首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
During the evolution of meander bends, the intra‐meander groundwater head gradients steepen and generate zones of accelerated water and nutrient intra‐meander fluxes important for ecosystem processes. This paper compares and contrasts three MODFLOW groundwater model packages based on their simulation of intra‐meander flux for two stages of meander evolution observed in a sandbox river table and one level of river bed clogging, where the hydraulic conductivity in the river bed is lower than in the adjacent aquifer. These packages are the Time‐Variant Specified Head package [constant head (CHD)], River package (RIV), and Streamflow‐Routing package (SFR2), each controlling the groundwater or river head bounding the intra‐meander region. The RIV and SFR2 packages fix river stage and allow for variation in groundwater head below the river, which is suggested for simulating intra‐meander flux for all sinuosities with and without river bed clogging whenever river bed parameters are available. The CHD package fixes below river groundwater head and fails to simulate intra‐meander head loss and flux in meanders with high sinuosity or river bed clogging. In low sinuosity meanders and in cases without river bed clogging, there were no significant differences between MODFLOW packages for simulating river intra‐meander head loss and flux. This research demonstrates why MODFLOW users need to consider the limitations of each package when simulating intra‐meander flux in reaches with river bed clogging, high sinuosity, or similarly steep hydraulic gradients. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Two reaches of Aguapeí River, a left‐bank tributary of the Paraná River in western São Paulo state, Brazil, were studied with the objective of assessing the role of bend curvature on channel migration in this wet‐tropical system and examining if land‐use changes or ENSO (El Niño Southern Oscillation) driven climate anomalies over nearly half a century have changed migration behaviour and planform geometry. Meander‐bend migration rates and morphometric parameters including meander‐bend curvature, sinuosity, meander wavelength and channel width, were measured and the frequency of bend cutoffs was analysed in order to determine the rate of change of channel adjustment over a 48 year period to 2010. Results show that maximum average channel migration rates occur in bends with curvatures of about 2–3 rc/w, similar to other previously studied temperate and subarctic freely meandering rivers although not as pronounced and with a tendency to favour tighter curvature. From 1962 to 2010 the Aguapeí River has undergone a significant reduction in sinuosity, a shift from tightly curving to more open bends, an overall decline in channel migration rates, an associated decrease in the frequency of neck‐cutoffs and an overall increase in channel width. As the majority of the drainage basin (96%) was already deforested in 1962, channel form and process changes were, unlike an interpretation for an adjacent river system, not attributed to altered land‐use but rather to a sharp ENSO‐driven increase in the magnitude of peak flow‐discharges of some 32% since 1972. In summary, this research revealed that recent climate and associated flow regime changes are having a pronounced effect on river channel behaviour in the Aguapeí River investigated here. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
This study examined the temporal dynamics and longitudinal distribution of wood over a multi‐decadal timescale at the river reach scale (36 km) and a meander bend scale (300–600 m) in the Ain River, a large gravel‐bed river flowing through a forested corridor, and adjusting to regulation and floodplain land‐use change. At the 36 km scale, more wood was recruited by bank erosion in 1991–2000 than since the 1950s. The longitudinal distribution of accumulations was similar between 1989 and 1999, but in both years individual pieces occurred homogeneously throughout the reach, while jam distribution was localized, associated with large concave banks. A relationship between the mean number of pieces and the volume recruited by bank erosion (r2 = 0·97) indicated a spatial relationship between areas of wood production and storage. Wood mass stored and produced and channel sinuosity increased from 1993 to 2004 at three meander bends. Sinuosity was related to wood mass recruited by bank erosion during the previous decade (r2 = 0·73) and both of these parameters were correlated to the mean mass of wood/plot (r2 = 0·98 and 0·69 respectively), appearing to control wood storage and delivery at the bend scale. This suggests a local origin of wood stored in channel, not input from upstream trapped by preferential sites. The increase in wood since 1950 is a response to floodplain afforestation, to a change from braided to meandering channel pattern in response to regulation, and to recent large floods. We observed temporal stability of supply and depositional sectors over a decade (on a reach scale). Meander bends were major storage sites, trapping wood with concave banks, also delivering wood. These results, and the link between sinuosity and wood frequency, establish geomorphology as a dominant wood storage and recruitment control in large gravel‐bed rivers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In meandering rivers, the local channel migration rate increases with increasing bend sharpness until it reaches a maximum at a certain critical value of the bend sharpness. Beyond this critical value, the migration rate decreases if bend sharpness increases. Similarly, reach‐averaged migration rates attain a maximum at a certain river sinuosity. This work investigates the physics of these phenomena by comparing the results of two physics‐based models of different complexity, in which the migration rates are proportional to the near‐bank flow velocity excess. In the computational tests the river was allowed to meander progressively, starting from an almost straight planimetry. Both models reproduced the observed peak in the curve describing the local migration rate as a function of the ratio radius of curvature‐channel width (R/B), with a rising limb at lower R/B values and a falling limb at higher R/B values. The rising limb can be explained by the decrease in relative lag distance between near‐bank flow velocity and forcing curvature as R/B increases. The falling limb results from the decrease in local channel curvature and near‐bank flow velocity excess. Since the models do not include flow separation, the results indicate that this phenomenon is not needed to explain the decrease of channel migration rates in sharp bends. The models reproduced also the peak in the curve describing the reach‐averaged migration rates as a function of river sinuosity The increase and then decrease of reach‐averaged migration rates as sinuosity increases appears to be mainly caused by the variation of the reach‐averaged value of the ratio R/B. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
This paper analyses types and rates of change in river meander morphology and the links between mechanisms of change and emergent behaviour of planform morphology. It uses evidence of four dates of aerial photography combined with annual field mapping and ground photography to examine the morphological changes and mechanisms of change in a series of bends on an active meandering river, the River Dane in NW England, over a 25 year period. This unique data set allows insight into the spatial and temporal variability of bank line movement and component processes. Bank lines were mapped photogrametrically from air photos of 1984, 1996, 2001 and 2007 and the digitised courses compared in ArcGIS to produce calculations of erosional and depositional areas and rates. Most bends exhibit morphological change that largely follows the autogenic sequence, identified in qualitative models of meander development, from low sinuosity curves through simple symmetric and asymmetric bends to compound forms with lobe development in the apex region. Rates of erosion and bankline movement increase through this sequence until the compound phase. Relationships of amounts of movement to various curvature measures of bend morphology are complex. Several new loops, distinct from compound bend behaviour, have developed during the study period in formerly straight sections. Mechanisms of morphological change are illustrated for four types of bends: new, rapid growth bend; sharp‐angled bend with mid‐channel bar development; symmetric migrating bend; and simple to compound bend development. The changes take place in phases that are not simply related to discharge but to inherent sequences and feedbacks in development of bars and bend morphology and timescales for these are identified. Overall, emergent behaviour of systematic planform change, moderated by channel confinement and boundary features, is produced from spatially and temporally varied channel processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   

7.
Air photo interpretation and field survey were used to examine rates and patterns of planform change over the last 40 years on an 80 km reach of the Luangwa River, Zambia. The river, a tributary of the Zambezi, is a 100–200 m wide, medium sinuosity sand‐bed river (sinuosity index 1·84). High rates of channel migration (<33 m a−1) and cutoffs on meandering sections are frequent. Some meandering reaches, however, have remained relatively stable. A form of anastomosing with anabranches up to 14 km in length is also a characteristic. Patterns of meander development vary between bends but all can be described in relation to traditional geomorphic models; change occurs by translation, rotation, double‐heading, concave bank bench formation and cutoff causing river realignment. At the local scale spatial variability in bank resistance, induced by floodplain sedimentology, controls rate of bank erosion, and valley‐side channel ‘deflection’ is also apparent. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
We develop a new method for analysis of meandering channels based on planform sinuosity. This analysis objectively identifies three channel‐reach lengths based on sinuosity measured at those lengths: the length of typical, simple bends; the length of long, often compound bends; and the length of several bends in sequence that often evolve from compound bends to form multibend loops. These lengths, when normalized by channel width, tend to fall into distinct and clustered ranges for different natural channels. Mean sinuosity at these lengths also falls into distinct ranges. That range is largest for the third and greatest length, indicating that, for some streams, multibend loops are important for planform sinuosity, whereas for other streams, multibend loops are less important. The role of multibend loops is seldom addressed in the literature, and they are not well predicted by previous modelling efforts. Also neglected by previous modelling efforts is bank–flow interaction and its role in meander evolution. We introduce a simple river meandering model based on topographic steering that has more in common with cellular approaches to channel braiding and landscape evolution modelling than to rigorous, physics‐based analyses of river meandering. The model is sufficient to produce reasonable meandering channel evolution and predicts compound bend and multibend loop formation similar to that observed in nature, in both mechanism and importance for planform sinuosity. In the model, the tendency to form compound bends is sensitive to the relative magnitudes of two lengths governing meander evolution: (i) the distance between the bend cross‐over and the zone of maximum bank shear stress, and (ii) the bank shear stress dissipation length related to bank roughness. In our simple model, the two lengths are independent. This sensitivity implies that the tendency for natural channels to form compound bends may be greater when the banks are smoother. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Streambed hydraulic conductivity is one of the main factors controlling variability in surface water‐groundwater interactions, but only few studies aim at quantifying its spatial and temporal variability in different stream morphologies. Streambed horizontal hydraulic conductivities (Kh) were therefore determined from in‐stream slug tests, vertical hydraulic conductivities (Kv) were calculated with in‐stream permeameter tests and hydraulic heads were measured to obtain vertical head gradients at eight transects, each comprising five test locations, in a groundwater‐dominated stream. Seasonal small‐scale measurements were taken in December 2011 and August 2012, both in a straight stream channel with homogeneous elevation and downstream of a channel meander with heterogeneous elevation. All streambed attributes showed large spatial variability. Kh values were the highest at the depositional inner bend of the stream, whereas high Kv values were observed at the erosional outer bend and near the middle of the channel. Calculated Kv values were related to the thickness of the organic streambed sediment layer and also showed higher temporal variability than Kh because of sedimentation and scouring processes affecting the upper layers of the streambed. Test locations at the channel bend showed a more heterogeneous distribution of streambed properties than test locations in the straight channel, whereas within the channel bend, higher spatial variability in streambed attributes was observed across the stream than along the stream channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Meander bends of many large, sand‐bed meandering rivers are partitioned by chute channels that convey permanent flow, and co‐exist with the mainstem for decades. As a first step toward understanding the dynamics and morphodynamic implications of these ‘bifurcate meander bends’, this study applied binary logistic regression analysis to determine whether it is possible to predict chute initiation based on attributes of meander bend character and dynamics. Regression models developed for the Strickland River, Papua New Guinea, the lower Paraguay River, Paraguay/Argentina, and the Beni River, Bolivia, revealed that the probability of chute initiation at a meander bend is a function of the bend extension rate (the rate at which a bend elongates in a direction perpendicular to the valley axis trend). Image analyses of all rivers and field observations from the Strickland suggest that the majority of chute channels form during scroll–slough development. Rapid extension is shown to favour chute initiation by breaking the continuity of point bar deposition and vegetation encroachment at the inner bank, resulting in widely‐spaced scrolls with intervening sloughs that are positively aligned with primary over‐bar flow. The rivers plot in order of increasing chute activity on an empirical meandering‐braided pattern continuum defined by potential specific stream power (ωpv) and bedload calibre (D50). Increasing stream power is considered to result in higher bend extension rates, with implications for chute initiation. In addition, chute stability is shown to depend on river sediment load relative to flow discharge (Qs/Q), such that while the Beni may plot in the region of highly braided rivers by virtue of a high potential specific stream power, the formation of stable chute channels is suppressed by the high sediment load. This tendency is consistent with previous experimental studies, and results in a planform that is transitional between single‐thread meandering and braided. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Recent field and modeling investigations have examined the fluvial dynamics of confluent meander bends where a straight tributary channel enters a meandering river at the apex of a bend with a 90° junction angle. Past work on confluences with asymmetrical and symmetrical planforms has shown that the angle of tributary entry has a strong influence on mutual deflection of confluent flows and the spatial extent of confluence hydrodynamic and morphodynamic features. This paper examines three‐dimensional flow structure and bed morphology for incoming flows with high and low momentum‐flux ratios at two large, natural confluent meander bends that have different tributary entry angles. At the high‐angle (90°) confluent meander bend, mutual deflection of converging flows abruptly turns fluid from the lateral tributary into the downstream channel and flow in the main river is deflected away from the outer bank of the bend by a bar that extends downstream of the junction corner along the inner bank of the tributary. Two counter‐rotating helical cells inherited from upstream flow curvature flank the mixing interface, which overlies a central pool. A large influx of sediment to the confluence from a meander cutoff immediately upstream has produced substantial morphologic change during large, tributary‐dominant discharge events, resulting in displacement of the pool inward and substantial erosion of the point bar in the main channel. In contrast, flow deflection is less pronounced at the low‐angle (36°) confluent meander bend, where the converging flows are nearly parallel to one another upon entering the confluence. A large helical cell imparted from upstream flow curvature in the main river occupies most of the downstream channel for prevailing low momentum‐flux ratio conditions and a weak counter‐rotating cell forms during infrequent tributary‐dominant flow events. Bed morphology remains relatively stable and does not exhibit extensive scour that often occurs at confluences with concordant beds. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The evolution of meandering river floodplains is predominantly controlled by the interplay between overbank sedimentation and channel migration. The resulting spatial heterogeneity in floodplain deposits leads to variability in bank erodibility, which in turn influences channel migration and planform development. Despite the potential significance of these feedbacks, few studies have quantified their impact upon channel evolution and floodplain construction in dynamic settings (e.g. locations characterized by rapid channel migration and high rates of overbank sedimentation). This study employs a combination of field observations, geographic information system (GIS) analysis of satellite imagery and numerical modelling to investigate these issues along a 375 km reach of the Rio Beni in the Bolivian Amazon. Results demonstrate that the occurrence of clay‐rich floodplain deposits promotes a significant reduction in channel migration rates and distinctive styles of channel evolution, including channel straightening and immobilization of bend apices leading to channel narrowing. Clay bodies act as stable locations limiting the propagation of planform disturbances in both upstream and downstream directions, and operate as ‘hinge’ points, around which the channel migrates. Spatial variations in the erodibility of clay‐rich floodplain material also promote large‐scale (10–50 km) differences in channel sinuosity and migration, although these variables are also likely to be influenced by channel gradient and tectonic effects that are difficult to quantify. Numerical model results suggest that spatial heterogeneity in bank erodibility, driven by variable bank composition, may force a substantial (c. 30%) reduction in average channel sinuosity, compared to situations in which bank strength is spatially homogeneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

In this study, the effect of single and double row piles for reducing scouring in a mild-curved river meander was studied experimentally. The experimental study focused on the effect of vegetation on bed topography in a mild-curved meander bend. The experimental tests were conducted in a laboratory flume under clear water flow conditions. A series of experimental tests were carried out with a fixed bed and non-vegetated and vegetated moveable beds with different vegetation patterns. Analysis of the flow characteristics indicated that when the bed was mobile with vegetation on the inner bank, the core of maximum streamwise velocity shifted towards the centreline of the bend. Additionally, the cross-sectional kinetic energy increased from 0.05% for the fixed-bed test to 4.30% for the test with a double row of vegetation. Furthermore, the presence of vegetation was found to increase the uniformity of the distribution of turbulence intensity and to reduce the Reynolds shear stress along the test section. Also, the mass fluxes increased from the outer bank to the inner bank and from the upstream towards the downstream of the bend. Finally, comparison of bed topography in vegetated and non-vegetated channels showed that the maximum scour depth at the bend apex was reduced by 77% and 62% for the cases with one row and two rows of vegetation, respectively. The results of this study were compared with previously proposed models for predicting the vertical distribution of the streamwise velocity at the bend apex. It was found that Johannesson and Parker’s model (JPM) gave the lowest value of standard error. The above findings are useful in river training works and, in particular, for restoration of meandering rivers.
Editor D. M.C. Acreman; Associate editor C. Cudennec  相似文献   

15.
16.
The Andean Cordillera and piedmont significantly influence river system and dynamics, being the source of many of the important rivers of the Amazon basin. The Beni River, whose upper sub‐catchments drain the Andean and sub‐Andean ranges, is a major tributary of the Madeira River. This study examines the river in the south‐western Amazonian lowlands of Bolivia, where it develops mobile meanders. Channel migration, meander‐bend morphology and ox‐bow lakes are analysed at different temporal and spatial scales. The first part of this study was undertaken with the aim to link the erosion–deposition processes in the active channel with hydrological events. The quantification of annual erosion and deposition areas shows high inter‐annual and spatial variability. In this study, we investigate the conditions of sediment exportation in the river in relation to three hydrological parameters (flood intensity, date of discharge peak and duration of the bank‐full stage level). The second part of this study, focusing on the abandoned meanders, analyses the cutoff processes and the post‐abandonment evolution during 1967–2001. This approach shows the influence of the active channel behaviour on the sediment diffusion and sequestration of the abandoned meanders and allows us to build a first model of the contemporary floodplain evolution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Two‐dimensional (2D) hydrodynamic models have been increasingly used to quantify aquatic habitat and stream processes, such as sediment transport, streambed morphological evolution, and inundation extents. Because river topography has a strong influence on predicted hydraulic conditions, 2D models require accurate and detailed bathymetric data of the stream channel and surrounding floodplains. Besides collection of mass points to construct high‐resolution three‐dimensional surfaces, bathymetries may be interpolated from cross‐sections. However, limited information is available on the effects of cross‐section spacing and the derived interpolated bathymetry on 2D model results in large river systems. Here, we investigated the effects of cross‐section spacing on flow properties simulated with 2D modeling at low, medium and high discharges in two morphologically different reaches, a simple (almost featureless with low sinuosity) and a complex (presenting pools, riffles, runs, contractions and expansions) reach of the Snake River (Idaho, USA), the tenth largest river in the United States in terms of drainage area. We compared the results from 2D models developed with complete channel bathymetry acquired with multibeam sonar data and photogrammetry, with 2D model results that were developed using interpolated topography from uniformly distributed transects. Results indicate that cross‐sections spaced equal to or greater than 2 times the average channel width (W*) smooths the bathymetry and suppresses flow structures. Conversely, models generated with cross‐sections spaced at 0.5 and 1 W* have stream flow properties, sediment mobility and spatial habitat distribution similar to those of the complete bathymetry. Furthermore, differences in flow properties between interpolated and complete topography models generally increase with discharge and with channel complexity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Experiments with the 10 m Flood Channel Facility at HR Wallingford, UK, indicate a fundamental dependency of the overbank deposition pattern of channel suspended sediments on channel planform. Two experiments (100 and 140 l s?1) in a 1·95 m wide straight channel showed deposition concentrated in a berm along the channel bank. Little sediment was transferred further onto the floodplain. For the larger flow, the berm formed further from the channel. A single experiment (103 l s?1) with a 1·31 m wide meandering channel showed deposition across the entire floodplain tongue between successive meanders. Maximum deposition occurred on the downstream side of the meander, just past the bend apex. These generalized flume results complement the real‐world but site‐specific data of field studies. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The study investigates interactions, water and sediment exchanges, between a rapidly migrating meander and its associated floodplain at fine temporal and spatial scales. The Beni River, an Amazonian free meandering river, makes the transition between Andean ranges and Amazonian lowlands. For the period 2002–2006, an assemblage of tools and methods (water and sediment discharges, topometric and bathymetric surveys, sedimentation rate estimations from unsupported 210Pb and sediment trapping system) was used to jointly analyse the influence on the sediment budget of external factors (mainly water and sediment discharge) and the inherent behaviour of the system. The main issue addressed is the investigation of the complex relationship between ‘morphological conditioning’ of fluvial landform and process. The first part of the study was undertaken with the aim of linking erosion–deposition in an active meander with water and sediment fluxes. The three inter‐annual evolutions are characterized by very unequal sediment budgets; the first two intervals underwent predominant erosion, and the latter slight accumulation. Digital elevation models, evaluated for the active meander, demonstrate that sedimentation on the point bar depends more on external factors than erosion of the concave bank, which fluctuates slightly. The second part of the study, focusing on water and sediment exchanges between active bend and floodplain, examines the respective parts played by overbank flow and by an abandoned channel on the diffusion and sequestration of sediment. The association of short‐ and long‐term estimation of sedimentation rates suggests that floodplain construction is associated with two different processes and rhythms of sediment transportation. Finally, a sediment budget is proposed for the Beni River in the upper part of the Amazonian lowlands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The geomorphic evolution of the Jordan River in recent decades indicates that interaction between incision and high-magnitude floods controls sinuosity changes under increasing mouth gradients during base-level fall. The evolution of the river was analyzed based on digital elevation models, remotely sensed imagery, hydrometric data, and a hydraulic model. The response varies along the river. Near the river mouth, where incision rate is high and a deep channel forms, overbank flooding is less likely. There, large floods exert high shear stress within the confined channel, increasing sinuosity. Upstream, near the migrating knickzone channel gradients also increase, incision is more moderate and floods continue to overtop the banks, favoring meander chute cutoffs. The resulting channel has a downstream well-confined meandering segment and an upstream low-sinuosity segment. These new insights regarding spatial differences along an incising channel can improve interpretations of the evolution of ancient planforms and floodplains that responded to base-level decline. © 2018 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号