首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 629 毫秒
1.
The Soil Conservation Service Curve Number (SCS‐CN) method is a popular rainfall–runoff model that is widely used to estimate direct runoff from small and ungauged basins. The SCS‐CN is a simple and valuable approach to quantify the total streamflow volume generated by storm rainfall, but its use is not appropriate for estimating the sub‐daily incremental rainfall excess. To overcome this drawback, we propose to include the Green‐Ampt (GA) infiltration model into a mixed procedure, which is referred to as Curve Number for Green‐Ampt (CN4GA), aiming to distribute in time the information provided by the SCS‐CN method. For a given storm, the computed SCS‐CN total net rainfall amount is employed to calibrate the soil hydraulic conductivity parameter of the GA model. The proposed procedure is evaluated by analysing 100 rainfall–runoff events that were observed in four small catchments of varying size. CN4GA appears to provide encouraging results for predicting the net rainfall peak and duration values and has shown, at least for the test cases considered in this study, better agreement with the observed hydrographs than the classic SCS‐CN method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The Green–Ampt infiltration equation is an incomplete governing equation for rainfall infiltration due to the absence of an inertia term. The estimation of the capillary pressure head at the wetting front is difficult to determine. Thus, a major limitation of the Green–Ampt model is the constant, non‐zero surface ponding depth. This paper proposes an integrated rainfall infiltration model based on the Green–Ampt model and the SCS‐CN model. It achieves a complete governing equation for rainfall infiltration by momentum balance and the water budget based on the Green–Ampt assumption, and uses the curve number from the SCS‐CN method to calculate the initial abstraction, which is used as a basic parameter for the governing equation of the intensity of rainfall loss during the runoff period. The integrated rainfall infiltration model resolves the dilemma for capillary pressure head estimation, overcomes the limitation of constant, non‐zero surface ponding depth, and facilitates the calculation of runoff for individual flood simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Using a large set of rainfall–runoff data from 234 watersheds in the USA, a catchment area‐based evaluation of the modified version of the Mishra and Singh (2002a) model was performed. The model is based on the Soil Conservation Service Curve Number (SCS‐CN) methodology and incorporates the antecedent moisture in computation of direct surface runoff. Comparison with the existing SCS‐CN method showed that the modified version performed better than did the existing one on the data of all seven area‐based groups of watersheds ranging from 0·01 to 310·3 km2. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A criterion is developed for determining the validity of the Soil Conservation Service curve number (SCS‐CN) method. According to this criterion, the existing SCS‐CN method is found to be applicable when the potential maximum retention, S, is less than or equal to twice the total rainfall amount. The criterion is tested using published data of two watersheds. Separating the steady infiltration from capillary infiltration, the method is extended for predicting infiltration and rainfall‐excess rates. The extended SCS‐CN method is tested using 55 sets of laboratory infiltration data on soils varying from Plainfield sand to Yolo light clay, and the computed and observed infiltration and rainfall‐excess rates are found to be in good agreement. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
TOPMODEL rainfall‐runoff hydrologic concepts are based on soil saturation processes, where soil controls on hydrograph recession have been represented by linear, exponential, and power function decay with soil depth. Although these decay formulations have been incorporated into baseflow decay and topographic index computations, only the linear and exponential forms have been incorporated into infiltration subroutines. This study develops a power function formulation of the Green and Ampt infiltration equation for the case where the power n = 1 and 2. This new function was created to represent field measurements in the New York City, USA, Ward Pound Ridge drinking water supply area, and provide support for similar sites reported by other researchers. Derivation of the power‐function‐based Green and Ampt model begins with the Green and Ampt formulation used by Beven in deriving an exponential decay model. Differences between the linear, exponential, and power function infiltration scenarios are sensitive to the relative difference between rainfall rates and hydraulic conductivity. Using a low‐frequency 30 min design storm with 4·8 cm h?1 rain, the n = 2 power function formulation allows for a faster decay of infiltration and more rapid generation of runoff. Infiltration excess runoff is rare in most forested watersheds, and advantages of the power function infiltration routine may primarily include replication of field‐observed processes in urbanized areas and numerical consistency with power function decay of baseflow and topographic index distributions. Equation development is presented within a TOPMODEL‐based Ward Pound Ridge rainfall‐runoff simulation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

When discharge measurements are not available, design of water structures relies on using frequency analysis of rainfall data and applying a rainfall–runoff model to estimate a hydrograph. The Soil Conservation Service (SCS) method estimates the design hydrograph first through a rainfall–runoff transformation and next by propagating runoff to the basin outlet via the SCS unit hydrograph (UH) method. The method uses two parameters, the Curve Number (CN) and the time of concentration (Tc). However, in data-scarce areas, the calibration of CN and Tc from nearby gauged watersheds is limited and subject to high uncertainties. Therefore, the inherent uncertainty/variability of the SCS parameters may have considerable ramifications on the safety of design. In this research, a reliability approach is used to evaluate the impact of incorporating the uncertainty of CN and Tc in flood design. The sensitivity of the probabilistic outcome against the uncertainty of input parameters is calculated using the First Order Reliability Method (FORM). The results of FORM are compared with the conventional SCS results, taking solely the uncertainty of the rainfall event. The relative importance of the uncertainty of the SCS parameters is also estimated. It is found that the conventional approach, used by many practitioners, might grossly underestimate the risk of failure of water structures, due to neglecting the probabilistic nature of the SCS parameters and especially the Curve Number. The most predominant factors against which the SCS-CN method is highly uncertain are when the average rainfall value is low (less than 20 mm) or its coefficient of variation is not significant (less than 0.5), i.e. when the resulting rainfall at the design return period is low. A case study is presented for Egypt using rainfall data and CN values driven from satellite information, to determine the regions of acceptance of the SCS-CN method.
EDITOR D. Koutsoyiannis; ASSOCIATE EDITOR A. Efstratiadis  相似文献   

7.
Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration‐excess (where precipitation rate exceeds infiltration capacity) or saturation‐excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one‐dimensional model that distinguishes between infiltration‐excess overland flow (IEOF) and saturation‐excess overland flow (SEOF) using Green–Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low‐ and high‐intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth‐weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high‐intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.  相似文献   

8.
In the Soil Conservation Service Curve Number (SCS‐CN) method, the three levels of antecedent moisture condition (AMC) permit unreasonable sudden jumps in curve numbers, which result into corresponding jumps in the estimated runoff. A few recently developed SCS‐CN‐based models obviate this problem, yet they have several limitations. In this study, such a model incorporating a continuous function for antecedent moisture has been presented. It has several advantages over the other existing SCS‐CN‐based models. Its application to a large dataset from US watersheds showed to perform better than the existing SCS‐CN method and the others based on it. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
We studied the problem of local‐ and field‐scale infiltration over a particular class of heterogeneous soils. At the local scale, the soils are described as being vertically non‐uniform, with the saturated hydraulic conductivity continuously decreasing with depth according to a power law function. Analogous to the Green–Ampt model, analytical expressions are first developed for local‐scale infiltration using a sharp front approximation, and model results are compared with numerical solutions of the Richards equation. These results show that saturation does not occur from below in soils with such vertical non‐uniformity, thereby allowing for the use of a sharp front approximation. Because of vertical non‐uniformity, ponding conditions are achieved locally even for rainfall rates less than the surface saturated hydraulic conductivity. Furthermore, infiltration rates asymptotically approach zero at long times. To determine field‐scale infiltration properties, the spatial variability in the surface saturated hydraulic conductivity is represented by a log‐normal random field. Using cumulative infiltration as the independent variable, expressions are developed for the ensemble mean of field‐scale infiltration and the expected time for a given depth of water to infiltrate over the field. Surface horizontal heterogeneity is found to control field‐scale infiltration at small times, whereas local vertical non‐uniformity exerts a strong control at long times. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Soil moisture is widely recognized as a fundamental variable governing the mass and energy fluxes between the land surface and the atmosphere. In this study, the soil moisture modelling at sub‐daily timescale is addressed by using an accurate representation of the infiltration component. For that, the semi‐analytical infiltration model proposed by Corradini et al. (1997) has been incorporated into a soil water balance model to simulate the evolution in time of surface and profile soil moisture. The performances of this new soil moisture model [soil water balance module‐semi‐analytical (SWBM‐SA)] are compared with those of a precedent version [SWBM‐Green–Ampt (GA)] where the GA approach was employed. Their capability to reproduce in situ soil moisture observations at three sites in Italy, Spain and France is analysed. Hourly observations of quality‐checked rainfall, temperature and soil moisture data for a 2‐year period are used for testing the modelling approaches. Specifically, different configurations for the calibration and validation of the models are adopted by varying a single parameter, that is, the saturated hydraulic conductivity. Results indicate that both SWBMs are able to reproduce satisfactorily the hourly soil moisture temporal pattern for the three sites with root mean square errors lower than 0.024 m3/m3 both in the calibration and validation periods. For all sites, the SWBM‐SA model outperforms the SWBM‐GA with an average reduction of the root mean square error of ~20%. Specifically, the higher improvement is observed for the French site for which in situ observations are measured at 30 cm depth, and this is attributed to the capability of the SA infiltration model to simulate the time evolution of the whole soil moisture profile. The reasonable models performance coupled with the need to calibrate only a single parameter makes them useful tools for soil moisture simulation in different regions worldwide, also in scarcely gauged areas. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
The Natural Resources Conservation Service Curve Number model is one of the most recognizable procedures in the field of rainfall–run‐off estimation. It has been widely applied for different purposes in hydrological models. In spite of its widespread use, some uncertainties have not even clarified and must be examined for its proper application. Particularly, choosing the most representative rainfall–run‐off events, and the coefficient λ that relates the parameters of the model (curve number CN and initial abstraction Ia). In this research, an advanced analysis is developed to evaluate the influence of λ for a set of representative watersheds of the Agricultural Research Service of the United Stated Department of Agriculture. They are characterized by different soil properties, land uses, and climatic conditions. Finally, 2 novel methodologies for the selection of the most representative rainfall–run‐off events and for the adaptation of coefficient λ are included, based on the pattern of rainfall distribution.  相似文献   

12.
Gerard Govers  Jan Diels 《水文研究》2013,27(25):3777-3790
Experimental work has clearly shown that the effective hydraulic conductivity (Ke) or effective infiltration rate (fe) on the local scale of a plot cannot be considered as constant but are dependent on water depth and rainfall intensity because non‐random microtopography‐related variations in hydraulic conductivity occur. Rainfall–runoff models generally do not account for this: models assume that excess water is uniformly spread over the soil surface and within‐plot variations are neglected. In the present study, we propose a model that is based on the concepts of microtopography‐related water depth‐dependent infiltration and partial contributing area. Expressions for the plot scale Ke and fe were developed that depend on rainfall intensity and runon from upslope (and thus on water depth). To calibrate and validate the model, steady state infiltration experiments were conducted on maize fields on silt loam soils in Belgium, with different stages and combinations of rainfall intensity and inflow, simulating rainfall and runon. Water depth–discharge and depth–inundation relationships were established and used to estimate the effect of inundation on Ke. Although inflow‐only experiments were found to be unsuitable for calibration, the model was successfully calibrated and validated with the rainfall simulation data and combined rainfall–runon data (R²: 0.43–0.91). Calibrated and validated with steady state infiltration experiments, the model was combined with the Green–Ampt infiltration equation and can be applied within a two‐dimensional distributed rainfall–runoff model. The effect of water depth–dependency and rainfall intensity on infiltration was illustrated for a hillslope. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
This paper investigates the variation of the popular curve number (CN) values given in the National Engineering Hand Book–Section 4 (NEH‐4) of the Soil Conservation Service (SCS) with antecedent moisture condition (AMC) and soil type. Using the volumetric concept, involving soil, water, and air, a significant condensation of the NEH‐4 tables is achieved. This leads to a procedure for determination of CN for gauged as well as ungauged watersheds. The rainfall‐runoff events derived from daily data of four Indian watersheds exhibited a power relation between the potential maximum retention or CN and the 5‐day antecedent rainfall amount. Including this power relation, the SCS‐CN method was modified. This modification also eliminates the problem of sudden jumps from one AMC level to the other. The runoff values predicted using the modified method and the existing method utilizing the NEH‐4 AMC criteria yielded similar results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This study systematically investigates the entire parameter space of the Green–Ampt model for water infiltration and allows for arbitrary constant hydraulic head boundary conditions, any column inclination, hydrophilic and hydrophobic porous media, and a nonzero initial cumulative infiltration. There are five infiltration and five liquid-withdrawal scenarios which differ with respect to the direction of flow and the sign of the acceleration of the liquid. We present analytical solutions for these flow scenarios and 2D phase diagrams that show which flow scenario is predicted depending on the model parameters. All liquid infiltration scenarios, except accelerating downward infiltration (ADI), have already been reported by Green and Ampt. For liquid withdrawal, however, only decelerating downward flow has previously been reported, which is representative of drainage to the water table. We present experimental evidence that ADI may occur in hydrophobic media.  相似文献   

15.
The analysis of the physical processes involved in a conceptual model of soil water content balance is addressed with the objective of its application as a component of rainfall–runoff modelling. The model uses routinely measured meteorological variables (rainfall and air temperature) and incorporates a limited number of significant parameters. Its performance in estimating the soil moisture temporal pattern was tested through local measurements of volumetric water content carried out continuously on an experimental plot located in central Italy. The analysis was carried out for different periods in order to test both the representation of infiltration at the short time‐scale and drainage and evapotranspiration processes at the long time‐scale. A robust conceptual model was identified that incorporated the Green–Ampt approach for infiltration and a gravity‐driven approximation for drainage. A sensitivity analysis was performed for the selected model to assess the model robustness and to identify the more significant parameters involved in the principal processes that control the soil moisture temporal pattern. The usefulness of the selected model was tested for the estimation of the initial wetness conditions for rainfall–runoff modelling at the catchment scale. Specifically, the runoff characteristics (runoff depth and peak discharge) were found to be dependent on the pre‐event surface soil moisture. Both observed values and those estimated by the model gave good results. On the contrary, with the antecedent wetness conditions furnished by two versions of the antecedent precipitation index (API), large errors were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
For the appropriate management of water resources in a watershed, it is essential to calculate the time distribution of runoff for the given rainfall event. In this paper, a kinematic‐wave‐based distributed watershed model using finite element method (FEM), geographical information systems (GIS) and remote‐sensing‐based approach is presented for the runoff simulation of small watersheds. The kinematic wave equations are solved using FEM for overland and channel flow to generate runoff at the outlet of the watershed concerned. The interception loss is calculated by an empirical model based on leaf area index (LAI). The Green‐Ampt Mein Larson (GAML) model is used for the estimation of infiltration. Remotely sensed data has been used to extract land use (LU)/land cover (LC). GIS have been used to prepare finite element grid and input files such as Manning's roughness and slope. The developed overland flow model has been checked with an analytical solution for a hypothetical watershed. The model has been applied to a gauged watershed and an ungauged watershed. From the results, it is seen that the model is able to simulate the hydrographs reasonably well. A sensitivity analysis of the model is carried out with the calibrated infiltration parameters, overland flow Manning's roughness, channel flow Manning's roughness, time step and grid size. The present model is useful in predicting the hydrograph in small, ungauged watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Animal treading can change soil physical properties, and thus is an important factor in hydrological modelling. We investigated the impacts of animal treading on infiltration by using a series of rainfall simulation experiments at Whatawhata Research Center, Waikato, New Zealand. The study identified significant variables for estimating soil steady‐state infiltration at a micro‐site (0·5 m2) and fitted the Green and Ampt equation by modifying or including variables for soil and water parameters and animal activities on grazing paddocks. A regression function for estimating steady‐state infiltration rate was created for each of four scenarios: between tracks (inter‐track), track, easy slope with ash soil, and easy slope with clay soil. Significant variables included the number of days after treading, antecedent soil moisture, field capacity, percentage of bare ground, bulk density, and the high degree of soil damage (damage not compacted). Regression models explained more than 71% of the variance in steady‐state infiltration for three scenarios, but only 53% for the easy slope with clay soil. The remodified Green and Ampt equation provided satisfactory estimation of infiltration for all scenarios (accuracy > 80%), and thus enables us to use the modified model for Waikato hill country pastures of different topography, soil physical condition, season and grazing management. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A continuous Soil Conservation Service (SCS) curve number (CN) method that considers time‐varied SCS CN values was developed based on the original SCS CN method with a revised soil moisture accounting approach to estimate run‐off depth for long‐term discontinuous storm events. The method was applied to spatially distributed long‐term hydrologic simulation of rainfall‐run‐off flow with an underlying assumption for its spatial variability using a geographic information systems‐based spatially distributed Clark's unit hydrograph method (Distributed‐Clark; hybrid hydrologic model), which is a simple few parameter run‐off routing method for input of spatiotemporally varied run‐off depth, incorporating conditional unit hydrograph adoption for different run‐off precipitation depth‐based direct run‐off flow convolution. Case studies of spatially distributed long‐term (total of 6 years) hydrologic simulation for four river basins using daily NEXRAD quantitative precipitation estimations demonstrate overall performances of Nash–Sutcliffe efficiency (ENS) 0.62, coefficient of determination (R2) 0.64, and percent bias 0.33% in direct run‐off and ENS 0.71, R2 0.72, and percent bias 0.15% in total streamflow for model result comparison against observed streamflow. These results show better fit (improvement in ENS of 42.0% and R2 of 33.3% for total streamflow) than the same model using spatially averaged gauged rainfall. Incorporation of logic for conditional initial abstraction in a continuous SCS CN method, which can accommodate initial run‐off loss amounts based on previous rainfall, slightly enhances model simulation performance; both ENS and R2 increased by 1.4% for total streamflow in a 4‐year calibration period. A continuous SCS CN method‐based hybrid hydrologic model presented in this study is, therefore, potentially significant to improved implementation of long‐term hydrologic applications for spatially distributed rainfall‐run‐off generation and routing, as a relatively simple hydrologic modelling approach for the use of more reliable gridded types of quantitative precipitation estimations.  相似文献   

19.
The delicate balance between human utilization and sustaining its pristine biodiversity in the Mara River basin (MRB) is being threatened because of the expansion of agriculture, deforestation, human settlement, erosion and sedimentation and extreme flow events. This study assessed the applicability of the Soil and Water Assessment Tool (SWAT) model for long‐term rainfall–runoff simulation in MRB. The possibilities of combining/extending gage rainfall data with satellite rainfall estimates were investigated. Monthly satellite rainfall estimates not only overestimated but also lacked the variability of observed rainfall to substitute gage rainfall in model simulation. Uncertainties related to the quality and availability of input data were addressed. Sensitivity and uncertainty analysis was reported for alternative model components and hydrologic parameters used in SWAT. Mean sensitivity indices of SWAT parameters in MRB varied with and without observed discharge data. The manual assessment of individual parameters indicated heterogeneous response among sub‐basins of MRB. SWAT was calibrated and validated with 10 years of discharge data at Bomet (Nyangores River), Mulot (Amala River) and Mara Mines (Mara River) stations. Model performance varied from satisfactory at Mara Mines to fair at Bomet and weak at Mulot. The (Nash–Sutcliff efficiency, coefficient of determination) results of calibration and validation at Mara Mines were (0.68, 0.69) and (0.43, 0.44), respectively. Two years of moving time window and flow frequency analysis showed that SWAT performance in MRB heavily relied on quality and abundance of discharge data. Given the 5.5% area contribution of Amala sub‐basin as well as uncertainty and scarcity of input data, SWAT has the potential to simulate the rainfall runoff process in the MRB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The proper assessment of design hydrographs and their main properties (peak, volume and duration) in small and ungauged basins is a key point of many hydrological applications. In general, two types of methods can be used to evaluate the design hydrograph: one approach is based on the statistics of storm events, while the other relies on continuously simulating rainfall‐runoff time series. In the first class of methods, the design hydrograph is obtained by applying a rainfall‐runoff model to a design hyetograph that synthesises the storm event. In the second approach, the design hydrograph is quantified by analysing long synthetic runoff time series that are obtained by transforming synthetic rainfall sequences through a rainfall‐runoff model. These simulation‐based procedures overcome some of the unrealistic hypotheses which characterize the event‐based approaches. In this paper, a simulation experiment is carried out to examine the differences between the two types of methods in terms of the design hydrograph's peak, volume and duration. The results conclude that the continuous simulation methods are preferable because the event‐based approaches tend to underestimate the hydrograph's volume and duration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号