bed load discharge occur with some regularity. Periods range from 2 to 10 hours in the models, which is equivalent to several tens of hours in a prototype. The presence of these long-period fluctuations compounds the problems of field measurement of bed load in braided streams.  相似文献   

8.
It is increasingly recognized that effective river management requires a catchment scale approach. Sediment transport processes are relevant to a number of river functions but quantifying sediment fluxes at network scales is hampered by the difficulty of measuring the variables required for most sediment transport equations (e.g. shear stress, velocity, and flow depth). We develop new bedload and total load sediment transport equations based on specific stream power. These equations use data that are relatively easy to collect or estimate throughout stream networks using remote sensing and other available data: slope, discharge, channel width, and grain size. The new equations are parsimonious yet have similar accuracy to other, more established, alternatives. We further confirm previous findings that the dimensionless critical specific stream power for incipient particle motion is generally consistent across datasets, and that the uncertainty in this parameter has only a minor impact on calculated sediment transport rates. Finally, we test the new bedload transport equation by applying it in a simple channel incision model. Our model results are in close agreement to flume observations and can predict incision rates more accurately than a more complicated morphodynamic model. These new sediment transport equations are well suited for use at stream network scales, allowing quantification of this important process for river management applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In mixed bedrock–alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20–50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

10.
River channel pattern may be regarded as the outcome of streamflow, sediment load, and channel boundary conditions, as can the grain size distribution of bed material. It may therefore be expected that connections should exist between river channel pattern characteristics and the corresponding river bed material grain size parameters. Using data from some Chinese rivers, an attempt has been made to express these connections quantitatively by using statistical methods. The work demonstrates that the river's bed load can be related to the percentage of the traction subpopulation of the bed material shown by the probabilistic plot of grain size cumulative-frequency curve. The study has also revealed some correlations between the bed material grain size parameters of rivers and their channel geometry such as channel width-depth ratio and channel sinuosity. For instance, the higher the ratio of the traction to suspension subpopulation in bed material, the more sinuous, more shallow, and wider the river channel would be. Furthermore, a discrimination function has been given to distinguish between meandering and wandering braided rivers. If the existence of these relationships can be supported by data from more rivers in other regions, then by using them we can postdict palaeoriver channel geometry and its channel pattern character from fluvial sediment grain size parameters of the palaeoriver. This would open a new way to reconstruct the physicogeographical environment in which palaeorivers developed.  相似文献   

11.
Suspended load transport can strongly impact ecosystems, dam filling and water resources. However, contrary to bedload, the use of physically based predicting equations is very challenging because of the complexity of interactions between suspended load and the river system. Through the analysis of extensive data sets, we investigated extent to which one or several river bed or flow parameters could be used as a proxy for quantifying suspended fluxes in gravel bed rivers. For this purpose, we gathered in the literature nearly 2400 instantaneous field measurements collected in 56 gravel bed rivers. Among all standard dimensionless parameters tested, the strongest correlation was observed between the suspended sediment concentration and the dimensionless bedload rate. An empirical relation between these two parameters was calibrated. Used with a reach average bedload transport formula, the approach allowed to successfully reproduce suspended fluxes measured during major flood events in seven gravel bed alpine rivers, morphodynamically active and distant from hillslope sources. These results are discussed in light of the complexity of the processes potentially influencing suspended load in a mountainous context. The approach proposed in this paper will never replace direct field measurements, which can be considered the only confident method to assess sediment fluxes in alpine streams; however, it can increment existing panel tools that help river managers to estimate even rough but not unrealistic suspended fluxes when measurements are totally absent. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
《国际泥沙研究》2016,(4):376-385
Twenty runs of experiments are carried out to investigate non-equilibrium transport of graded and uniform bed load sediment in a degrading channel. Well-sorted gravel and sand are employed to compose four kinds of sediment beds with different gravel/sand contents, i.e., uniform 100%gravel bed, uniform 100% sand bed, and two graded sediment beds respectively with 53% gravel and 47% sand as well as 22%gravel and 78%sand. For different sediment beds, the experiments are conducted under the same discharges, thereby allowing for the role of sediment composition in dictating the bed load transport rate to be identified. A new observed dataset is generated concerning the flow, sediment transport and evolution of bed elevation and composition, which can be exploited to underpin devel-opments of mathematical river models. The data shows that in a degrading channel, the sand greatly promotes the transport of gravel, whilst the gravel considerably hinders the transport of sand. The promoting and hindering effects are evaluated by means of impact factors defined based on sediment transport rates. The impact factors are shown to vary with flow discharge by orders of magnitude, being most pronounced at the lowest discharge. It is characterized that variations in sand or gravel inputs as a result of human activities and climate change may lead to severe morphological changes in degrading channels.  相似文献   

13.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A 2D depth‐averaged hydrodynamic, sediment transport and bed morphology model named STREMR HySeD is presented. The depth‐averaged sediment transport equations are derived from the 3D dilute, multiphase, flow equations and are incorporated into the hydrodynamic model STREMR. The hydrodynamic model includes a two‐equation turbulence model and a correction for the mean flow due to secondary flows. The suspended sediment load can be subdivided into different size classes using the continuum (two‐fluid) approach; however, only one bed sediment size is used herein. The validation of the model is presented by comparing the suspended sediment transport module against experimental measurements and analytical solutions for the case of equilibrium sediment‐laden in a transition from a rigid bed to a porous bed where re‐suspension of sediment is prevented. On the other hand, the bed‐load sediment transport and bed evolution numerical results are compared against bed equilibrium experimental results for the case of a meander bend. A sensitivity analysis based on the correction for secondary flow on the mean flow including the effect of secondary flow on bed shear stresses direction as well as the downward acceleration effect due to gravity on transverse bed slopes is performed and discussed. In general, acceptable agreement is found when comparing the numerical results obtained with STREMR HySeD against experimental measurements and analytical solutions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Field data are essential in evaluating the adequacy of predictive equations for sediment transport. Each dataset based on the sediment transport rates and other relevant information gives an increased understanding and improved quantification of different factors influencing the sediment transport regime in the specific environment. Data collected for 33 sites on 31 mountain streams and rivers in Central Idaho have enabled the analysis of sediment transport characteristics in streams and rivers with different geological, topographic, morphological, hydrological, hydraulic, and sedimentological characteristics. All of these streams and rivers have armored, poorly sorted bed material with the median particle size of surface layer coarser than the subsurface layer. The fact that the largest particles in the bedload samples did not exceed the median particle size of the bed surface material indicates that the armor layer is stable for the observed flow discharges (generally bankfull or less, and in some cases two times higher than bankfull discharge). The bedload transport is size‐selective. The transport rates are generally low, since sediment supply is less than the ability of flow to move the sediment for one range of flow discharges, or, the hydraulic ability of the stream is insufficient for entrainment of the coarse bed material. Detailed analyses of bedload transport rates, bedload and bed material characteristics were performed for each site. The obtained results and conclusions are used to identify different influences on bedload transport rates in analyzed gravel‐bed rivers. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
We describe additions made to a multi‐size sediment routing model enabling it to simulate width adjustment simultaneously alongside bed aggradation/incision and fining/coarsening. The model is intended for use in single thread gravel‐bed rivers over annual to decadal timescales and for reach lengths of 1–10 km. It uses a split‐channel approach with separate calculations of flow and sediment transport in the left and right sides of the channel. Bank erosion is treated as a function of excess shear stress with bank accretion occurring when shear stress falls below a second, low, threshold. A curvature function redistributes shear stress to either side of the channel. We illustrate the model through applications to a 5·6‐km reach of the upper River Wharfe in northern England. The sediment routing component with default parameter values gives excellent agreement with field data on downstream fining and down‐reach reduction in bedload flux, and the width‐adjustment components with approximate calibration to match maximum observed rates of bank shifting give plausible patterns of local change. The approach may be useful for exploring interactions between sediment delivery, river management and channel change in upland settings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A two‐dimensional shallow water hydro‐sediment‐morphodynamic model is applied to investigate alternate bar formation, development and sediment sorting in straight channels. The model is coupled, explicitly incorporating the flow–sediment–bed interactions by using the full mass and momentum conservation equations, which are numerically solved by a well‐balanced version of the finite volume Slope Limiter Centred (SLIC) scheme. The model is first tested against a flume experiment on alternate bars formed over a uniform sediment bed, which clearly exhibits processes of bar formation, migrating and finally approaching an equilibrium state. Then it is applied to another flume experiment on alternate bars due to non‐uniform sediment transport. The computational results are evaluated, with a focus on the longitudinal and vertical sediment sorting. It is argued for the first time that the inconsistent sediment sorting patterns observed in previous studies are determined by different sediment transport conditions, i.e. full versus partial transport. When a condition of full transport is achieved, under which all size fractions are fully mobilized and transported, the longitudinal surface sediment shows a sorting pattern of coarse‐on‐head and fine‐in‐pool, and the vertical substrate sediment exhibits an immobile‐fine‐coarse structure upwards. In contrast, for a partial transport condition, under which only finer fraction participates in the transport process, an opposite longitudinal pattern (i.e. fine‐on‐head and coarse‐in‐pool) and a different vertical structure (i.e. immobile‐coarse‐fine) are observed. Concurrently, numerical experiments with specified conditions show that the critical aspect ratio for the formation of migrating alternate bars is approximately equal to 12. With the increase of the aspect ratio, the bar length grows gradually, while the bar height increases rapidly for moderate values of the aspect ratio and then keeps nearly stable. The bar celerity, however, is weakly sensitive to the variation of this ratio. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Confluence–diffluence units are key elements within many river networks, having a major impact upon the routing of flow and sediment, and hence upon channel change. Although much progress has been made in understanding river confluences, and increasing attention is being paid to bifurcations and the important role of bifurcation asymmetry, most studies have been conducted in laboratory flumes or within small rivers with width:depth (aspect) ratios less than 50. This paper presents results of a field‐based study that details the bed morphology and 3D flow structure within a very large confluence–diffluence in the Río Paraná, Argentina, with a width:depth ratio of approximately 200. Flow within the confluence–diffluence is dominated largely by the bed roughness, in the form of sand dunes; coherent, channel‐scale, secondary flow cells, that have been identified as important aspects of the flow field within smaller channels, and assumed to be present within large rivers, are generally absent in this reach. This finding has profound implications for flow mixing rates, sediment transport rates and pathways, and thus the interpretation of confluence–diffluence morphology and sedimentology. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
Every year the Ganges and Brahmaputra rivers in Bangladesh transport 316 and 721 million tonnes of sediment, respectively. These high loads of suspended sediment reflect the very high rate of denudation in their drainage basins. The average mechanical denudation rate for the Ganges and Brahmaputra basins together is 365 mm 103 yr−1. However, the rate is higher in the Brahmaputra Basin than that in the Ganges Basin. Several factors, including mean trunk channel gradient, relief ratio, runoff, basin lithology and recurring earthquakes are responsible for these high denudation rates. Of the total suspended sediment load (i.e. 1037 million tonnes) transported by these rivers, only 525 million tonnes (c. 51% of the total load) are delivered to the coastal area of Bangladesh and the remaining 512 million tonnes are deposited within the lower basin, offsetting the subsidence. Of the deposited load, about 289 million tonnes (about 28% of the total load) are deposited on the floodplains of these rivers. The remaining 223 million tonnes (about 21% of the total load) are deposited within the river channels, resulting in aggradation of the channel bed at an average rate of about 3·9 cm yr−1. Although the Brahmaputra transports a higher sediment load than the Ganges, the channel bed aggradation rate is much higher for the Ganges. This study also documents a wide range of interannual, seasonal and daily variation in suspended sediment transport and water discharge. Interannual variation in sediment deposition within the basin is also suggested. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号