首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of resuspension on benthic fluxes of oxygen (O2), ammonium (NH4+), nitrate (NO3?), phosphate (PO43?), silicate (Si(OH)4), dissolved inorganic carbon (DIC), total dissolved iron (Fe) and total dissolved manganese (Mn) was studied at three different stations in the Gulf of Finland (GoF), Baltic Sea during three cruises in June–July 2003, September 2004 and May 2005. The stations were situated on different bottom types in the western, central and eastern part, respectively, of the open GoF. The fluxes were measured in-situ using the autonomous Göteborg benthic lander. To simulate resuspension events, the stirring speed was increased in two of the four chambers of the lander after approximately half of the incubation time. The other two chambers were used as control chambers. Clear effects of resuspension were observed on the oxygen fluxes where an increase of the consumption was observed in 88% of the cases and on average with 59% (stdev=53). The NH4+ fluxes were affected in 50% of the cases (4 out of 8 incubations) at stations with low bottom water oxygen concentrations, but in no cases where the bottom water was oxygenated (0 out of 9 incubations). The NH4+ fluxes decreased by 26±27% in 2005 and by 114±19% in 2003. There was no clear effect of resuspension on the fluxes of any of the other solutes in this study. Thus, resuspension events did not play a significant role in release/uptake of NO3?, PO43?, Si(OH)4, DIC, Fe and Mn in GoF sediments. However, increased oxygen consumption as a result of resuspension may lead to spreading of anoxic/suboxic bottom water conditions, and thus indirectly to increased benthic release of phosphate, ammonium and iron.  相似文献   

2.
A wave flume experiment was conducted to study nutrient fluxes at water-sediment interface of Meiliang Bay under different hydrodynamic conditions. The results reveal that hydrodynamics has remarkable effects on nutrient fluxes in this area. With a bottom wave stress of 0.019 N m?2 (equivalent to disturbance caused by wind SE 5–7 m s?1 at the sediment sample site of Meiliang Bay), the fluxes of TN, TDN and NH4 +-N were separately 1.92 × 10?3, ?1.81 × 10?4 and 5.28 × 10?4 mg m?2 s?1 (positive for upward and negative for downward), but for TP, TDP and SRP, the fluxes were 5.69 × 10?4, 1.68 × 10?4 and ?1.29 × 10?4 mg m?2 s?1. In order to calculate the released amount of nutrients based on these results, statistic analysis on the long-term meteorological data was conducted. The result shows that the maximum lasting time for wind SE 5–7 m s?1 in this area is about 15 h in summer. Further calculation shows that 111 t TN, 32 t NH4 +-N, 34 t TP and 10 t TDP can be released into water (the sediment area was 47.45% of the whole surface area), resulting in concentration increase of 0.025, 0.007, 0.007 and 0.002 mg L?1 separately. With stronger disturbance (bottom wave stress is 0.217 N m?2 which is equivalent to disturbance caused by wind SE 10–11 m s?1 at the same site), there has been significant increase of nutrient fluxes (1.16 × 10?2, 6.76 × 10?3, 1.14 × 10?2 and 2.14 × 10?3 mg m?2 s?1 for TN, DTN and NH4 +-N and TP). The exceptions were TDP with flux having a decrease (measured to be 9.54 × 10?5 mg m?2 s?1) and SRP with flux having a small increase (measured to be 5.42 × 10?5 mg m?2 s?1). The same statistic analysis on meteorological data reveal that the maximum lasting time for wind SE 10–11 m s?1 is no more than 5 h. Based on the nutrient fluxes and the wind lasting-time, similar calculations were also made suggesting that 232 t TN, 134.9 t TDN, 228 t NH4 +-N, 42.7 t TP, 2.0 t TDP and 1.1 t SRP will be released from sediment at this hydrodynamic condition resulting in the concentration increases of 0.050, 0.029, 0.049, 0.009, 0.0004 and 0.0002 mg L?1. Therefore in shallow lakes, surface disturbance can lead to significant increase of nutrient concentrations although some components in water column had negative flux with weak disturbance (e.g. TDN and SRP in this experiment). In this case, sediment looks to be a source of nutrients. These nutrients deposited in sediment can be carried or released into water with sediment resuspension or changes of environmental conditions at water-sediment interface, which can have great effects on aquatic ecosystem and is also the characteristics of shallow lakes.  相似文献   

3.
Many large rivers worldwide are enriched with high levels of suspended solids (SS), which are known to be hotspots of many nitrogen (N) transformation processes (e.g., denitrification, nitrification). However, the influence of SS on microbial ammonium (NH4+) recycling remains unclear. Water column NH4+ regeneration rates (REGs) and potential uptake rates (Upots) as well as community biological NH4+ demand (CBAD) was measured in the river-estuary continuum of the third longest river in the world—Yangtze River, which has dramatic SS gradients. We found that REGs, Upots, and CBAD all increased downriver, with higher REGs, Upots, and CBAD in the estuary than in the river sections. The regeneration and uptake of NH4+ were nearly balanced in the river sections, while the positive CBAD in the estuary indicated obvious NH4+ demand of microbes. Concentrations of SS, which also control the content of chemical oxygen demand and particulate N, were the main factor influencing NH4+ recycling rates and CBAD. SS-induced regenerated NH4+ in the river-estuary continuum of Yangtze River was estimated to be 11.02 × 108 kg N yr−1 and accounted for about 14% of total N inputs, suggesting that regenerated NH4+ is an important N source for microbes and may influence nutrient dynamics in lower coasts. To our knowledge, this is the first study to report NH4+ recycling in Yangtze River with an emphasis on its influencing factors and contribution to N budgets.  相似文献   

4.
Transfer of atmospheric N deposition on shallow‐soil forested basins on the Canadian Shield to receiving water bodies may be enhanced by rapid preferential flow along the soil–bedrock interface (BR runoff) on basin slopes. Controls on BR runoff, partitioning of event and pre‐event water contributions to this flow, and implications of this partitioning for N fluxes in BR runoff were studied under natural and artificial inputs to an instrumented slope. BR runoff as a fraction of water inputs to the slope increased with antecedent soil wetness and input depth. Event water contributions to BR runoff initially increased with antecedent soil wetness, but then declined at large antecedent soil wetness. Export of applied NH4+ from the slope was maximized when event water contributions containing large NH4+ concentrations dominated BR runoff; however, there was no relationship between the fraction of NO3? application transported in BR runoff and either application input or the event water fraction of that runoff. The applicability of our results to other shallow‐soil areas of the Canadian Shield is limited by artificial N inputs to the slope in excess of natural loads and by low rates of N mineralization and negligible nitrification in the slope's soils. Nevertheless, the study reinforces the need to consider how the hydrologic, geometric and pedologic properties of forest slopes interact with biotic and abiotic soil processes to control N transport and transformation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
Stream–subsurface exchange strongly influences the transport of contaminants, fine particles, and other ecologically relevant substances in streams. We used a recirculating laboratory flume (220 cm long and 20 cm wide) to study the effects of particle size, overlying velocity, and biofilm formation on stream–subsurface exchange of particles. Sodium chloride was used as a non‐reactive dissolved tracer and 1‐ and 5‐µm fluorescent microspheres were used as particulate tracers. Surface–subsurface exchange was observed with a clean sand bed and a bed colonized by an autotrophic–heterotrophic biofilm under two different overlying velocities, 0·9 and 5 cm s?1. Hydrodynamic interactions between the overlying flow and sand bed resulted in a reduction of solute and particle concentrations in the water column, and a corresponding accumulation of particles in both the sediments and in the biofilm. Increasing overlying velocity and particle size resulted in faster removal from the overlying water due to enhanced mass transfer to the bed. The presence of the biofilm did not affect solute exchange under any flow condition tested. The presence of the biofilm significantly increased the deposition of particles under an overlying velocity of 5 cm s?1, and produced a small but statistically insignificant increase at 0·9 cm?1. The particles preferentially deposited within the biofilm matrix relative to the underlying sand. These results demonstrate that hydrodynamic transport conditions, particle size, and biofilm formation play a key role in the transport of suspended particles, such as inorganic sediments, particulate organic matter, and pathogenic microorganisms in freshwater ecosystems, and should be taken into consideration when predicting the fate and transport of particles and contaminants in the environment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The use of submersed macrophyte tissue δ 15N to quantify the level of WWTP effluent use in a highly urbanized and agricultural river was evaluated using several methods. Macrophytes, NH4 + and NO3 ? were collected by canoe along two 10 km reaches of river, upstream and downstream of two major municipal WWTPs over 3 years. NH4 + decreased in concentration while δ 15N–NH4 + increased as a function of distance downstream of both WWTPs, changing in one survey from 13 to 31 ‰ over 1 km. This increase is attributed to the combined effects of volatilization, nitrification and uptake. While NO 3 ? concentrations increased downstream of the WWTP over one of the survey reaches, δ 15N–NO 3 ? showed no prominent trend with distance at either. Macrophyte tissue δ 15N increased with distance downstream of both WWTPs, with a slope not significantly different from that of δ 15N–NH4 + suggesting that macrophytes incorporate effluent NH4 + as their main N source in those areas. However, mixing models suggest that towards the end of the reach, where source separation is distinct, macrophytes may utilize background NO 3 ? . Our study indicates the difficulty of deriving precise estimates of effluent use by macrophytes in a system where the δ 15N of the effluent changes rapidly. It also illustrates the utility of macrophytes in describing those changes where the effluent is too attenuated to allow for direct isotopic analysis.  相似文献   

7.
An 87‐day incubation experiment was conducted to investigate the effects of various water levels on the soil nitrogen content in an inland salt marsh of Xianghai, China. Soil samples were collected from depths in the range of 0 to 30 cm at 10‐cm intervals after 15, 54 and 87 days of incubation. The total nitrogen (TN), available nitrogen, nitrate nitrogen (NO3?‐N) and ammonium nitrogen (NH4+‐N) contents and the nitrogen activation coefficient (NAC) were measured to investigate the soil nitrogen dynamics under three inundation treatments (?5, 0 and 5 cm). The results showed that TN was generally accumulated in all soil layers and exhibited a peak value in subsurface soils at the ?5‐cm inundation level at the end of the incubation period, whereas no obvious changes were observed in the TN contents in the bottom soils at the three inundation levels. Compared with the initial contents in the soils, the NO3?‐N and NH4+‐N contents were significantly reduced in all soil layers at the 0‐cm and the 5‐cm inundation levels at the end of the incubation period. In general, the available nitrogen content was higher in the surface soils compared with the deeper soils at all inundation levels. The NAC values exhibited a pronounced change in the subsurface soils at all inundation levels, decreasing significantly from 0.17 to 0.04 at the 5‐cm inundation level; however, a higher mean NAC value (0.126) was found over the incubation period at the 0‐cm inundation level compared with the 5‐cm and the ?5‐cm inundation levels. Nitrogen was released from plants into the soil under all inundation treatments over the incubation period. The soil organic matter exerted positive loadings on the TN and NO3?‐N contents and negative loadings on the NH4+‐N content at all inundation levels, and the water content generally exhibited a negative relationship with all forms of nitrogen. Additionally, the total phosphorus content exhibited a positive correlation with the TN and NO3?‐N contents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A new approach, combining 15NH4+ isotope dilution and continuous-flow techniques, provided estimates of “actual” and “net” NH4+ flux and sediment NH4+ demand (SAD) at the sediment-water interface (SWI) of sites in the northern Gulf of Mexico (NGOMEX). The sites included a hypoxic site (C6), two sites with intermediate oxygen levels (B7 and F5), and a normoxic site (CT). Control cores without isotope addition and other cores from the same site treated with 15NH4+ labeled overflowing water differentiated between net and actual regeneration flux and actual vs. potential uptake flux of NH4+. Experiments were conducted in 2008 before (July) and after (September) two successive hurricanes (Gustav and Ike) and in January and August, 2009. Actual regeneration was significantly higher than net flux at most sites. Net flux did not differ significantly in most sites/dates, but the actual regeneration, and the actual and potential uptake, showed temporal and spatial variation; the flux at the hypoxic site was more active than non-hypoxic sites. SAD, the difference between potential and actual NH4+ uptake flux, was higher at the hypoxic site than at non-hypoxic sites before and after the hurricanes in 2008 and during the hypoxia season in 2009. SAD related negatively to bottom water DO values. Conclusions: (1) net flux often underestimated actual regeneration, (2) hurricane activity decreased N dynamics, and (3) microbial N limitation status at the hypoxic site related to NH4+ removal processes that were independent of oxygen (e.g., anaerobic heterotrophic uptake or anammox). These results indicate a rather consistent NH4+ demand at the SWI during the hypoxic season and suggest that reduced nitrogen may limit microbial dynamics in the region.  相似文献   

9.
不同水生植物对富营养化水体无机氮吸收动力学特征   总被引:3,自引:2,他引:1  
采用浓度梯度法,研究了鸢尾(Iris louisiana)、狐尾藻(Myriophyllum verticillatum)、茭白(Zizania latifolia)和水芹(Oenanthe clecumbens)对硝态氮(NO3--N)和铵态氮(NH4+-N)吸收动力学特征.结果表明:4种水生植物对水体NO3--N和NH4+-N吸收可用Michaelis-Menten酶动力学方程描述,随溶液NO3--N和NH4+-N浓度增加,植物吸收NO3--N和NH4+-N速率增加,当溶液NO3--N和NH4+-N浓度接近于2.0 mmol/L时,吸收速率增加趋缓;4种水生植物对NO3--N和NH4+-N的Vmax值大小为水芹 >茭白 >鸢尾 >狐尾藻,对NO3--N的Km值大小为水芹 >鸢尾=茭白=狐尾藻,对NH4+-N的Km值大小为水芹 >狐尾藻 >茭白=鸢尾.根据吸收动力学参数(Vmax,Km)判断水芹适宜于净化NO3--N和NH4+-N浓度较高的水体,茭白、鸢尾和狐尾藻适合净化NO3--N和NH4+-N浓度较低水体;4种水生植物对NO3--N、NH4+-N表现出不同的吸收偏好性,鸢尾吸收NO3--N的潜力大于吸收NH4+-N的,但对NH4+-N的亲和力大于NO3--N,表明能在NO3--N浓度较高环境中优先吸收NH4+-N.狐尾藻和水芹对NO3--N和NH4+-N能均衡吸收.茭白对NH4+-N具有较高的吸收潜力与亲和力.  相似文献   

10.
Streams are significant locations for nitrate (NO3 ?) processing within landscapes. This is especially important in dry climates given the limited water availability for biological processes elsewhere. In arid and semiarid regions, many streams are naturally saline. Elevated salinity can constrain the structure and function of aquatic organisms, which is expected to increase worldwide being associated to global warming. We investigated whole-reach NO3 ? uptake and denitrification in nine semiarid streams of variable water salinity (i.e. from freshwater to hyposaline) to test if NO3 ? processing would decrease with increasing salinity. We used pulse additions and Tracer Addition for Spiraling Curve Characterization (TASCC) to measure whole-reach uptake of added NO3 ?, and the acetylene block technique to measure sediment denitrification. TASCC results showed that only five of nine streams were able to retain added NO3 ?. Of these five retentive streams, four were saline; however, salinity did not control significantly the variation in whole-reach NO3 ? uptake observed across streams. Other measured environmental variables such as streambed NH4 + and organic carbon availability were better at explaining this variation. Denitrification was detected in all streams except one and its variation across streams was also independent of salinity. Although denitrification rates tended to be high, their contribution to whole-reach NO3 ? uptake was insignificant (≤2.16 %). Alternative pathways, heterotrophic assimilation and/or dissimilatory NO3 ? reduction to NH4 +, were probably responsible for most whole-reach NO3 ? uptake. Together, our results highlight that the function of streams in controlling external NO3 ? inputs is highly variable and salinity does not apparently constrain this role.  相似文献   

11.
Settled particles of fresh, labile organic matter may be a significant source of oxygen demand and nutrient regeneration in seasonally-hypoxic regions caused by nutrient inputs into stratified coastal zones. Studying the dynamics of this material requires sediment sampling methods that include flocculent organic materials and overlying water (OLW) at or above the sediment–water interface (SWI). A new coring device (“HYPOX” corer) was evaluated for examining nitrogen- (N) and oxygen-dynamics at the SWI and OLW in the northern Gulf of Mexico (NGOMEX). The HYPOX corer consists of a “Coring Head” with a check-valve, a weighted “Drive Unit,” and a “Lander,” constructed from inexpensive components. The corer collected undisturbed sediment cores and OLW from sediments at NGOMEX sampling sites with underlying substrates ranging from sand to dense clay. The HYPOX corer could be deployed in weather conditions similar to those needed for a multi-bottle rosette water-sampling system with 20 L bottles. As an example of corer applicability to NGOMEX issues, NH4+ cycling rates were examined at hypoxic and control sites by isotope dilution experiments. The objective was to determine if N-dynamics in OLW were different from those in the water column. “Ammonium demand,” as reflected by potential NH4+ uptake rates, was higher in OLW than in waters collected from a meter or more above the bottom at both sites, but the pattern was more pronounced at the hypoxia site. By contrast, NH4+ regeneration rates were low in all samples. These preliminary results suggest that heterotrophic activity and oxygen consumption in OLW in the hypoxic region may be regulated by the availability of NH4+, or other reduced N compounds, rather than by the lack of sufficient labile organic carbon.  相似文献   

12.
Bench-scale experiments were conducted to investigate the effect of hydraulic loadings and influent concentration on the migration and biotransformation behaviour of three groundwater pollutants: ammonium (NH4+), iron (Fe2+) and manganese (Mn2+). Columns packed with aquifer media collected from a riverbank filtration (RBF) site in Harbin City, NE China were introduced synthetic groundwater (SGW) or real groundwater (RGW) were at two different constant flow rates and initial contaminant concentrations to determine the impact of system conditions on the fate of the target pollutants biotransformation. The results showed that the biotransformation rate of Fe2+ Mn2+ and NH4+ decreased by 8%, 39% and 15% under high flow rate (50 L d−1) compared to low flow rate (25 L d−1), which was consistent with the residence-time effect. While the biotransformation rate of Fe2+ Mn2+ and NH4+ decreased by 7%, 14% and 9% under high influent concentration comparing with original groundwater. The 16S rRNA analysis of the aquifer media at different depths after experiments completion demonstrated that the relative abundance of major functional microbes iron-oxidizing bacteria and manganese-oxidizing bacteria under higher flow rate and higher influent concentration decreased 13%, 14% and 25%, 24%, respectively, whereas the ammonium-oxidizing bacteria and nitrite-oxidizing bacteria exhibited minimal change, compared to the lower flow rate. Above all results indicated that both high flow rate and high concentration inhibit the biotransformation of NH4+, Fe2+ and Mn2+. The biotransformation of Fe2+ and Mn2+ occurs primarily in the 0–40 cm and 20–60 cm depth intervals, respectively, whereas the NH4+ biotransformation appears to occur relatively uniformly throughout the whole 110 cm column. The biotransformation kinetics of NH4+ in RGW and SGW, Mn2+ in RGW at different depths accords with the first order kinetics model, while Fe2+ in RGW and SGW, Mn2+ in SGW presented more complicated biotransformation process. The results should improve understanding of the transport and fate of common groundwater pollutants in RBF and other groundwater recharge environments.  相似文献   

13.
Processes controlling the nitrogen (N) exchange between water and sediment in eutrophic Lake Sempach were studied using three different independent methods: benthic flux chambers, interstitial water data and hypolimnetic mass balances. The sediments released NH 4 + (1.1–16.1 mmoles m–2 d–1), NO 2 - (0.1–0.4 mmoles m–2 d–1) and dissolved organic N (<0.25 mmoles m–2 d–1). A net NO 3 - consumption (2.4–11.1 mmoles m–2 d–1) related to the NO 3 - concentrations in the overlying water was observed in all benthic chamber experiments. The flux of the reactive species NO 3 - and NH 4 + was found to depend on hydrodynamic conditions in the water overlying the sediment. For this reason, benthic chambers overestimated the fluxes of inorganic N compared to the other methods. Thus, in short-term flux chamber experiments the sediment may either become a sink or a source for inorganic N depending on the O2 concentration in the water overlying the sediment and the stirring rate. As demonstrated with a15NO 3 - experiment, nitrate-ammonification accounted for less than 12% of the total NO 3 - consumption. After six years of artificial oxygenation in Lake Sempach, a decrease in hypolimnetic total inorganic nitrogen (TIN) was observed in the last two years. The occurrence of dense mats of H2S-oxidizingBeggiatoa sp. indicated micro-aerobic conditions at the sediment surface. Under these conditions, a shorter distance between the ecological niches of nitrifying and denitrifying bacteria, and therefore a faster NO 3 - -transport, can possibly explain the lowering of TIN by enhanced net denitrification.  相似文献   

14.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
曝气充氧对城市污染河道内源铵态氮释放的控制   总被引:3,自引:1,他引:2  
凌芬  刘波  王国祥  许宽  周锋  杜旭 《湖泊科学》2013,25(1):23-30
以城市污染河道沉积物和上覆水为研究对象,利用模拟实验方法,探讨不同曝气充氧方式(水曝气EW、底泥曝气ES)对污染河道內源铵态氮(NH4+-N)释放的影响.研究结果发现:从间隙水和沉积物中NH4+-N的削减效果来看,底泥曝气均要优于水曝气;实验结束后,底泥曝气组沉积物与间隙水中NH4+-N含量分别减少63.39%和43.33%,水曝气组分别减少了7.54%和13.98%;从沉积物-水界面NH4+-N的扩散通量变化来看,水曝气组界面通量高于对照组,其变化规律与对照组相似;底泥曝气组沉积物-水界面NH4+-N扩散通量变化过程完全不同于其它两组,在整个试验周期内(除第5 d以外),底泥曝气组的通量低于水曝气组,在第15 d最低,为13.73 mg/(m2.d),仅为水曝气组和对照组的14.68%和19.93%,表明底泥曝气组沉积物NH4+-N的释放潜力低于水曝气组沉积物.  相似文献   

16.
刘洋  陈永娟  王晓燕  许康利 《湖泊科学》2018,30(5):1271-1283
由于人类活动的影响大量未经处理的废污水汇入城市河流,高浓度的污染物影响了河流中微生物对生物地球化学物质迁移和转化的介导作用.本文选取典型的城市河流——北运河作为研究区域,分析了北运河沉积物中氮素形态以及含量的空间和季节差异性,并结合克隆文库分子生物学的方法,探讨了氮素形态和含量的差异对好氧甲烷氧化菌(aerobic methane-oxidizing microorganisms,MOB)群落特征的影响.结果表明:北运河沉积物中铵态氮(NH_4~+-N)为氮素的主要存在形态,存在显著的空间差异,其含量在下游显著高于上游,但季节差异不显著.NH_4~+-N含量的空间差异对MOB的群落结构和群落分布有显著影响,对群落多样性影响不显著.NH_4~+-N含量的空间分布特征与MOB的群落聚类特征一致,NH_4~+-N对MOB群落分布的影响显著高于其他形态的氮素,其含量越高,则与MOB群落分布的响应关系越紧密.北运河中NH_4~+-N的来源影响了沉积物中MOB的主要来源,MOB高同源性菌群的来源与NH_4~+-N等主要污染物的来源一致.沉积物中MOB物种之间联系的紧密程度依赖于氮素的主要存在形态及其含量水平.NH_4~+-N含量较高的下游沉积物中微生物彼此之间关系及集聚程度更强,受外界环境变化的干扰程度更强,受人类活动引起环境变化的敏感程度更高.城市河流中氮素的形态和含量差异对甲烷的氧化过程有显著影响.探究城市河流沉积物中高含量的NH_4~+-N对甲烷产生及消耗的影响过程是控制河流温室气体排放的关键.  相似文献   

17.
Dew samples were collected between October 2007 and February 2008 from a suburban site in Agra. pH, conductivity, major inorganic ions (F?, Cl?, NO 3 ? , SO 4 2? , Na+, K+, Ca2+, Mg2+, and NH 4 + ), and some trace metals (Cr, Sn, Zn, Pb, Cd, Ni, Mn, Fe, Si, Al, V, and Cu) were determined to study the chemistry of dew water. The mean pH was 7.3, and the samples exhibited high ionic concentrations. Dew chemistry suggested both natural and anthropogenic influences, with acidity being neutralized by atmospheric ammonia and soil constituents. Ion deposition flux varied from 0.25 to 3.0?neq?m?2?s?1, with maximum values for Ca2+ followed by NH 4 + , Mg2+, SO 4 2? , Cl?, NO 3 ? , Na+, K+, and F?. Concentrations of trace metals varied from 0.13 to 48?μg?l?1 with maximum concentrations of Si and minimum concentration of Cd. Correlation analysis suggested their contributions from both crustal and anthropogenic sources.  相似文献   

18.
杜先  荀凡  王亚蕊  陈新芳  沈悦  李勇  冯慕华 《湖泊科学》2020,32(6):1671-1682
蓝藻水华暴发形成的大量有机碎屑,沉降到沉积物表面,影响沉积物有机质矿化,进而影响碳氮磷循环.本实验选择于桥水库湖心区作为沉积物采样点,通过设置不同密度藻屑添加组(×1倍组和×20倍组)及空白对照组,研究藻屑堆积对沉积物矿化特征的影响及其环境效应,为蓝藻水华影响下的饮用水环境修复和科学管理提供一定的理论依据.结果表明:(1)藻屑添加降低了上覆水pH值,改变了沉积物生物酶活性.藻屑添加密度越大,上覆水pH值越低、波动越大,反映了培养过程异养微生物活性的变化.×1倍组的转化酶活性较高;×20倍组蛋白酶活性和碱性磷酸酶活性较高.(2)藻屑添加对沉积物的矿化途径和沉积物产物的释放速率产生了显著影响.藻屑添加密度越大,有机质矿化速率越大.其中,×1倍组主要增强好氧矿化,释放CO2;×20倍组主要增强厌氧产甲烷矿化,释放CH4.(3)不同密度的藻屑添加组,其氮磷扩散、释放通量存在明显差别.×1倍组以沉积物吸附为主,其上覆水NH4+和PO43-平均释放速率与对照组差异较小;×20倍组的NH4+在第0~10天以沉积物吸附为主,之后和PO43-均以向上覆水中释放为主,其NH4+和PO43-平均释放速率(分别为0.223)和0.075 mg/(L·d))明显大于其他实验组.因此,大量蓝藻堆积明显促进沉积物的碳氮磷矿化,释放大量CO2、CH4和氮磷营养盐至上覆水中,对湖泊水环境造成污染,为蓝藻的生长繁殖作贡献.  相似文献   

19.
Background aqueous chemistry and 15Nnitrate tracer injection methods were used to calculate in‐stream nitrate uptake metrics at Red Canyon Creek, a third‐order stream in the Rocky Mountains in the state of Wyoming, United States. ‘Net’ nitrate uptake lengths, which reflect both nitrate uptake and regeneration, and ‘gross’ nitrate uptake lengths, which exclude re‐mineralization, were quantified separately from background nitrate chemistry and 15N labelling tracer data, respectively. Gross nitrate uptake lengths, from tracer injections of 15N labelled nitrate, ranged from 502 to 3140 m. Net nitrate uptake lengths, from background nitrate chemistry downstream of a point source, ranged from 1170 to 4330 m. Diurnal changes in uptake lengths suggest the importance of nitrate utilization by autotrophs in the stream and benthic zone. The differences between net and gross nitrate uptake lengths along lower reaches of Red Canyon Creek allowed us to estimate the nitrate regeneration rate, which was 0·056–0·080 µmol m?2 s?1 during the day and 0·0062–0·0083 µmol m?2 s?1 at night. Spatial patterns of streambed pore water chemistry indicate those areas of the hyporheic zone where denitrification was likely occurring. Permanent log dams generated stronger redox gradients in the hyporheic zone than areas with transient beaver dams. By combining isotopically labelled nitrate additions, estimates of uptake from background aqueous nitrate chemistry and characterization of redox conditions in the hyporheic zone, we were able to determine the nitrate regeneration rate and the redox processes responsible for nitrogen cycling in the hyporheic zone. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of light on nitrate (NO3) and ammonium (NH4+) uptake by natural communities was investigated in relation to cell size (<10 and >10 μm) in the well-mixed coastal waters of the English Channel. Nitrogen (N) uptake kinetics as a function of irradiance were assessed using 15N tracer techniques, for a seasonal cycle of populations collected at 50% and 1% light penetration depth. The nitrogen uptake responses to irradiance can be represented by the formulation used to describe the photosynthesis versus irradiance relationships and modified by the addition of a dark uptake parameter. The response curves of two size fractions of phytoplankton collected at 50% and 1% of incident light did not differ significantly, which suggested that the physiological characteristics of N uptake were not affected by the light intensity at which the phytoplankton assemblages were sampled. The kinetics parameters indicated that the NO3 uptake system was more strongly dependent on light than the NH4+ uptake system. They also showed that N uptake was less limited by the light intensity in the small size fraction than it was in the large size fraction. At the mean light intensity in the water column, kinetics analysis predicted a NH4+ uptake that was on average 1.8 (±0.6) and 2.4 (±1.0) times greater than the NO3 uptake, for <10 and >10 μm size fractions, respectively. The kinetics also predicted, at the in situ mean light intensity, that the mean ability to take up nitrogen was twice as high (1.8±0.5) for the small than for the large cells when the N substrate was NH4+ and more than twice as high (2.6±1.5) when the substrate was NO3. These results added to our understanding of the light effect on N uptake processes in well-mixed waters, and can largely explain the phytoplankton production, mainly regenerated and dominated by small cells, that has been observed in these waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号