首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nonlinear behaviour of RC frames under repeated strong ground motions   总被引:1,自引:0,他引:1  
This paper presents an extensive parametric study on the inelastic response of eight reinforced concrete (RC) planar frames which are subjected to forty five sequential ground motions. Two families of regular and vertically irregular (with setbacks) frames are examined. The first family has been designed for seismic and vertical loads according to European codes while the second one only for vertical loads, to study structures which have been constructed before the introduction of adequate seismic design code provisions. The whole range of frames is subjected to five real seismic sequences which are recorded by the same station, in the same direction and in a short period of time, up to three days. In such cases, there is a significant damage accumulation as a result of multiplicity of earthquakes, and due to lack of time, any rehabilitation action is impractical. Furthermore, the examined frames are also subjected to forty artificial seismic sequences. Comprehensive analysis of the created response databank is employed in order to derive important conclusions. It is found that the sequences of ground motions have a significant effect on the response and, hence, on the design of reinforced concrete frames. Furthermore, it is concluded that the ductility demands of the sequential ground motions can be accurately estimated using appropriate combinations of the corresponding demands of single ground motions.  相似文献   

2.
Self‐centering reinforced concrete frames are developed as an alternative of traditional seismic force‐resisting systems with better seismic performance and re‐centering capability. This paper presents an experimental and computational study on the seismic performance of self‐centering reinforced concrete frames. A 1/2‐scale model of a two‐story self‐centering reinforced concrete frame model was designed and tested on the shaking table in State Key Laboratory of Disaster Reduction in Civil Engineering at Tongji University to evaluate the seismic behavior of the structure. A structural analysis model, including detailed modeling of beam–column joints, column–base joints, and prestressed tendons, was constructed in the nonlinear dynamic modeling software OpenSEES. Agreements between test results and numerical solutions indicate that the designed reinforced concrete frame has satisfactory seismic performance and self‐centering capacity subjected to earthquakes; the self‐centering structures can undergo large rocking with minor residual displacement after the earthquake excitations; the proposed analysis procedure can be applied in simulating the seismic performance of self‐centering reinforced concrete frames. To achieve a more comprehensive evaluation on the performance of self‐centering structures, research on energy dissipation devices in the system is expected. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building.  相似文献   

4.
A large mainshock may trigger numerous aftershocks within a short period, and nuclear power plant (NPP) structures have the probability to be exposed to mainshock–aftershock seismic sequences. However, the researchers focused on seismic analyses of reinforced concrete containment (RCC) buildings under only mainshocks. The aim of this paper is to thoroughly investigate the dynamic responses of a RCC building under mainshock–aftershock seismic sequences. For that purpose, 10 as-recorded mainshock–aftershock seismic sequences with two horizontal components are considered in this study, and a typical three-dimensional RCC model subjected to the selected as-recorded seismic sequences is established. Peak ground accelerations (PGAs) of mainshocks equal to 0.3 g (safe shutdown earthquake load-SSE load) are considered in this paper. The results indicate that aftershocks have a significant effect on the responses of the RCC in terms of maximum top accelerations, maximum top displacements and accumulated damage. Furthermore, in order to preserve the RCC from large damage under repeated earthquakes, local damage and global damage indices are suggested as limitations under only mainshocks.  相似文献   

5.
The column-to-beam flexural strength ratio(CBFSR)has been used in many seismic codes to achieve the strong column-weak beam(SCWB)failure mode in reinforced concrete(RC)frames,in which plastic hinges appear earlier in beams than in columns.However,seismic investigations show that the required limit of CBFSR in seismic codes usually cannot achieve the SCWB failure mode under strong earthquakes.This study investigates the failure modes of RC frames with different CBFSRs.Nine typical three-story RC frame models with different CBFSRs are designed in accordance with Chinese seismic codes.The seismic responses and failure modes of the frames are investigated through time-history analyses using 100 ground motion records.The results show that the required limit of the CBFSR that guarantees the SCWB failure mode depends on the beam-column connection type and the seismic intensity,and different types of beam-column connections exhibit different failure modes even though they are designed with the same CBFSR.Recommended CBFSRs are proposed for achieving the designed SCWB failure mode for different types of connections in RC frames under different seismic intensities.These results may provide some reference for further revisions of the SCWB design criterion in Chinese seismic codes.  相似文献   

6.
Damage to buildings observed in recent earthquakes suggests that many old reinforced concrete structures may be vulnerable to the effects of severe earthquakes. One suitable seismic retrofit solution is the installation of steel braces to increase the strength and ductility of a building. Steel bracings have some compelling advantages such as their comparatively low weight, their suitability for prefabrication, and the possibility of openings for utilities, access, and light. The braces are typically connected to steel frames that are fixed to the concrete structure using post‐installed concrete anchors along the perimeter. However, these framed steel braces are not without some disadvantages such as heavier steel usage and greater difficulties during the installation. Therefore, braces without steel frames appear to be an attractive alternative. In this study, braces were connected to gussets furnished with anchor brackets, which were fixed by means of a few post‐installed concrete anchors. The clear structural system and the increased utilization of the anchors allowed the anchorage to be designed precisely and economically. The use of buckling‐restrained braces (BRBs) provides additional benefits in comparison with conventional braces. BRBs improve the energy dissipation efficiency and allow the limitation of the brace force to be taken up by the highly stressed anchorage. Cyclic loading tests were conducted to investigate the seismic performance of BRBs connected with post‐installed anchors used to retrofit reinforced concrete frames. The tests showed that the proposed design method is feasible and increases strength as well as ductility to an adequate seismic performance level. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Scientific research proposing any type of device/technique for seismic protection of buildings is generally based on numerical models that adopt simplifications to make possible extensive analyses. This means that important details of the inelastic response could be neglected. Following this consideration, regardless of the device/technique invented, before it could be put into practice, an experimental verification of the actual structural performance should be conducted by full-scale tests at building level. This issue is investigated in the paper considering seismic retrofit of reinforced concrete (RC) framed structures by buckling-restrained braces (BRBs) as technique to be validated, while hybrid test is selected as tool for experimental validation at building level. The analysed seismic upgrading technique consists in the insertion of BRBs into the RC frame. The upgrading intervention is designed by a method developed in previous studies. This technique responds to an important need of the society. Indeed, existing RC frames showed high vulnerability in occurrence of past earthquakes when they were not originally conceived to sustain horizontal forces. The hybrid test is selected among the available experimental techniques because it allows the experimentation on full-scale specimens with reasonable cost. In this study, a substructure hybrid test was conducted and the results are here presented to (a) evaluate the effectiveness of the design method of BRBs for seismic upgrading, (b) investigate the integration of BRBs in existing RC frame, and (c) show the potentiality of the substructure hybrid test for the experimental verification of innovative techniques for seismic protection of buildings.  相似文献   

8.
强震环境下带钢避难建筑抗震模型设计   总被引:4,自引:4,他引:0       下载免费PDF全文
避难建筑通常采用置换混凝土方法抗震,建筑对高强度地震的抗震性能差。因此提出高强度地震下带钢避难建筑抗震设计方法,采用复杂网络带钢避难建筑加固模型对加固前建筑的混泥土强度与荷载能力进行计算,增大框架柱截面,提升带钢避难建筑荷载。采用复合墙体受力加固模型提升建筑墙体抗震性。对加固后建筑模型的坍塌风险评估时,采用带钢避难建筑坍塌的全概率衡量加固后建筑在设计使用年限内的抗坍塌安全性。设计使用年限内加固后的带钢避难建筑的强震CRC超出概率是P(IMCRC),确保其在高强度地震下具有较高的抗震性能。实验结果说明,所提方法下的带钢避难建筑在遇到强震情况时具有较高的抗震性能。  相似文献   

9.
On September 19 and 20, 1985, two strong subduction interface earthquakes struck Mexico City leading to a large stock of damaged, or even collapsed, reinforced concrete (RC) building structures located in soft soil sites of the former lake-bed zone. The aim of this study is to gain further understanding on the effects of soft-soil seismic sequences on the seismic response of RC framed-buildings. This investigation employed artificial sequences since only two real sequences were gathered during the 1985 earthquakes. The nonlinear response, in terms of peak and residual lateral inter-story drift demands of four RC buildings having 4, 8, 12, and 16 stories, was evaluated. Results show that the relationship of the damaged period of the building (i.e. period of the building after the mainshock) to the predominant period of the aftershock, which is a measure of its frequency content, has a significant impact in the building response.  相似文献   

10.
The height of 101‐storey Shanghai World Financial Center Tower is 492m above ground making it possible the tallest building in the world when completed. Three parallel structural systems including mega‐frame structure, reinforced concrete and braced steel services core and outrigger trusses, are combined to resist vertical and lateral loads. The building could be classified as a vertically irregular structure due to a number of stiffened and transfer stories in the building. Complexities related to structural system layout are mainly exhibited in the design of services core, mega‐diagonals and outrigger trusses. According to Chinese Code, the height 190 m of the building clearly exceeds the stipulated maximum height of for a composite frame/reinforced concrete core building. The aspect ratio of height to width also exceeds the stipulated limit of 7 for seismic design intensity 7. A 1/50 scaled model is made and tested on shaking table under a series of one and two‐dimensional base excitations with gradually increasing acceleration amplitudes. This paper presents the dynamic characteristics, the seismic responses and the failure mechanism of the structure. The test results demonstrate that the structural system is a good solution to withstand earthquakes. The inter‐storey drift and the overall behaviour meet the requirements of Chinese Design Code. Furthermore, weak positions under seldom‐occurred earthquakes of seismic design intensity 8 are found based on the visible damages on the testing model, and some corresponding suggestions are proposed for the engineering design of the structure under extremely strong earthquake. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Several reinforced concrete frames with different dissipator distributions, and a conventional moment-resisting frame, are compared in order to select the best dissipator distribution from the point of view of seismic response and structural design. The structures with dissipators are designed according to a criterion proposed in the present paper. Each frame is excited with a set of eleven simulated accelerograms. The choice of the best dissipation distribution is based mainly on the differences between the mean of the maximum overturning moments developed at the base of the frames and between the weights of steel reinforcement and concrete resulting from the structural design of each frame. A comparison of initial construction costs of a building with dissipators and a conventional building shows that the former is 3·5 per cent more expensive.  相似文献   

12.
13.
The effect of different structures configurations on the collision between adjacent planar RC building frames subjected to strong earthquakes is examined in this paper. Two 5‐storey and two 8‐storey frames, regular or with setbacks, are combined together to produce nine different pairs of adjacent RC structures. These pairs of buildings are subjected to six strong ground motions that are absolutely compatible with the design process. Various parameters are investigated such as maximum displacements, permanent displacements, members' ductility and internal forces and interstorey drift ratios. It is concluded that the effect of collision of adjacent frames seems to be unfavourable for most of the cases and, therefore, the structural pounding phenomenon is rather detrimental than beneficial. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
This paper presents a detailed study on feasibility of un‐bonded fiber reinforced elastomeric isolator (U‐FREI) as an alternative to steel reinforced elastomeric isolator (SREI) for seismic isolation of un‐reinforced masonry buildings. Un‐reinforced masonry buildings are inherently vulnerable under seismic excitation, and U‐FREIs are used for seismic isolation of such buildings in the present study. Shake table testing of a base isolated two storey un‐reinforced masonry building model subjected to four prescribed input excitations is carried out to ascertain its effectiveness in controlling seismic response. To compare the performance of U‐FREI, same building is placed directly on the shake table without isolator, and fixed base (FB) condition is simulated by restraining the base of the building with the shake table. Dynamic response characteristic of base isolated (BI) masonry building subjected to different intensities of input earthquakes is compared with the response of the same building without base isolation system. Acceleration response amplification and peak response values of test model with and without base isolation system are compared for different intensities of table acceleration. Distribution of shear forces and moment along the height of the structure and response time histories indicates significant reduction of dynamic responses of the structure with U‐FREI system. This study clearly demonstrates the improved seismic performance of un‐reinforced masonry building model supported on U‐FREIs under the action of considered ground motions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
This paper reports a study for the seismic performance of one large‐scaled (1/15) model of 30‐story steel‐reinforced concrete frame‐concrete core wall mixed structure. The study was implemented by both shaking table tests, in which the similarity ratio for lateral and gravitational accelerations was kept to 1:1, and numerical nonlinear dynamic analysis. The test observations presented herein include story displacement, interstory drift, natural vibration periods, and final failure mode. The numerical analysis was performed to simulate the shaking table test procedure, and the numerically obtained responses were verified by the test results. On the basis of the numerical results, the progressions of structural stiffness, base shear, and overturning moment were investigated, and the distributions of base shear and overturning moment between frame and core wall were also discussed. The test demonstrates the seismic performance of the steel‐reinforced concrete frame‐core wall mixed structure and reveals the potential overturning failure mode for high rise structures. The nonlinear analysis results indicate that the peripheral frames could take more shear forces after core wall damaged under severe earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a new FRP retrofi tting scheme to strengthen local beam-column joints in reinforced concrete(RC) frames.The new retrofi tting scheme was proposed following a preliminary study of four different existing retrofi tting schemes.A numerical simulation was conducted to evaluate the effectiveness of FRP-strengthened reinforced concrete frames by bridging behavior of local joints to the whole structure.Local confi nement effects due to varying retrofi tting schemes in the joints were simulated in the frame model.The seismic behavior factor was used to evaluate the seismic performance of the strengthened RC frames.The results demonstrated that the new proposed retrofi tting scheme was robust and promising,and fi nite element analysis appropriately captured the strength and global ductility of the frame due to upgrading of the local joints.  相似文献   

17.
The objectives of this paper are to present a comparison of the dynamic characteristics of a seven-storey reinforced concrete building (Van Nuys–Holiday Inn) identified from four recorded strong-motion response data (Whittier earthquake, Landers earthquake, Big Bear earthquake and Northridge earthquake). In the analysis, time-domain methods for estimating the system parameters and the modal properties of the building are studied. Both off-line and on-line identification algorithms are applied to these seismic response data. Under the assumption of a linear time-invariant system the ARX model and ARMAX model are used. Comparison of the identification results using different models are made. In addition, recursive procedures are adapted as on-line identification and the time-varying modal parameters are estimated. For structural systems under strong earthquake excitation, a recursive identification method, adaptive forgetting through multiple models (AFMM), is introduced to identify systems with rapidly changing parameters. Through the analysis of the seismic response data of the building subjected to four earthquakes the identification algorithm and the identification results are discussed.  相似文献   

18.
In the paper the seismic response of different variants of the three-story reinforced concrete frame structure SPEAR is compared. The basic structure is representative of building practice before the adoption of seismic codes. This structure has been compared with four modified variants, which were designed partly or completely in accordance with the Eurocode family of standards. For seismic assessment the practice-oriented nonlinear N2 method was used. The results demonstrate the low seismic resistance of buildings designed for gravity loads only. On the other hand, the advantages of new standards are clearly apparent. By taking into account the requirements of Eurocode 8 it is possible to ensure adequate strength, stiffness and ductility. By means of capacity design it is possible to ensure a global plastic mechanism. All these characteristics contribute to the high seismic resistance of structures designed according to Eurocode 8 and to their satisfactory behaviour during earthquakes.  相似文献   

19.
通过实地调研“4.20”芦山7.0级地震灾区和“8.8”九寨沟7.0级地震灾区建筑物破坏情况,对灾区内框架结构、砖混结构和简易结构三种类型的建筑物震害特征进行了对比。结果表明:两次地震中相同结构类型的建筑物在同级别地震作用下其破坏程度不同,其中砖混结构和简易结构震害特征差异性较大,分析认为除地震本身作用外,灾区房屋的抗震性能不同也是造成两次地震建筑物震害特征差异较大的原因。最后提出了建议以供灾区恢复重建、农村民居安全建设等借鉴和参考。  相似文献   

20.
The effects of seismic pounding on the structural performance of a base-isolated reinforced concrete (RC) building are investigated, with a view to evaluate the influence of adjacent structures and separation between structures on the pounding response. In particular, seismic pounding of a typical four-story base-isolated RC building with retaining walls at the base and with a four-story fixed-base RC building is studied. Three-dimensional finite element analyses are carried out considering material and geometric nonlinearities. The structural performance of the base-isolated building is evaluated considering various earthquake excitations. It is found that the performance of the base-isolated building is substantially influenced by the pounding. The investigated base-isolated building shows good resistance against shear failure and the predominant mode of failure due to pounding is flexural. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号