首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One simulation and two field examples from New Jersey illustrate resolution improvement in geoelectrical soundings applied to groundwater exploration. Layered-earth parameter resolution is derived from data obtained with the commonly used methods of resistivity, induced polarization (IP) and transient electromagnetic (TEM) soundings. Resolution improvement is achieved by simultaneous inversion of two or more data sets and by constraining parameters of the inverse problem. A quantitative analysis showing the contribution of IP data to the resolution of geo-electric sections is presented. Simultaneous inversion of simple IP data with conventional resistivity and resistivity-TEM data sets resulted in improved parameter resolution. IP data improved resolution in three ways: (1) by decoupling correlated layered-earth parameters, (2) by adding information to a geological interpretation about a second physical property, namely chargeability, and (3) by increasing the electrical information available.  相似文献   

2.
Inversion of 2D spectral induced polarization imaging data   总被引:1,自引:0,他引:1  
Laboratory measurements of various materials suggest that more information can be obtained by measuring the in‐phase and out‐of‐phase potentials at a number of frequencies. One common model used to describe the variation of the electrical properties with frequency is the Cole‐Cole model. Apart from the DC resistivity (ρ) and chargeability (m) parameters used in conventional induced‐polarization (IP) surveys, the Cole‐Cole model has two additional parameters, i.e. the time (τ) and relaxation (c) constants. Much research has been conducted on the use of the additional Cole‐Cole parameters to distinguish between different IP sources. Here, we propose a modified inversion method to recover the Cole‐Cole parameters from a 2D spectral IP (SIP) survey. In this method, an approximate inversion method is initially used to construct a non‐homogeneous starting model for the resistivity and chargeability values. The 2D model consists of a number of rectangular cells with constant resistivity (ρ), chargeability (m), time (τ) and relaxation (c) constant values in each cell. A regularized least‐squares optimization method is then used to recover the time and relaxation constant parameters as well as to refine the chargeability values in the 2D model. We present results from tests carried out with the proposed method for a synthetic data set as well as from a laboratory tank experiment.  相似文献   

3.
The time variation of a source of alternating current produces an electromagnetic coupling between the transmitting and receiving systems in induced electrical polarization and resistivity surveys that employ horizontal electrical sounding. The coupling alters, sometimes significantly, the resistivity and chargeability values and, consequently, compromises the interpretation of the data. This work develops the analysis of this coupling on the time domain for both a homogeneous Earth and an Earth constituted of several homogeneous horizontal layers. Based on the results, it evaluates the theoretical variation of the voltage and compares it to observed data of an induced electrical polarization and resistivity survey with horizontal electrical sounding. The comparative study of the voltage decay curves assesses the contribution of the electromagnetic coupling to the values of the chargeability and apparent resistivity as a function of the bipole length and the period of the source current. Besides that, the respective pseudosections have delineated the horizontal and vertical variations of those two electrical properties, providing the interpretation of the geoelectrical section. This research is important for the oil industry because it may furnish information that help to: (i) define the structure of the sedimentary strata; (ii) estimate the clay content of the sandstones; and (iii) detect the possible presence of metallic sulphide halos at fractured zones of the sediments above the oil reservoir. It may be adapted to analysis of EM coupling in both resistive and induced electric well logs.  相似文献   

4.
Geoelectrical and induced polarization data from measurements along three profiles and from one 3D survey are acquired and processed in the central Skellefte District, northern Sweden. The data were collected during two field campaigns in 2009 and 2010 in order to delineate the structures related to volcanogenic massive sulphide deposits and to model lithological contacts down to a maximum depth of 1.5 km. The 2009 data were inverted previously, and their joint interpretation with potential field data indicated several anomalous zones. The 2010 data not only provide additional information from greater depths compared with the 2009 data but also cover a larger surface area. Several high‐chargeability low‐resistivity zones, interpreted as possible massive sulphide mineralization and associated hydrothermal alteration, are revealed. The 3D survey data provide a detailed high‐resolution image of the top ~450 m of the upper crust around the Maurliden East, North, and Central deposits. Several anomalies are interpreted as new potential prospects in the Maurliden area, which are mainly concentrated in the central conductive zone. In addition, the contact relationship between the major geological units, e.g., the contact between the Skellefte Group and the Jörn Intrusive Complex, is better understood with the help of 2010 deep‐resistivity/chargeability data. The bottommost part of the Vargfors basin is imaged using the 2010 geoelectrical and induced polarization data down to ~1‐km depth.  相似文献   

5.
It is proposed that the Straightforward Inversion Scheme (SIS) developed by the authors for 1D inversion of resistivity sounding and magneto-telluric sounding data can also be used in similar fashion for time-domain induced polarization sounding data. The necessary formulations based on dynamic dipole theory are presented. It is shown that by using induced polarization potential, measured at the instant when steady state current is switched off, an equation can be developed for apparent ‘chargeability–resistivity’ which is similar to the one for apparent resistivity. The two data sets of apparent resistivity and apparent chargeability–resistivity can be inverted in a combined manner, using SIS for a common uniform thickness layer earth model to estimate the respective subsurface distributions of resistivity and chargeability–resistivity. The quotient of the two profiles will give the sought after chargeability profile. A brief outline of SIS is provided for completeness. Three theoretical models are included to confirm the efficacy of SIS software by inverting only the synthetic resistivity sounding data. Then one synthetic data set based on a geological model and three field data sets (combination of resistivity and IP soundings) from diverse geological and geographical regions are included as validation of the proposal. It is hoped that the proposed scheme would complement the resistivity interpretation with special reference to shaly sand formations.  相似文献   

6.
In this paper it is shown how one may obtain a generalized Ohm's law which relates the induced polarization electric field to the steady-state current density through the introduction of a fictitious resistivity defined as the product of the chargeability and the resistivity of a given medium. The potential generated by the induced polarization is calculated at any point in a layered earth by the same procedure as used for calculating the potential due to a point source of direct current. On the basis of the definition of the apparent chargeability ma, the expressions of ma for different stratigraphie situations are obtained, provided the IP measurements are carried out on surface with an appropriate AMNB array. These expressions may be used to plot master curves for IP vertical soundings. Finally some field experiments over sedimentary formations and the quantitative interpretation procedure are reported.  相似文献   

7.
Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three‐dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high‐resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time‐lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.  相似文献   

8.
The hydraulic properties of lake beds control the interactions between lakes and ground water systems, but these properties are normally difficult to measure directly. The authors'method combines seismic reflection and electrical measurements to map the relative hydraulic conductivity of lake bed sediments. A shipboard seismic profiling system provides sediment thickness, while a towed electrical array yields longitudinal conductance and electrical chargeability. The sediment's leakance (hydraulic conductivity/thickness) can be calculated from the longitudinal conductance data. Leakance may then be converted to relative hydraulic conductivity through the seismically derived sediment thicknesses. Simultaneously acquired electrical chargeability provides an independent measure of clay content. The seismic and electrical systems are computer automated and yield production rates of approximately five line-kilometers/hour or 300 electrical soundings/hour. The systems provide continuous hydraulic information along the ship track rather than the point information derived from coring.
The procedure and systems have been used to map the bed of Lake Michigan offshore from an area of heavy pumpage. This location has been chosen to test the method because lake water has intruded the aquifer in plumes largely controlled by lake bed hydraulics. Mapping these plumes onshore permits the inference of the spatial distribution of offshore hydraulic conductivities. Offshore seepage measurements and numerical, chemical transport modeling of this site have confirmed the reliability of the geophysically derived hydraulic conductivities and have also demonstrated the improvement in numerical results achieved through the availability of spatially determined hydraulic conductivities.  相似文献   

9.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

10.
Lahcen Zouhri 《水文研究》2010,24(10):1308-1317
An electrical prospecting survey is conducted in the Rharb basin, a semi‐arid region in the southern part of the Rifean Cordillera (Morocco) to delineate characteristics of the aquifer and the groundwater affected by the marine intrusion related to Atlantic Ocean. Analysis and interpretations of electrical soundings, bi‐logarithmic diagrams and the geoelectrical sections highlight a monolayer aquifer in the southern part, a multilayer system in the northern part of the Rharb basin and lenticular semi‐permeable formations. Several electrical layers have been deduced from the analysis of bi‐logarithmic diagrams: resistant superficial level (R0), conducting superficial level (C0), resistant level (R), intermediary resistant level (R′), conducting level (Cp) and intermediary layer of resistivity (AT). Spatial distribution of the resistivity deduced from the interpretation of apparent resistivity maps (AB = 400 and 1000 m) and the decreasing of resistivity values (35–10 Ωm), in particular in the coastal zone show that this heterogeneity is related to several anomalies identified in the coastal area, which result from hydraulic and geological processes: (i) heterogeneous hydraulic conductivity in particular in the southern part of the Rharb; (ii) lateral facies and synsedimentary faulting and (iii) the relationship between the electrical conductivity and chloride concentration of groundwater shows that salinity is the most important factor controlling resistivity. The distribution of fresh/salt‐water zones and their variations in space along geoelectrical sections are established through converting subsurface depth‐resistivity models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
This paper reviews the recent geophysical literature addressing the estimation of saturated hydraulic conductivity (K) from static low frequency electrical measurements (electrical resistivity, induced polarization (IP) and spectral induced polarization (SIP)). In the first part of this paper, research describing how petrophysical relations between electrical properties and effective (i.e. controlling fluid transport) properties of (a) the interconnected pore volumes and interconnected pore surfaces, have been exploited to estimate K at both the core and field scale is reviewed. We start with electrical resistivity measurements, which are shown to be inherently limited in K estimation as, although resistivity is sensitive to both pore volume and pore surface area properties, the two contributions cannot be separated. Efforts to utilize the unique sensitivity of IP and SIP measurements to physical parameters that describe the interconnected pore surface area are subsequently introduced and the incorporation of such data into electrical based Kozeny–Carman type models of K estimation is reviewed. In the second part of this review, efforts to invert geophysical datasets for spatial patterns of K variability (e.g. aquifer geometries) at the field-scale are considered. Inversions, based on the conversion of an image of a geophysical property to a hydrological property assuming a valid petrophysical relationship, as well as joint/constrained inversion methods, whereby multiple geophysical and hydrological data are inverted simultaneously, are briefly covered. This review demonstrates that there currently exists an opportunity to link, (1) the petrophysics relating low frequency electrical measurements to effective hydraulic properties, with (2) the joint inversion strategies developed in recent years, in order to obtain more meaningful estimates of spatial patterns of K variability than previously reported.  相似文献   

12.
The productivity and the water quality of coastal aquifers can be highly heterogeneous in a complex environment. The characterization of these aquifers can be improved by hydrogeological and complementary geophysical surveys. Such an integrated approach is developed in a non-consolidated coastal aquifer in Myanmar (previously named Burma).A preliminary hydrogeological survey is conducted to know better the targeted aquifers. Then, 25 sites are selected to characterize aquifers through borehole drillings and pumping tests implementation. In the same sites, magnetic resonance soundings (MRS) and vertical electrical soundings (VES) are carried out. Geophysical results are compared to hydrogeological data, and geophysical parameters are used to characterize aquifers using conversion equations. Finally, combining the analysis of technical and economical impacts of geophysics, a methodology is proposed to characterize non-consolidated coastal aquifers.Depth and thickness of saturated zone is determined by means of MRS in 68% of the sites (evaluated with 34 soundings). The average accuracy of confined storativity estimated with MRS is ± 6% (evaluated over 7 pumping tests) whereas the average accuracy of transmissivity estimation with MRS is ± 45% (evaluated using 15 pumping tests). To reduce uncertainty in VES interpretation, the aquifer geometry estimated with MRS is used as a fixed parameter in VES inversion. The accuracy of groundwater electrical conductivity evaluation from 15 VES is enough to estimate the risk of water salinity. In addition, the maximum depth of penetration of the MRS depends on the rocks' electrical resistivity and is between 20 and 80 m at the study area.  相似文献   

13.
Time-domain-induced polarization (IP) laboratory measurements were performed on about 200 fine sediment samples with varying water content. The results permitted an analysis of IP properties of clays, loams, silts, and sands. Particular emphasis has been given to the analysis of the chargeability m as a function of lithotype and the water content. By analyzing decay curves, a new parameter was identified. It is a statistically specific characteristic of the lithotype and is independent of the water content. Therefore, it provides a diagnostic parameter for lithotype identification. In association with the values of chargeability and electrical resistivity, this parameter permits a reliable evaluation of water content and yields useful information about the porosity and permeability of the lithotype.  相似文献   

14.
In the central part of the Bolivian Altiplano, the shallow groundwater presents electrical conductivities ranging from 0·1 to 20 mS/cm. In order to study the origin of this salinity pattern, a good knowledge is required of the geometry of the aquifer at depth. In this study, geophysics has been used to complement the sparse data available from drill holes. One hundred time‐domain electromagnetic (TDEM) soundings were carried out over an area of 1750 km2. About 20 geological logs were available close to some of the TDEM soundings. Three intermediate results were obtained from the combined data: (i) the relationship between the electrical conductivity of the groundwater and the formation resistivity, (ii) geoelectrical cross‐sections and (iii) geoelectrical maps at various depths. The limited data set shows a relationship between resistivity and the nature of the rock. From the cross‐sections, a conductive substratum with a resistivity of less than 1 Ω·m was identified at most of the sites at depths ranging from 50 to 350 m. This substratum could be a clay‐rich formation containing brines. Using derived relationships, maps of the nature of the formation (sandy, intermediate and clayey sediments) were established at depths of 10 and 50 m. Discrimination between sand and clays was impossible where groundwater conductivity is high (>3 mS/cm). In the central part of the area, where the groundwater conductivity is low, sandy sediments are likely to be present from the surface to a depth of more than 200 m. Clayey sediments are more likely to be present in the south‐east and probably constitute a hydraulic barrier to groundwater flow. In conclusion, the study demonstrates the efficiency of the TDEM sounding method to map conductive zones. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
A total of four vertical electrical soundings were conducted in a layered andesitic rock aquifer known in places to yield ground water with total dissolved solids (TDS) in excess of 2,000 milligrams per liter (mg/L). The objective of the soundings was to locate zones of moderate to high permeability but with acceptable chemical quality.
The resistivity of a geologic unit is a function that includes the quantity of total dissolved solids in the interstitial water and the distribution of the water within the unit. Thus, the resistivity of most granular soils and rocks is controlled more by porosity, water content and water quality than by the conductivity of the matrix materials.
The electrical data delimited a drill site where it was believed that ground water of acceptable chemical quality could be expected. Completion and test pumping of two exploration wells confirmed the electrical sounding results.
The first test well drilled prior to the survey yielded only small amounts of ground water with total dissolved solids in excess of 2,000 mg/L. The second exploration well drilled at the site as a result of the electrical study yielded in excess of 100 gallons per minute of ground water with total dissolved solids of 830 mg/L.  相似文献   

16.
It is important to have detailed knowledge of the electrical properties of the earth's crust in order to recognize geological structures and to understand tectonic processes. In the area surrounding the German Continental Deep Drilling Project (KTB), we have used DC dipole–dipole soundings to investigate the electrical conductivity distribution down to a depth of several kilometres. We have adapted the electrical resistivity tomography (ERT) technique, a well-established near-surface method, to large-scale experiments. Independent transmitting and receiving units were used to realize the concept of simultaneous multichannel registration of the scalar electrical potential at 44 dipoles. The measured data yielded apparent resistivities which were inverted to a 2D resistivity model ranging from the surface down to a depth of 4 km. Two highly conductive structures with steep inclination were detected. They are expected to be major fault zones embedded in a metamorphic body. The rather low resistivity ( ρ  < 10 Ωm) can be explained by the existence of graphitic minerals and/or electrolytic fluids.  相似文献   

17.
The utility of electrical resistivity and magnetic measurements to locate suitable wellsites in hard-rock terrains intruded by dykes is illustrated. The example is taken from a highly hilly terrain of Karnataka State situated in the Western Ghat hills of Peninsular India. Electrical resistivity profiles and soundings, S.P., and total magnetic field measurements are discussed. Of the fifteen recommended sites, nine have been drilled, eight of which are reported to yield between 6–12 m3/hr (1500 to 3000 gals./hr), which is considered satisfactory in this region.  相似文献   

18.
Remote sensing and geoelectrical methods were used to find water-bearing fractures in the Scituate granite under the Central Landfill of Rhode Island. These studies were necessary to evaluate the integrity of the sanitary landfill and for planning safe landfill extensions. The most useful results were obtained with fracture trace analysis using Landsat and SLAR imagery in combination with ground-based resistivity measurements using Schlumberger vertical electrical soundings based on the assumption of horizontally layered strata. Test borings and packer tests confirmed, in the presence of a lineament and low bedrock resistivity, the probable existence of high bedrock fracture density and high average hydraulic conductivity. However, not every lineament was found to be associated with high fracture density and high hydraulic conductivity. Lineaments alone are not a reliable basis for characterising a landfill site as being affected by fractured bedrock. Horizontal fractures were found in borings located away from lineaments. High values of hydraulic conductivity were correlated with low bedrock resistivities. Bedrock resistivities between 60 and 700 Ω m were associated with average hydraulic conductivities between 4 and 60 cm/day. In some cases very low resistivities were confined to the upper part of the bedrock where the hydraulic conductivity was very large. These types of fractures apparently become narrower in aperture with depth. Bedrock zones having resistivities greater than 1000 Ω m showed, without exception, no flow to the test wells. Plots of bedrock resistivity versus the average hydraulic conductivity indicate that the resistivity decreases with increasing hydraulic conductivity. This relationship is inverse to that found in most unconsolidated sediments and is useful for estimating the hydraulic conductivity in groundwater surveys in fractured bedrock. In appropriate settings such as the Central Landfill site in New England, this electric-hydraulic correlation relationship, supplemented by lineament trace analysis, can be used effectively to estimate the hydraulic conductivity in bedrock from only a limited number of resistivity depth soundings and test wells.  相似文献   

19.
A tensor magnetotelluric test survey was carried out in the region of Santa Catarina, located in the Chalco sub-basin of the Mexico Basin. The objective was to define the stratification at depth with an emphasis on the geometry of the main aquifer of that region which is partially known from DC resistivity soundings and drilling. High-quality magnetotelluric soundings could be recorded in the immediate vicinity of large urban zones because the sub-surface is very conductive. Interpretation shows that the solid bedrock is located at a depth of at least 800 m to the south and 1300 m to the north; it could, however, be much deeper. Using complementary DC resistivity sounding and well-logging data, three main layers have been defined overlying the bedrock. These layers are, from surface to bottom, an unsaturated zone of sand, volcanic ash and clay about 10 m thick, followed by a very conductive (1.5 ohm·m) 200 m thick layer of sand and ash with intercalated clay, saturated with highly mineralized water, and finally a zone with resistivity increasing gradually to 60 ohm·m. The investigated deep aquifer constitutes most of this third layer. It consists of a sequence of sand, gravel, pyroclastites and mainly fractured basalts. MT resistivity soundings and magnetic transfer functions also indicate that a shallow resistive structure is dipping, from the northwest, into the lacustrine deposits of the basin. This geologic feature is likely to be highly permeable fractured basaltic flows, which provide a channel by which water contaminated by the Santa Catarina landfill may leak into the basin.  相似文献   

20.
Induced polarization (IP) is a geophysical method that is potentially sensitive to the presence of cracks in porous rocks and therefore to damage. We performed time‐domain and frequency domain IP measurements at the Tournemire Underground Research Laboratory (URL, Aveyron, France) in areas where different types of cracks are observed. These cracks correspond to both tectonic fractures and new cracks associated with stress release and desiccation resulting from the excavation of a gallery. These measurements were performed both in eastern and northern galleries of the test site. The eastern gallery was excavated in 1996 while the northern gallery was excavated recently in 2008. This gives us the opportunity to study the electrical characteristics of the excavation damaged zone surrounding the galleries with respect to the age of the excavation. Longitudinal profiles were performed along the floor of the galleries with 48 Cu/CuSO4 electrodes separated by a distance of 20 cm. Chargeability and resistivity were inverted using a Gauss‐Newton iterative approach assuming an isotropic heterogeneous clay‐rock material. The resulting IP tomograms show a correlation between high values of chargeability and the presence of calcite‐filled tectonic fractures. X‐ray analysis indicates that the presence of pyrite in these fractures is a potential source of the observed IP signals. The cracks associated with the mechanical damage of the formation exhibit low values of chargeability, on the same order of magnitude than the chargeability of the clay‐rock matrix and are therefore hardly observable. A smaller IP response associated with the presence of these cracks is observed in the older gallery and this observation is qualitatively related to the desaturation process associated with these cracks. In a specific area of one of the galleries, the presence of calcareous nodules is observed to be an important source of anomalous chargeability. This signature seems to be associated with the presence of pyrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号