首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The East River in the Pearl River basin, China, plays a vital role in the water supply for mega‐cities within and in the vicinity of the Pearl River Delta. Knowledge of statistical variability of streamflow is therefore important for water resources management in the basin. This study analyzed streamflow from four hydrological stations on the East River for a period of 1951–2009, using ensemble empirical mode decomposition (EEMD), continuous wavelet transform (CWT) technique, scanning t and F tests. Results indicated increasing/decreasing streamflow in the East River basin before/after the 1980s. After the early 1970s, the high/low flow components were decreasing/increasing. CWT‐based analysis demonstrates a significant impact of water reservoirs on the periodicity of streamflow. Scanning t and F test indicates that significantly abrupt changes in streamflow are largely influenced by both water reservoirs construction and precipitation changes. Thus, changes of streamflow, which are reflected by variations of trend, periodicity and abrupt change, are due to both water reservoir construction and precipitation changes. Further, the changes of volume of streamflow in the East River are in good agreement with precipitation changes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Niangziguan Spring complex is the largest karst spring in North China. We investigate the karst hydrological processes by using Morlet wavelet transform analysis and cross wavelet analysis based on monthly precipitation from 1958 to 2010 and spring discharge from 1958 to 2009. From Morlet wavelet transform coefficients of precipitation and the spring discharge in Niangziguan Springs Basin, we find that the precipitation and discharge are characterized by the multi‐scale features in the time domain, and the energy distribution of the signal is highly irregular across scales. Although precipitation eventually becomes spring discharge by infiltrating and propagating through karst formations, the signals are attenuated. The results also show that the precipitation of Niangziguan Springs Basin has the main periodic components of 1‐, 5‐, 12‐, and 17‐year periods with alternating wet–drought cycle. Similarly, the spring discharge of Niangziguan Springs has the main components of 17‐year periods, but the 1‐, 5‐, and 12‐year periodicity of precipitation are not reflected in spring discharge, which is filtered by the aquifers. The results of cross wavelet analysis reveal that the precipitation and spring discharge share the common periodicity of 17 years. This means that those signals with high energy and long timescales can penetrate through the aquifer and be reflected in spring discharge, whereas other signals are filtered and modified. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The purpose of this study is to determine the possible trends in annual total precipitation series by using the non-parametric methods such as the wavelet analysis and Mann-Kendall test. The wavelet trend (W-T) analysis is for the first time presented in this study. Using discrete wavelet components of measurement series, we aimed to find which periodicities are mainly responsible for trend of the measurement series. We found that some periodic events clearly affect the trend of precipitation series. 16-yearly periodic component is the effective component on Bal?kesir annual precipitation data and is responsible for producing a real trend founded on the data. Also, global wavelet spectra and continuous wavelet transform were used for analysis to precipitation time series in order to clarify time-scale characteristics of the measured series. The effects of regional differences on W-T analysis are checked by using records of measurement stations located in different climatic areas. The data set spans from 1929 to 1993 and includes precipitation records from meteorological stations of Turkey. The trend analysis on DW components of the precipitation time series (W-T model) clearly explains the trend structure of data.  相似文献   

4.
The main purpose of this study was to determine the most dominant periodic components that affect the annual and seasonal precipitation trends in each homogenous rainfall region in the Langat River Basin, Malaysia for the period 1982–2011. Performing this research could be essential because in the previous studies on detection of trend in Malaysia, the details of variations of different time scales and the periodic responsible for the observed trends were not investigated. Using discrete wavelet transform (DWT) coupled with Mann–Kendall at the regional scale for the first time particularly in the context of Malaysia is the contribution of this study. In order to form the homogenous rainfall regions, first the total annual and seasonal precipitation in each year was spatialized into 5 km × 5 km grids using the inverse distance weighting method. The obtained precipitation series for the grids were then grouped applying the Ward’s clustering method based on the similarity of precipitation time series. After allocating a cluster number to each grid, the boundary of the regions was formed in ArcGIS software. Following which, in each homogenous region the areal precipitation series were computed by the Thiessen polygon method. The Mann–Kendall (MK) test was used to detect trend and the DWT coupled with the MK test and the sequential MK analysis were then utilized in order to find out the time scale which affected the observed trend in each homogenous region. On annual scale, it was found that D1 (plus approximation) component in regions Annual Cluster1 (AC1) and AC2 was the periodic mode responsible for trends. On seasonal scale, in regions Northeast monsoon Cluster 1 (NC1), NC3, SC1 and Southwest monsoon Cluster 2 (SC2), D1 (with approximation), in regions NC4, Inter monsoon 1 Cluster 1 (I1C1), I1C2, Inter monsoon 2 Cluster 1 I2C1 and I2C2, Detail 2 (D2) (plus approximation) and in region NC2, Detail 3 (D3) (with approximation added) component were the most influential periodicity for trends.  相似文献   

5.
Based on the hydrological and meteorological data recorded for the northern and southern headstreams of the Tarim River over the last 50 years, this paper analyses the variation characteristics of high‐flow and low‐flow indexes of annual runoff, air temperature and precipitation using a non‐parametric test. Additionally, this paper also studies the correlations between these three time series on multiple time scales for both northern and southern headstreams employing wavelet analysis. The results show the following: (i) the annual runoff and air temperature had significant increasing trends, whereas precipitation had a non‐significant increasing trend for the northern and southern headstreams. (ii) Abrupt changes appeared in precipitation in the north and south in 1990 and 1986, as well as in high‐flow and low‐flow indexes of annual runoff in 1993 and in air temperature in 1996. (iii) In the case of the northern headstreams, there was significant periodicity of 6 years in both high‐flow and low‐flow indexes and air temperature and of 3 and 8 years in precipitation. In the case of the southern headstreams, there was significant periodicity of 3 and 9 years in high‐flow and low‐flow indexes, 5 years in air temperature, and 5 and 8 years in precipitation. (iv) The high‐flow and low‐flow indexes in the headstreams of the Tarim River are closely related to the air temperature and precipitation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Trend analysis in Turkish precipitation data   总被引:9,自引:0,他引:9  
This study aims to determine trends in the long‐term annual mean and monthly total precipitation series using non‐parametric methods (i.e. the Mann–Kendall and Sen's T tests). The change per unit time in a time series having a linear trend was estimated by applying a simple non‐parametric procedure, namely Sen's estimator of slope. Serial correlation structure in the data was accounted for determining the significance level of the results of the Mann–Kendall test. The data network used in this study, which is assumed to reflect regional hydroclimatic conditions, consists of 96 precipitation stations across Turkey. Monthly totals and annual means of the monthly totals are formed for each individual station, spanning from 1929 to 1993. In this case, a total of 13 precipitation variables at each station are subjected to trend detection analysis. In addition, regional average precipitation series are established for the same analysis purpose. The application of a trend detection framework resulted in the identification of some significant trends, especially in January, February, and September precipitations and in the annual means. A noticeable decrease in the annual mean precipitation was observed mostly in western and southern Turkey, as well as along the coasts of the Black Sea. Regional average series also displayed trends similar to those for individual stations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

This paper presents an analysis of trends in six drought variables at 566 stations across India over the period 1901–2002. Six drought variables were computed using standardized precipitation index (SPI). The Mann-Kendall (MK) trend test and Sen’s slope estimator were used for trend analysis of drought variables. Discrete wavelet transform (DWT) was used to identify the dominant periodic components in trends, whereas the significance of periodic components was examined using continuous wavelet transform (CWT) based global wavelet spectrum (GWS). Our results show an increasing trend in droughts in eastern, northeastern and extreme southern regions, and a decreasing trend in the northern and southern regions of the country. The periodic component influencing the trend was 2–4 years in south, 4–8 years in west, east and northeast, 8–64 years in central parts and 32–128 years in the north; however, most of the periodic components were not statistically significant.  相似文献   

8.
Relative little is known about the interaction between climate change and groundwater. Analysis of aquifer response to climatic variability could improve the knowledge related to groundwater resource variations and therefore provides guidance on water resource management. In this work, seasonal and annual variations of groundwater levels in Kumamoto plain (Japan) and their possible interactions with climatic indices and El Niño Southern Oscillation (ENSO) were analyzed statistically. Results show the following: (1) The water level in the recharge area mainly fluctuates at 1‐ and 2‐year periods, whereas the significant periodicity for water level oscillation in the coastal aquifer is 0.5 year. (2) The aquifer water levels are possibly influenced by variability in precipitation, air temperature, barometric pressure, humidity variances and ENSO. Relative high correlations and large proportions of similarities in wavelet power patterns were found between these variables and water levels. (3) Aquifer response to climatic variances was evaluated using cross wavelet transform and wavelet coherence. In recharging aquifers, the ENSO‐induced annual variations in precipitation, air temperature, humidity and barometric pressure affect aquifer water levels. The precipitation, air temperature and humidity respond to ENSO with a 4‐, 6‐ and 8‐month time lag, respectively, whereas the ENSO imparts weak influence on the barometric pressure. Significant biennial variation of water levels during 1991–1995 is caused primarily by precipitation and humidity variations. In the coastal aquifer, the 0.5‐year variability in ENSO is transferred by precipitation, barometric pressure and humidity to aquifer water levels, and the precipitation/humidity influence is more significant comparing with the barometric pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

The trends of annual, seasonal and monthly precipitation in southern China (Guangdong Province) for the period 1956–2000 are investigated, based on the data from 186 high-quality gauging stations. Statistical tests, including Mann-Kendall rank test and wavelet analysis, are employed to determine whether the precipitation series exhibit any regular trend and periodicity. The results indicate that the annual precipitation has a slightly decreasing trend in central Guangdong and slight increasing trends in the eastern and western areas of the province. However, all the annual trends are not statistically significant at the 95% confidence level. The average precipitation increases in the dry season in central Guangdong, but decreases in the wet season, meaning that the precipitation becomes more evenly distributed within the year. Furthermore, the analysis of monthly precipitation suggests that the distribution of intra-annual precipitation changes over time. The results of wavelet analysis show prominent precipitation with periods ranging from 10 to 12 years in every sub-region in Guangdong Province. Comparing with the sunspot cycle (11-year), the annual precipitation in every sub-region in Guangdong province correlates with Sunspot Number with a 3-year lag. The findings in this paper will be useful for water resources management.

Editor Z.W. Kundzewicz; Associate editor Sheng Yue

Citation Dedi Liu, Shenglian Guo, Xiaohong Chen and Quanxi Shao, 2012. Analysis of trends of annual and seasonal precipitation from 1956 to 2000 in Guangdong Province, China. Hydrological Sciences Journal, 57 (2), 358–369.  相似文献   

10.
Multi-scale variability and trends of precipitation in North China   总被引:3,自引:0,他引:3  
The issue of water shortage and related eco-environmental degradation in North China is one of the major emerging problems in China. Precipitation is the most key factor for water resources. Based on the historical flood/dryness grade dataset during the period of 1470–2000 obtained from 25 gauging stations in North China, the multi-scale variability and trends are analyzed by means of power spectral and continuous wavelet transform. It is found that the precipitation is characterized by obvious seasonal changes, quasi biennial oscillations, inter-annual 4–7 year component and inter-decadal 19-year periodicity. The MK test results showe that step changes occurred around 1914 and 1964 in the annual precipitation. As for the historical flood/dryness grade time series, it is characterized by 4∼5 year ENSO mode inter-annual oscillation, quasi-10 year inter-decadal variability, quasi-24 year component and 50–80 year centurial periodicity. However, the scales of these variations have decreased significantly since the 1970s. The trend for precipitation change in North China has been negative for last 30 years. Further research shows that North China will continue to become dryer until 2015 and may change to a wetter regime after 2020. These findings should be helpful for future decision-making to ensure sustainable water resource management in North China.  相似文献   

11.
The Yellow River headwaters region (YRHR) contributes nearly 40% of total flow in the Yellow River basin, which is suffering from a serious water shortage problem. Investigation of the relationship between runoff and climate variables is important for understanding the variation trend of runoff in the YRHR under global climate change. Global and local climate variables, including the West Pacific subtropical high; northern hemisphere polar vortex (NH); Tibetan Plateau Index B (TPI‐B); southern oscillation index; sea surface temperature; and precipitation, evaporation, and temperature, were fully considered to explore the relationship with runoff at Jimai, Maqu, and Tangnaihai stations from 1956 to 2014. The results reveal that runoff had a decreasing trend, which will likely be maintained in the future, and there was a significant change in runoff around 1995 at all stations. Correlation analysis indicated that runoff was dominated by precipitation, NH, temperature, and TPI‐B, and a substantial correlation was observed with sea surface temperature and evaporation, but there was little correlation with West Pacific subtropical high and southern oscillation index. Furthermore, impacts of climate change on runoff variations were distinctly different at different temporal scales. Three dominant runoff periodicities were identified by a singular spectrum analysis‐multitaper method and continuous wavelet transform, that is, 1.0‐, 6.9‐, and 24.8‐year runoff periodicities. In addition, runoff was positively correlated with temperature at a 1‐year periodicity, negatively correlated with TPI‐B at a 6.9‐year periodicity, and positively correlated with NH at a 24.8‐year periodicity, that is, temperature, TPI‐B, and NH‐controlled runoff at annual, interannual, and interdecadal scales. Further, all analyses of the stations in the YRHR showed excellent consistency. The results will provide valuable information for water resource management in the YRHR.  相似文献   

12.
Time–frequency characterization is useful in understanding the nonlinear and non-stationary signals of the hydro-climatic time series. The traditional Fourier transform, and wavelet transform approaches have certain limitations in analyzing non-linear and non-stationary hydro-climatic series. This paper presents an effective approach based on the Hilbert–Huang transform to investigate time–frequency characteristics, and the changing patterns of sub-divisional rainfall series in India, and explored the possible association of monsoon seasonal rainfall with different global climate oscillations. The proposed approach integrates the complete ensemble empirical mode decomposition with adaptive noise algorithm and normalized Hilbert transform method for analyzing the spectral characteristics of two principal seasonal rainfall series over four meteorological subdivisions namely Assam-Meghalaya, Kerala, Orissa and Telangana subdivisions in India. The Hilbert spectral analysis revealed the dynamic nature of dominant time scales for two principal seasonal rainfall time series. From the trend analysis of instantaneous amplitudes of multiscale components called intrinsic mode functions (IMFs), it is found that both intra and inter decadal modes are responsible for the changes in seasonal rainfall series of different subdivisions and significant changes are noticed in the amplitudes of inter decadal modes of two seasonal rainfalls in the four subdivisions since 1970s. Further, the study investigated the links between monsoon rainfall with the global climate oscillations such as Quasi Bienniel Oscillation (QBO), El Nino Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multidecadal Oscillation (AMO) etc. The study noticed that the multiscale components of rainfall series IMF1, IMF2, IMF3, IMF4 and IMF5 have similar periodic structure of QBO, ENSO, SN, tidal forcing and AMO respectively. As per the seasonal rainfall patterns is concerned, the results of the study indicated that for Assam-Meghalaya subdivision, there is a likelihood of extreme rare events at ~0.2 cycles per year, and both monsoon and pre-monsoon rainfall series have decreasing trends; for Kerala subdivision, extreme events can be expected during monsoon season with shorter periodicity (~2.5 years), and monsoon rainfall has statistically significant decreasing trend and post-monsoon rainfall has a statistically significant increasing trend; and for Orissa subdivision, there are chances of extremes rainfall events in monsoon season and a relatively stable rainfall pattern during post-monsoon period, but both monsoon and post-monsoon rainfall series showed an overall decreasing trend; for Telangana subdivision, there is a likelihood of extreme events during monsoon season with a periodicity of ~4 years, but both monsoon and post-monsoon rainfall series showed increasing trends. The results of correlation analysis of IMF components of monsoon rainfall and five climate indices indicated that the association is expressed well only for low frequency modes with similar evolution of trend components.  相似文献   

13.
The time–frequency and the time‐scale analysis methods are used in this paper to identify the dynamic characteristics of non‐linear seismic response of structural systems with single degree of freedom (SDOF) and multiple degrees of freedom (MDOF). Based on the floor acceleration response time histories of bi‐linear SDOF and MDOF structures, the current study compares the results of system identification using the short‐time Fourier transform (STFT), continuous wavelet transform (CWT) and discrete wavelet transform (DWT) methods. The aim is to identify the frequency variations and the time at on‐set of yielding and unloading of a bi‐linear structural system during seismic response. The results demonstrate that the CWT method is better than the STFT method in both time and frequency resolutions, and that the DWT method is the best at detecting the time at on‐set of yielding and unloading. Combining the results of CWT and DWT methods therefore provides accurate information of both frequency variations and yielding time in non‐linear seismic response. To alleviate the problems associated with noise‐contaminated signals, e.g. seismic response data recorded on site, the study suggests that low‐pass filtering be carried out before applying the DWT method to decompose the signals into multiple levels of details. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The North Atlantic Oscillation (NAO) is a large‐scale mode of natural climate variability governing the path of Atlantic mid‐latitude storm tracks and precipitation regimes in the Atlantic and Mediterranean sectors. The primary focus of this study is to investigate the variability of lake levels in seven lakes scattered across Turkey using the method of continuous wavelet transforms and global spectra. The long winter (December, January, February and March) lake‐level series and the NAO index (NAOI) series were subjected to wavelet transform. The global wavelet spectrum (energy spectrum of periodicities) of lake levels and winter NAOI anomalies, in most cases, revealed a significant correlation. It was shown that the Tuz, Sapanca, and Uluabat lakes reflect much stronger influences of the NAO than the other four lakes. In contrast, weak correlations were found in the coastal areas of the Mediterranean and eastern Turkey. The periodic structures of Turkish lake levels in relation to the NAO revealed a spectrum between the 1‐year and 10‐year scale level. Although the periodicities of more than 10‐year scale levels were detected, explaining significant relations between the NAO and these long‐term periodicities remains a challenging task. The results of this study are consistent with the earlier studies concerning the teleconnection between the NAO and climate variables in Turkey. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The statistical characteristics of precipitation on the daily resolution play an important role not only in the risk assessment of floods and droughts but also in the land use management. In this study, spatial and temporal patterns of the precipitation concentration in the Yangtze River Basin are investigated by using three indices, i.e. precipitation concentration index (CI), precipitation concentration degree (PCD) and precipitation concentration period (PCP). Based on meteorological data of 147 stations for the period of 1960–2008, non‐parametric trend analysis and wavelet transformation analysis are employed to detect the temporal variation of these indices. Spatial variability of precipitation concentration indices and their trends are analysed and demonstrated with the help of GIS tools. The results indicate the following: (i) The high precipitation CI values mainly distribute in the middle region of the Yangtze River Basin, whereas the lower and lowest CI values are found in the lower and upper regions, respectively. A roughly east–west gradient for PCD value and PCP value varies from 0.26 to 0.77 and from 123 to 197, respectively. (ii) The analysis results of precipitation CI trends for different periods (i.e. recent 40, 30 and 20 years) show that the middle region of the Yangtze River Basin experienced a transition from decreasing precipitation CI to increasing precipitation CI during the last two decades, although the decreasing long‐term trends in the precipitation CI are not significant in most areas during the period of 1960–2008. (iii) The upper basin, middle basin and lower basin are, respectively, dominated by the significant decreasing, increasing and no significant trends in PCD. A dominance of insignificant PCP trends is observed in the entire basin during 1960–2008 despite that a few areas in the upper region are characterized by significant decreasing trends. (iv) Interdecadal oscillations can be found for three precipitation indices, but with no constant periodicity. Furthermore, good positive correlations have been detected between precipitation CI and PCD, whereas insignificant correlation coefficients of PCP with precipitation are common in the basin. The results can provide beneficial reference to water resource and eco‐environment and mitigation to flood or drought hazards in the Yangtze River Basin for policymakers and stakeholders. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This study is an attempt to determine the trends in monthly, annual and monsoon total precipitation series over India by applying linear regression, the Mann-Kendall (MK) test and discrete wavelet transform (DWT). The linear regression test was applied on five consecutive classical 30-year climate periods and a long-term precipitation series (1851–2006) to detect changes. The sequential Mann-Kendall (SQMK) test was applied to identify the temporal variation in trend. Wavelet transform is a relatively new tool for trend analysis in hydrology. Comparison studies were carried out between decomposed series by DWT and original series. Furthermore, visualization of extreme and contributing events was carried out using the wavelet spectrum at different threshold values. The results showed that there are significant positive trends for annual and monsoon precipitation series in North Mountainous India (zone NMI) and North East India (NEI), whereas negative trends were detected when considering India as whole.

EDITOR A. Castellarin ASSOCIATE EDITOR S. Kanae  相似文献   

18.
A data analysis method is proposed to cluster and explore spatio-temporal characteristics of the 22 years of precipitation data (1982–2003) for Taiwan. The wavelet transform self-organizing map (WTSOM) framework combines the wavelet transform (WT) and a self-organizing map (SOM) neural network. WT is used to extract dynamic and multiscale features of the non-stationary precipitation time-series, and SOM is applied to objectively identify spatially homogeneous clusters on the high-dimensional wavelet-transformed feature space. Haar and Morlet wavelets are applied in the data preprocessing stage to preserve the desired characteristics of the precipitation data. A two-level SOM neural network is applied to identify clusters in the wavelet space in the clustering stage. The performance of clustering is evaluated using silhouette coefficients. The results indicate that singularities or sharp transitions are more significant than changes in the periodicity or data structure in the spatial–temporal precipitation data. The WTSOM results show that six clusters are optimal for both Haar and Morlet wavelet functions, but their corresponding geographic locations are different. The geographic locations of clusters based on the Haar wavelet, which captures the occurrence of extreme hydrological events, appear in blocks while those classified by the Morlet wavelet, which indicates periodicity changes and describes fine structures, appear in strips that cross the island of Taiwan. Principal component analysis is applied to the precipitation data of each cluster. The first principal components explain 62–90% of the total variation of data. Characteristics of precipitation data for each cluster are explored using scalogram analysis. The results show that both extreme hydrological events and periodicity changes appear in the spatial and temporal precipitation data but with different characteristics for each cluster. Recognizing homogeneous hydrologic regions and identifying the associated precipitation characteristics improves the efficiency of water resources management in adapting to climate change, preventing the degradation of the water environment, and reducing the impact of climate-induced disasters. Measures for countering the stress of precipitation variation for water resources management are provided.  相似文献   

19.
The continuous wavelet transform (CWT) is used to evaluate local variations in the power-law exponents of sonic log data. The resulting wavelet spectrum can be compared with the corresponding global estimates obtained by conventional Fourier transform methods. In Fourier analysis, the fundamental tool used to characterize a fluctuating velocity distribution is the power spectrum. It represents the energy contained in each wavenumber and thus provides information regarding the importance of each scale of heterogeneity. However, important spatial information regarding the location of events becomes implicit in the phase angle of the Fourier transform. In this paper, it is shown how the square of the amplitude of the wavelet transform is related to the Fourier spectrum and how spatial information can be expressed in an explicit manner. Using the conservation of energy, it is shown that the average wavelet power spectrum over the total depth range is equal to the global power spectrum. A Gaussian wavelet is chosen to realize the wavelet transform. Two synthetic sonic logs with exponential and von Karman correlation functions are used to demonstrate the potential of the suggested analysis. Furthermore, the wavelet transform is applied to the KTB (Continental Deep Drilling Program) sonic log data. The wide range of applications of the CWT shows that this transform is a natural tool for characterizing the structural properties of underground heterogeneities. It offers the possibility of separating the multiscale components of heterogeneities.  相似文献   

20.
Spectral analysis for global navigation satellite system (GNSS) coordinate time series provides a principal tool to understand the intrinsic mechanism that affects tectonic movements. Spectral analysis methods such as the fast Fourier transform, Lomb–Scargle spectrum, evolutionary power spectrum, wavelet power spectrum, etc. are used to find periodic characteristics in time series. Among spectral analysis methods, the chirp Fourier transform (CFT) with less stringent requirements is tested with synthetic and actual GNSS coordinate time series, which proves the accuracy and efficiency of the method. With the length of series only limited to even numbers, CFT provides a convenient tool for windowed spectral analysis. The results of ideal synthetic data prove CFT accurate and efficient, while the results of actual data show that CFT is usable to derive periodic information from GNSS coordinate time series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号