首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The basaltic Martian meteorite Yamato 980459 consists of large olivine phenocrysts and often prismatic pyroxenes set into a fine-grained groundmass of smaller more Fe-rich olivine, chromite, and an interstitial residual material displaying quenching textures of dendritic olivine, chain-like augite and sulfide droplets in a glassy matrix. Yamato 980459 is, thus, the only Martian meteorite without plagioclase/maskelynite. Olivine is compositionally zoned from a Mg-rich core to a Fe-rich rim with the outer few micrometers being especially rich in iron. With Fo84 the cores are the most magnesian olivines found in Martian meteorites so far. Pyroxenes are also mostly composite crystals of large orthopyroxene cores and thin Ca-rich overgrowths. Separate pigeonite and augites are rare. On basis of the mineral compositions, the cooling rates determined from crystal morphologies, and crystal grain size distributions it is deduced that the parent magma of Yamato 980459 initially cooled under near equilibrium conditions e.g., in a magma chamber allowing chromite and the Mg-rich silicates to form as cumulus phases. Fractional crystallization at higher cooling rates and a low degree of undercooling let to the formation of the Ca-, Al-, and Fe-rich overgrowths on olivine and orthopyroxene while the magma was ascending towards the Martian surface. Finally and before plagioclase and also phosphates could precipitate, the magma was very quickly erupted quenching the remaining melt to glass, dendritic silicates and sulfide droplets. The shape preferred orientation of olivine and pyroxene suggests a quick, thin outflow of lava. According to the shock effects found in the minerals of Yamato 980459, the meteorite experienced an equilibration shock pressure of about 20-25 GPa. Its near surface position allowed the ejection from the planet’s surface already by a single impact event and at relatively low shock pressures.  相似文献   

2.
Zoning of phosphorus in igneous olivine   总被引:2,自引:2,他引:0  
We describe P zoning in olivines from terrestrial basalts, andesites, dacites, and komatiites and from a martian meteorite. P2O5 contents of olivines vary from below the detection limit (≤0.01 wt%) to 0.2–0.4 wt% over a few microns, with no correlated variations in Fo content. Zoning patterns include P-rich crystal cores with skeletal, hopper, or euhedral shapes; oscillatory zoning; structures suggesting replacement of P-rich zones by P-poor olivine; and sector zoning. Melt inclusions in olivines are usually located near P-rich regions but in direct contact with low-P olivine. Crystallization experiments on basaltic compositions at constant cooling rates (15–30°C/h) reproduce many of these features. We infer that P-rich zones in experimental and natural olivines reflect incorporation of P in excess of equilibrium partitioning during rapid growth, and zoning patterns primarily record crystal-growth-rate variations. Occurrences of high-P phenocryst cores may reflect pulses of rapid crystal growth following delayed nucleation due to undercooling. Most cases of oscillatory zoning in P likely reflect internal factors whereby oscillating growth rates occur without external forcings, but some P zoning in natural olivines may reflect external forcings (e.g., magma mixing events, eruption) that result in variable crystal growth rates and/or P contents in the magma. In experimental and some natural olivines, Al, Cr, and P concentrations are roughly linearly and positively correlated, suggesting coupled substitutions, but in natural phenocrysts, Cr zoning is usually less intense than P zoning, and Al zoning weak to absent. We propose that olivines grow from basic and ultrabasic magmas with correlated zoning in P, Cr, and Al superimposed on normal zoning in Fe/Mg; rapidly diffusing divalent cations homogenize during residence in hot magma; Al and Cr only partially homogenize; and delicate P zoning is preserved because P diffuses very slowly. This interpretation is consistent with the fact that zoning is largely preserved not only in P but also in Al, Cr, and divalent cations in olivines with short residence times at high temperature (e.g., experimentally grown olivines, komatiitic olivines, groundmass olivines, and the rims of olivine phenocrysts grown during eruption). P zoning is widespread in magmatic olivine, revealing details of crystal growth and intra-crystal stratigraphy in what otherwise appear to be relatively featureless crystals. Since it is preserved in early-formed olivines with prolonged residence times in magmas at high temperatures, P zoning has promise as an archive of information about an otherwise largely inaccessible stage of a magma’s history. Study of such features should be a valuable supplement to routine petrographic investigations of basic and ultrabasic rocks, especially because these features can be observed with standard electron microprobe techniques.  相似文献   

3.
Closed hopper and complex swallowtail morphologies of olivine microcrysts have been described in the past in both mid-oceanic ridge basalts and subaerial tholeitic volcanoes and indicate fluctuations in magma undercooling. We describe similar morphologies in a Mid-Atlantic ridge pillow basalt (sample RD87DR10), and in addition we estimate the duration of temperature fluctuations required to produce these textures as follows: (1) Pairs of melt inclusions are arranged symmetrically around the centre of hopper crystals and each pair represents a heating–cooling cycle. Using the literature olivine growth rates relevant to the observed morphologies, and measuring the distance between two successive inclusions, we estimate the minimum time elapsed during one convection cycle. (2) The major element composition of melt inclusions (analysed by electron microprobe) was found to be in the range of the boundary layer measured in the glass surrounding the olivines, irrespective of their size. Several major elements demonstrate that this boundary layer results from rapid quenching on the seafloor, and not from crystal growth at depth, implying the inclusions had the same composition as the surrounding magma when they were sealed. Using diffusivity of slow diffusing elements such as Al2O3, we estimate the minimum time required for inclusion formation. These two independent approaches give concordant results: each cooling–heating cycle lasted between a few minutes and 1 h minimum. Thus, these crystals probably recorded thermal convection in small magmatic bodies (a dyke or shallow magma chamber) during the last hour or hours before eruption.  相似文献   

4.
Textural maturity describes the extent to which a rock has evolvedfrom the initial reaction-controlled texture towards texturalequilibrium controlled by the minimization of interfacial energy.Solidification in a magma chamber results in the formation ofan impingement texture by the random juxtaposition of planar-sidedgrains. Orthocumulates, in which the initial melt-filled poresare pseudomorphed by later-crystallizing phases, have an ophiticor intersertal texture immediately after complete solidification,which then evolves towards solid-state equilibrium by roundingof initially planar grain boundaries and an increase in themedian dihedral angle subtended at the junctions of two primocrysticgrains with the interstitial phase. The bulk of the increasein angle occurs just below the solidus temperature in kilometre-scalemafic plutons. Quantification of textural maturity via measurementof dihedral angle populations in troctolitic and gabbroic cumulatesfrom the Rum Eastern Layered Intrusion and the Skaergaard Intrusiondemonstrates that the rocks preserve a record of thermal eventsrelated to magma chamber replenishment and the onset of chamber-wideconvection. Textural maturity is also a function of the liquidusphase assemblage: for systems in which only olivine and plagioclaseare liquidus (i.e. cumulus) phases in the main magma body abovethe crystal mush, the texture is significantly less mature thanthat in systems in which clinopyroxene is an additional liquidusphase. The difference in textural maturity reflects differencesin the cooling and solidification rate, and demonstrates directlythat the liquidus phase assemblage plays a role in determiningthe thermal history of plutons. KEY WORDS: cumulates; dihedral angles; Rum; Skaergaard; textures  相似文献   

5.
成中梅  路凤香 《现代地质》1997,11(2):149-156
摘  要  阐述了火山岩晶体粒度分布的基本原理和研究方法‚分析了老山沟火山岩斜长石、 辉石、橄榄石、铁钛氧化物的晶体粒度分布。前3种矿物在中间粒度处发生了有意义的弯折‚ 原因是岩浆上升时过冷度增大。估算了岩浆房中斜长石、橄榄石的成核速率、结晶时间及上 升过程中处于结晶带的时间。研究表明‚在岩浆的演化过程中‚晶体的分离和累积作用及岩 浆的混合和对围岩的同化作用可以忽略。  相似文献   

6.
HOLNESS  M. B. 《Journal of Petrology》2005,46(8):1585-1601
The Eastern Layered Series of the Rum Layered Suite is formedof 16 macro-units each comprising a lower peridotite and anoverlying feldspar-rich layer (the local term is allivalite).The origin of the peridotite layers is unresolved, with twocontrasting models. The earlier of the two is based on repeatedreplenishment of an open-system magma chamber with depositionof fractionated material on the chamber floor. The second isbased on the early formation of a troctolitic complex, whichis then repeatedly intruded by sills of replenishing picriticmagma to form the peridotite horizons. The lack of resolutionof this fundamental problem is a consequence of the relianceof previously published studies on field observations. I presentevidence to show that the clinopyroxene in the allivalites preservesinformation about the distribution of the last melt to solidify,permitting determination of not only the extent of super-solidustextural equilibration but also the sub-solidus history of theallivalite horizons. Comparison of profiles of clinopyroxene–plagioclase–plagioclasemedian dihedral angle across allivalite units demonstrates thatit is possible to distinguish between those that were intrudedby later picrite sills and those adjacent to peridotite horizonsformed by replenishment and subsequent deposition of fractionatedcrystals above the pre-existing pile. In the region studied,only the main peridotite body of Unit 9 was intruded into apre-existing allivalitic mush. KEY WORDS: Rum Layered Intrusion; chamber replenishment; dihedral angles; cumulates  相似文献   

7.
The Eastern Layered Intrusion of the Rum Layered Suite comprisespaired peridotite and allivalite (troctolite and gabbro) layersforming 16 macro-rhythmic units. Whereas the majority of thesemacro-units are believed to have formed by a process of crystal–liquiddifferentiation involving successive accumulation of crystalsfrom multiple picritic replenishments of the chamber, the Unit9 peridotite is interpreted as a layer-parallel picrite intrusion.Closely correlated with this discontinuous peridotite body isa distinctive feature generally known as the Wavy Horizon, whichdivides the overlying allivalite into a lower troctolite andan upper gabbro along a well-defined undulating contact. Wepropose that the Wavy Horizon is a metasomatic feature formedconsequent to the removal of clinopyroxene from an originalgabbroic mush. Foundering of the mush into the picritic sillresulted in the replacement of the original interstitial liquidby one saturated only in olivine (± plagioclase). Progressivethrough-flow of this liquid resulted in the stripping out ofclinopyroxene from the lower parts of the allivalite. We interpretthe Wavy Horizon as a reaction front, representing the pointat which the invading liquid became saturated in clinopyroxene.The distinctive pyroxene-enriched zone immediately above theWavy Horizon could have formed when mixing of the interstitialliquids on either side of the reaction front formed a supercooledliquid oversaturated in pyroxene, as a result of the curvatureof the olivine–plagioclase–clinopyroxene cotectic.The presence of many such approximately layer-parallel features,defined by differences in pyroxene content, in the Eastern LayeredIntrusion of Rum suggests that such an infiltration–reactionprocess was not unique to Unit 9. KEY WORDS: cumulate; infiltration metasomatism; Rum; Eastern Layered Intrusion  相似文献   

8.
A technique is described for determining the cooling historyof olivine phenocrysts. The technique is based on the analysisof the diffusive re-equilibration of melt inclusions trappedby olivine phenocrysts during crystallization. The mechanismof re-equilibration involves diffusion of Fe from and Mg intothe initial volume of the inclusion. The technique applies toa single crystal, and thus the cooling history of differentphenocrysts in a single erupted magma can be established. Weshow that melt inclusions in high-Fo olivine phenocrysts frommantle-derived magmas are typically partially re-equilibratedwith their hosts at temperatures below trapping. Our analysisdemonstrates that at a reasonable combination of factors suchas (1) cooling interval before eruption (<350°C), (2)eruption temperatures (>1000°C), and (3) inclusion size(<70 µm in radius), partial re-equilibration of upto 85% occurs within 3–5 months, corresponding to coolingrates faster than 1–2°/day. Short residence timesof high-Fo phenocrysts suggest that if eruption does not happenwithin a few months after a primitive magma begins cooling andcrystallization, olivines that crystallize from it are unlikelyto be erupted as phenocrysts. This can be explained by efficientseparation of olivine crystals from the melt, and their rapidincorporation into the cumulate layer of the chamber. Theseresults also suggest that in most cases erupted high-Fo olivinephenocrysts retain their original composition, and thus compositionsof melt inclusions in erupted high-Fo olivine phenocrysts donot suffer changes that cannot be reversed. Short residencetimes also imply that large unzoned cores of high-Fo phenocrystscannot reflect diffusive re-equilibration of originally zonedphenocrysts. The unzoned cores are a result of fast efficientaccumulation of olivines from the crystallizing magma, i.e.olivines are separated from the magma faster than melt changesits composition. Thus, the main source of high-Fo crystals inthe erupted magmas is the cumulate layers of the magmatic system.In other words, olivine-phyric rocks represent mixtures of anevolved transporting magma (which forms the groundmass of therock) with crystals that were formed during crystallizationof more primitive melt(s). Unlike high-Fo olivine phenocrysts,the evolved magma may reside in the magmatic system for a longtime. This reconciles long magma residence times estimated fromthe compositions of rocks with short residence times of high-Foolivine phenocrysts. KEY WORDS: melt inclusions; olivine; picrites; residence time; diffusion  相似文献   

9.
Formation of Spinifex Texture in Komatiites: an Experimental Study   总被引:5,自引:1,他引:4  
The formation of platy olivine spinifex, the texture that characterizeskomatiite lavas, has long been enigmatic. A major problem isthat the dendritic morphology of the olivine resembles thatof crystals grown in laboratory experiments at high coolingrates (>50°C/h), but at the position where these texturesform, up to several meters below the komatiite flow top, thecooling rate cannot have been greater than 1–5°C/h.We performed experiments that demonstrate that the platy habitof spinifex olivine or pyroxene is a consequence of slow coolingof ultramafic magma in a thermal gradient (7–35°C/cm).The charges were cooled at rates between 2 and 1428°C/hand, even at the low cooling rates, the thermal gradient ledto constrained growth and the development of preferentiallyoriented dendritic crystals with morphologies like those innatural platy spinifex-textured lavas. Under these conditions,olivine starts to crystallize at temperatures well below theequilibrium liquidus temperature (37°C < –T<56°C) depending on the composition of the starting material.When the cooling rate is high, the thermal gradient has a negligibleeffect on the texture and the crystals have a random orientation,like that in the upper parts of komatiite flows. KEY WORDS: komatiite; spinifex; cooling rate; experimental petrology; thermal gradient  相似文献   

10.
Dynamic crystallization experiments in the CaO–MgO–Al2O3–SiO2 (CMAS) system have been used to investigate the change in crystal shape when pre-existing polyhedral olivine crystals are cooled rapidly (1,639–2,182°C/h). Polyhedral olivines are crystallized initially in a first step using a slow cooling rate (2°C/h), then skeletal and dendritic overgrowths develop on the polyhedral crystals during a subsequent fast cooling event. During this second episode small dendritic olivines also nucleate within the liquid phase. Observation of the experimental sample by optical microscopy shows that the polyhedral olivine shape progressively changes to a skeletal and then to a dendritic morphology in the following sequence: polyhedral ⇒ hopper polyhedral ⇒ dendritic polyhedral. This evolutional sequence is discussed in terms of changes in the crystal growth conditions during cooling and a general relation between these olivine dynamic crystallization experiments and the integrated model of crystal growth by Sunagawa (Bull Minér 104:81–87, 1981, Morphology of crystals, Terra Scientific Publishing Company, 1987) is proposed.  相似文献   

11.
The Rum Layered Suite (NW Scotland) is generally regarded as one of a handful of classic examples of open‐system layered mafic‐ultramafic intrusions, or ‘fossilized’ basaltic magma chambers, world‐wide. The eastern portion of the Rum intrusion is constructed of sixteen repeated, coupled, peridotite–troctolite units. Each major cyclic unit has been linked to a major magma replenishment event, with repeated settling out of ‘crops’ of olivine and plagioclase crystals to form the cumulate rocks. However, there are variations in the lithological succession that complicate this oversimplified model, including the presence of chromitite (>60 vol. percent Cr‐spinel) seams. The ~2 mm thick chromitite seams host significant platinum‐group element (PGE) enrichment (e.g. ~2 ppm Pt) and likely formed in situ, i.e. at the crystal mush–magma interface. Given that the bulk of the world's exploited PGE come from a layered intrusion that bears remarkable structural and lithological similarities to Rum, the Bushveld Complex (South Africa), comparisons between these intrusions raise intriguing implications for precious metal mineralization in layered intrusions.  相似文献   

12.
The coarse-grained Upper Border Series rocks of the Skaergaard intrusion contain abundant skeletal crystals of magnetite and ilmenite, skeletal and hopper crystals of apatite, and less abundant sector-zoned augite crystals and hopper zircon crystals. In addition, the melanogranophyres which occur as pods and lenses in the lower part of the Upper Border Series and the upper part of the Layered Series are characterized by very coarse-grained dendritic ferrohedenbergite crystals. Skeletal, hopper, and sectorzoned crystals are not present in the Layered Series gabbros. The development of these unusual crystal morphologies in the Upper Border Series requires that the roof-zone magma was intermittently supersaturated and indicates that the Skaergaard magma chamber was compositionally zoned and that heat loss through the roof maintained a temperature gradient in the magma that was greater than the adiabatic gradient. It is suggested that supersaturation developed in the roof-zone of the intrusion as a result of convective overturn and magma mixing during the early stages of crystallization, and as a result of sudden volatile loss during the later stages of crystallization when the Upper Border Series rocks became rigid enough to fracture.  相似文献   

13.
Kimberlitic olivines typically show a continuous range in size and texture rather than two discrete populations. The cores of small euhedral olivines commonly provide the template for the final crystal shape, which in turn closely matches morphologies produced by crystallization from a moderately under-cooled magma. Cores and edges of the majority of all olivines define a continuous compositional field, which can be interpreted in terms of Raleigh crystallization. Marked chemical gradients at the olivine margins are linked to rapid physico-chemical changes to the magma associated with loss of volatiles during the late stages of emplacement. Thus, rapid crystallization of groundmass olivines would deplete the magma in Ni, but increase Ca activity. The latter would be enhanced by decreasing pressure coupled with loss of CO2 from the carbonate-bearing kimberlite magma.For mantle olivines and the most refractory olivines in kimberlites (~ Fo94) to be in equilibrium with bulk rock compositions matching those of Mg-rich macrocrystic and aphanitic kimberlites (Mg# ~ 88) requires a mineral-melt Mg–Fe distribution coefficient of 0.47. This is well within the experimentally determined range for this distribution coefficient in carbonate-bearing systems. In southern African post-Gondwana alkaline pipe clusters, the average bulk rock Mg# and composition of the associated most Mg-rich olivine both decrease sympathetically from the interior to the continental margin, which is also consistent with a cognate origin for the olivines.A kimberlite magma following a plausible P-T trajectory relative to the CO2/H2O peridotite solidus would initially experience superheating, resulting in partial resorption of early-formed olivines that crystallized on the cool conduit walls. It would become supersaturated as it crossed the carbonated peridotite “ledge”, resulting in tabular and hopper growth forms typical of euhedral olivine cores. With further ascent, the magma would once again become superheated, resulting in partial resorption of these cores. Thus, apparently complex textures and internal zonation patterns of kimberlitic olivines are predicted by a plausible magma P-T trajectory.  相似文献   

14.
The 168 m-thick Shiant Isles Main Sill is a composite body, dominated by an early, 24 m-thick, picrite sill formed by the intrusion of a highly olivine-phyric magma, and a later 135 m-thick intrusion of olivine-phyric magma that split the earlier picrite into a 22 m-thick lower part and a 2 m-thick upper part, forming the picrodolerite/crinanite unit (PCU). The high crystal load in the early picrite prevented effective settling of the olivine crystals, which retain their initial stratigraphic distribution. In contrast, the position of the most evolved rocks of the PCU at a level ~80% of its total height point to significant accumulation of crystals on the floor, as evident by the high olivine mode at the base of the PCU. Crystal accumulation on the PCU floor occurred in two stages. During the first, most of the crystal load settled to the floor to form a modally and size-sorted accumulation dominated by olivine, leaving only the very smallest olivine grains still in suspension. The second stage is recorded by the coarsening-upwards of individual olivine grains in the picrodolerite, and their amalgamation into clusters which become both larger and better sintered with increasing stratigraphic height. Large clusters of olivine are present at the roof, forming a foreshortened mirror image of the coarsening-upwards component of the floor accumulation. The coarsening-upwards sequence records the growth of olivine crystals while in suspension in a convecting magma, and their aggregation into clusters, followed by settling over a prolonged period (with limited trapping at the roof). As olivine was progressively lost from the convecting magma, crystal accumulation on the (contemporaneous) floor of the PCU was increasingly dominated by plagioclase, most likely forming clusters and aggregates with augite and olivine, both of which form large poikilitic grains in the crinanite. While the PCU is unusual in being underlain by an earlier, still hot, intrusion that would have enhanced any driving force for convection, we conclude from comparison with microstructures in other sills that convection is likely in tabular bodies >100 m thickness.  相似文献   

15.
Flood Basalts and Lunar Petrogenesis   总被引:1,自引:1,他引:0  
O'HARA  M. J. 《Journal of Petrology》2000,41(7):1121-1125
The popular interpretation of lunar maria, as sequences of primarypicritic flood basalts derived by remelting a mantle that hadaccumulated from a global magma ocean, has many unsatisfactoryaspects. The expertise of Keith Cox would have been valuablein their interpretation. KEY WORDS: europium anomaly; Io; magma ocean; mare basalt; picrite; quench crystal; regolith  相似文献   

16.
Plagioclase ultraphyric basalts (PUBs) with up to 54% plagioclasephenocrysts were dredged in the rift valley and adjacent flanksof the ultraslow-spreading Mohns and Knipovich ridges. The PUBsshow large variations in crystal morphologies and zoning. Thelarge variations suggest that single basalt samples containa mixture of plagioclase crystals that aggregated at differentlevels in the magma conduits. Resorbed crystals and repeatedreverse zones suggest that the magma reservoirs were replenishedand heated several times. Thin concentric zones with melt inclusions,and sharp reductions in the anorthite content of 3–7%,are common between the reverse zones. These zones, and skeletalcrystals with distinctly lower anorthite contents than massivecrystals, are interpreted to be the result of rapid crystalliztionduring strong undercooling. The changes between short periodsof cooling and longer periods with reheating are explained bymultiple advances of crystal-rich magma into cool regions followedby longer periods of gradual magma inflow and temperature increase.The porphyritic basalts are characterizd by more depleted andmore fractionated compositions than the aphyric basalts, withlower (La/Sm)N, K2O and Mg-numbers. This relationship, and theobservation that PUBs are sampled only close to segment centresalong these ridges, suggests that the PUBs formed by higherdegrees of melting and evolved in more long-lived magma reservoirs.We propose that the zoning patterns of plagioclase crystalsand crystal morphologies of these PUBs reflect the developmentand flow of magma through a stacked sill complex-like conduitsystem, whereas the aphyric equivalents represent later flowof magma through the conduit. The formation of voluminous higher-degreemelts may trigger the development of the magma conduits andexplain the generally depleted compositions of PUB magmas. KEY WORDS: basalt; mineral chemistry; MORB; magma mixing; magma chamber; major element  相似文献   

17.
Detailed chemical and mineralogical data are given for three sequences of basalts and picrite basalts from bore-holes in Western India. The picrite basalts show bulk compositional variation generated by the fractionation of olivine and chromite. Evolved picrite basalt magma appears to have given rise to basalt by the fractionation of olivine+clinopyroxene, despite the presence of abundant plagioclase phenocrysts. It is suggested that a slow settling rate for plagioclase relative to clinopyroxene and olivine is sufficient to account for this feature. The high degree of equilibrium crystallisation which many of the lavas have apparently undergone is interpreted in terms of the mechanism of compensated crystal settling (Cox and Bell, 1972). Experimentally determined atmospheric pressure phase relations are used to model dyke-like magma chambers in some detail. Finally volumetric and age relationships are used to argue that the picrite basalts, despite their porphyritic nature, crystallised from ultramafic liquids containing in some cases at least 16% MgO.  相似文献   

18.
The size distributions of crystals of olivine, plagioclase and oxides of the 1991/93 eruption at Mt. Etna (Italy) are analyzed. The simultaneous collection of this information for different minerals gives precious insight into the cooling history of lavas. Three distinct episodes are detectable: a storage of the magma in a deep reservoir, characterized by nearly constant and low nucleation and growth rates (near to equilibrium); an ascent phase, with an ever increasing nucleation rate related to volatile exsolution; and finally a quenching phase. In addition to geochemical and geophysical evidence, the similarity of the crystal size distributions of the present eruption with those of previous ones of this century makes it possible to exclude that crystal size distributions of Etnean lavas are due to mixing of different populations. This strongly suggests that the main features of the volcano feeding system have not changed despite observed variations in the magma output rates.  相似文献   

19.
Two picrite flows from the SW rift zone of Mauna Loa containxenoliths of dunite, harzburgite, lherzolite, plagioclase-bearinglherzolite and harzburgite, troctolite, gabbro, olivine gabbro,and gabbronorite. Textures and olivine compositions precludea mantle source for the xenoliths, and rare earth element concentrationsof xenoliths and clinopyroxene indicate that the xenolith sourceis not old oceanic crust, but rather a Hawaiian, tholeiitic-stagemagma. Pyroxene compositions, phase assemblages and texturalrelationships in xenoliths indicate at least two different crystallizationsequences. Calculations using the pMELTS algorithm show thatthe two sequences result from crystallization of primitive MaunaLoa magmas at 6 kbar and 2 kbar. Independent calculations ofolivine Ni–Fo compositional variability in the plagioclase-bearingxenoliths over these crystallization sequences are consistentwith observed olivine compositional variability. Two parentsof similar bulk composition, but which vary in Ni content, arenecessary to explain the olivine compositional variability inthe dunite and plagioclase-free peridotitic xenoliths. Xenolithsprobably crystallized in a small magma storage area beneaththe rift zone, rather than the large sub-caldera magma reservoir.Primitive, picritic magmas are introduced to isolated rift zonestorage areas during periods of high magma flux. Subsequenteruptions reoccupy these areas, and entrain and transport xenolithsto the surface. KEY WORDS: xenolith; Hawaii; volcano plumbing; mineral composition; picrite  相似文献   

20.
The clinopyroxene–plagioclase–plagioclase dihedralangle, cpp, in gabbroic cumulates records the time-integratedthermal history in the sub-solidus and provides a measure oftextural maturity. Variations in cpp through the Layered Seriesof the Skaergaard intrusion, East Greenland, demonstrate thatthe onset of crystallization of clinopyroxene (within LZa),Fe–Ti oxides (at the base of LZc) and apatite (at thebase of UZb) as liquidus phases in the bulk magma is recordedby a stepwise increase in textural maturity, related to an increasein the contribution of latent heat to the total heat loss tothe surroundings and a reduction in the specific cooling rateat the crystallization front of the intrusion. The onset ofboth liquidus Fe–Ti oxide and apatite crystallizationis marked by a transient increase in textural maturity, probablylinked to overstepping before nucleation. Textural maturationat pyroxene–plagioclase–plagioclase triple junctionseffectively ceases in the uppermost parts of the Layered Seriesas a result of the entire pluton cooling below the closure temperaturefor dihedral angle change, which is 1075°C. Solidificationof the Layered Series of the Skaergaard intrusion occurred viathe upwards propagation of a mush zone only a few metres thick. KEY WORDS: magma; partial melting; asthenosphere; olivine; mantle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号