首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on detailed structural data and available tectonic chronological data from the Dangyang Basin, the authors propose that the north-central Yangtze craton experienced three stages of tectonic evolution since Late Triassic time. In the Late Triassic to Early Jurassic (T3–J1), due to the Indosinian orogeny, nearly N–S compression and shortening occurred, which initiated the Dangyang Basin as a foreland basin of the Qinling–Dabie orogen. During the Late Jurassic–Early Cretaceous (J3–K1) period, the Yanshanian intracontinental orogeny caused contemporaneous NE–SW and NW–SE shortening, which resulted in intense folding of the foreland basin; contraction formed a brush structure diverging in a SE direction and strongly converging in a NW direction around the Huangling anticline. In the Late Cretaceous to Palaeogene, the Yuan'an and Hanshui grabens were separated from other parts of the Dangyang Basin due to post-orogenic ENE–WSW extension. Finally, at the end of the Palaeogene, ENE–WSW shortening led to inversion and deformation of the grabens.  相似文献   

2.
试论永康群时代及区域地层对比   总被引:7,自引:4,他引:7       下载免费PDF全文
罗以达  俞云文 《中国地质》2004,31(4):395-399
浙江白垩系上部的永康群,传统习惯根据馆头组所产古生物化石将其时代定为早白垩世中晚期。但馆头组火山岩同位素年龄在113-103Ma间,几个盆地全部古地磁样品均显示正向极性。特别是最近在永康盆地朝川组中发现蜂窝蛋科(Faveoloolithidae)恐龙蛋化石,而这一蜂窝蛋科化石在金衢盆地衢江群兰溪组、天台盆地天台群两头塘组中均有产出,而且永康群与衢江群和天台群的古地磁极性和同位素年龄基本一致。表明永康群与天台群、衢江群一样,时代为早白垩世晚期至晚白垩世。它们之间不存在上下关系,而是同期异相堆积。  相似文献   

3.
ABSTRACT

The Late Mesozoic Jiaolai basin preserves sediment source information that can help elucidate the tectonic history of East Shandong, China. The terrestrial Wangshi and Laiyang Groups are major components of the basin succession, but are not well studied in terms of their provenance and role in basin evolution. The Early Cretaceous Laiyang Group consists primarily of fluvial and lacustrine facies siltstones and sandstones, whereas the Late Cretaceous Wangshi Group consists of reddish fluvial siltstones and sandstones with interbedded conglomerates. This study reports detrital zircon age distributions from eight sandstones collected from the two groups. Age distributions exhibited four major populations of Palaeoproterozoic (2.5–2.4 Ga), Palaeoproterozoic (1.9–1.8 Ga), Neoproterozoic (850–700 Ma), and Jurassic to Early Cretaceous (171–107 Ma) ages. We interpret a maximum depositional age of 107 Ma for the Wangshi Group and a depositional age of 121–120 Ma for the upper Laiyang Group. Age distributions indicate that the Sulu orogenic belt of the East Shandong complex served as the primary source area. Detrital zircon age data also indicate major changes in the types of source material contributed to the Laiyang and Wangshi groups. Based on these shifts, we propose a four-stage model for Early Cretaceous evolution of the Jiaolai basin. In this model, subduction of the Pacific plate and associated transform motion on the Tan-Lu fault influenced the transition from a transpressional to an extensional tectonic setting.  相似文献   

4.
论浙江中生代晚期地层划分   总被引:17,自引:4,他引:17  
马武平 《地层学杂志》1994,18(2):91-101
中生代晚期,浙江先后形成了寿昌型、永康型和金衢型三种不同构造类型的盆地,三者呈叠加关系,其堆积物属于3个地质时期。在理顺其层序的基础上,通过对3个不同时期古生物群和同位素年龄资料的综合分析,认为衢江群(天台群)属于早白垩世晚期一晚白垩世;永康群属于早白垩世中晚期;建德群(磨石山群)属于晚侏罗世-早白垩世早期。如果采用130Ma作为侏罗-白垩系划界时标,其界线应划在横山组与寿昌组及相应的岩组之间。  相似文献   

5.
试论浙东不同盆地塘上组的层位及时代   总被引:2,自引:1,他引:1  
详细的地质调查和剖面研究,证实了浙东不同盆地原划分的塘上组并非都为同一层位。天台、丽水及缙云壶镇、舒洪盆地原划分的塘上组均整覆于馆头组沉积岩之上,其上为两头塘组整覆,层位大致与馆头组上部相当,为下白垩统。小雄盆地上部原称塘上组的一套火山岩,其岩石组合、地层层序、生物化石组合和同位素年龄等与浙东其他盆地原划分的塘上组均不相同,成岩时代在81.5—92.9Ma,产晚白垩世翼龙和鸟类化石,覆于永康群朝川组之上,其层位大致与永康群方岩组和天台群赤城山组相当,时代为晚白垩世。  相似文献   

6.
浙江白垩系上部地层的划分与对比   总被引:13,自引:5,他引:13  
浙江白垩系上部地层可划分为永康群、天台群和衢江群 ,长期以来 ,认为天台群和衢江群不整合覆于永康群之上。通过对代表性盆地岩石地层层序、古生物、同位素年龄资料的综合分析 ,发现三个群的下部地层 (馆头组、中戴组和天台盆地的塘上组 )为下白垩统 ,上部为上白垩统 ;天台盆地塘上组与仙居盆地小平田组为同物异名的早白垩世晚期火山岩层 ,覆于小平田组之上的“塘上组”是两头塘组的下部层位 ;永康生物群和衢江生物群的主要生物化石时代分别为早白垩世晚期和晚白垩世早期 ,但就两个生物群所涵盖的永康群和衢江群生物化石总体而言 ,其时代均应为早白垩世晚期至晚白垩世早期。永康群、天台群和衢江群是早白垩世晚期至晚白垩世时期的同期异相堆积 ,不存在相互叠覆关系。  相似文献   

7.
This study presents new zircon U–Pb geochronology, geochemistry, and zircon Hf isotopic data of volcanic and subvolcanic rocks that crop out in the Bayanhushuo area of the southern Great Xing’an Range (GXR) of NE China. These data provide insights into the tectonic evolution of this area during the late Mesozoic and constrain the evolution of the Mongol–Okhotsk Ocean. Combining these new ages with previously published data suggests that the late Mesozoic volcanism occurred in two distinct episodes: Early–Middle Jurassic (176–173 Ma) and Late Jurassic–Early Cretaceous (151–138 Ma). The Early–Middle Jurassic dacite porphyry belongs to high-K calc-alkaline series, showing the features of I-type igneous rock. This unit has zircon εHf(t) values from +4.06 to +11.62 that yield two-stage model ages (TDM2) from 959 to 481 Ma. The geochemistry of the dacite porphyry is indicative of formation in a volcanic arc tectonic setting, and it is derived from a primary magma generated by the partial melting of juvenile mafic crustal material. The Late Jurassic–Early Cretaceous volcanic rocks belong to high-K calc-alkaline or shoshonite series and have A2-type affinities. These volcanics have εHf(t) and TDM2 values from +5.00 to +8.93 and from 879 to 627 Ma, respectively. The geochemistry of these Late Jurassic–Early Cretaceous volcanic rocks is indicative of formation in a post-collisional extensional environment, and they formed from primary magmas generated by the partial melting of juvenile mafic lower crust. The discovery of late Mesozoic volcanic and subvolcanic rocks within the southern GXR indicates that this region was in volcanic arc and extensional tectonic settings during the Early–Middle Jurassic and the Late Jurassic–Early Cretaceous, respectively. This indicates that the Mongol–Okhotsk oceanic plate was undergoing subduction during the Early–Middle Jurassic, and this ocean adjacent to the GXR may have closed by the Late Middle Jurassic–Early Late Jurassic.  相似文献   

8.
Late Palaeogene syn-tectonic volcanic products have been found in the Northern Alpine foreland basin and in the South Alpine hemipelagic basin. The source of abundant volcanic fragments is still in debate. We analyzed the geochronology and geochemistry of detrital zircons, and evaluated their temporal and genetic relationships with potential volcanic sources. The study shows that the detrital zircon U–Pb age patterns have two major age groups: a dominance (ca. 90%) of pre-Alpine zircons was found, as commonly observed in other Alpine flysch formations. These zircons apparently derived from erosion of the early Alpine nappe stack in South Alpine and Austroalpine units. Furthermore, a few Neo-Alpine zircons (ca. 10%) have ages ranging from Late Eocene to Early Oligocene (~ 41–29 Ma). Both source materials were mixed during long riverine transport to the basin margins before being re-deposited by gravity flows. These Palaeogene ages match with the activity of Peri-Adriatic magmatism, including the Biella volcanic suite as well as the Northern Adamello and Bergell intrusions. The values of REE and 176Hf/177Hf(t) ratios of the Alpine detrital zircons are in line with the magmatic signatures. We observe an in time and space variable supply of syn-sedimentary zircons. From late Middle Eocene to Late Eocene, basin influx into the South Alpine and Glarus (A) basins from the Northern Adamello source is documented. At about 34 Ma, a complete reorganisation is recorded by (1) input of Bergell sources into the later Glarus (B) basin, and (2) the coeval volcaniclastic supply of the Haute-Savoie basin from the Biella magmatic system. The Adamello source vanished in the foreland basin. The marked modification of the basin sources at ~ 34 Ma is interpreted to be initiated by a northwestern shift of the early Alpine drainage divide into the position of the modern Insubric Line.  相似文献   

9.
This study documents sediment infill features and their responses to the tectonic evolution of the Sichuan Basin and adjacent areas. The data include a comparison of field outcrops, well drillings, inter-well correlations, seismic data, isopach maps, and the spatial evolution of sedimentary facies. We divided the evolutionary history of the Sichuan Cretaceous Basin into three stages based on the following tectonic subsidence curves: the early Early Cretaceous (145–125 Ma), late Early Cretaceous to early Late Cretaceous (125–89.8 Ma), and late Late Cretaceous (89.8–66 Ma). The basin underwent NW–SE compression with northwestward shortening in the early Early Cretaceous and was dominated by alluvial fans and fluviolacustrine sedimentary systems. The central and northern areas of the Sichuan Basin were rapidly uplifted during the late Early Cretaceous to early Late Cretaceous with southwestward tilting, which resulted in the formation of a depression, exhibited southwestward compression, and was characterized by aeolian desert and fluviolacustrine deposits. The tectonic framework is controlled by the inherited basement structure and the formation of NE mountains, which not only affected the clastic supply of the sedimentary basin but also blocked warm-wet currents from the southeast, which changed the climatic conditions in the late Late Cretaceous. The formation and evolution of Cretaceous sedimentary basins are closely related to synchronous subtle far-field tectonism and changes in climate and drainage systems. According to the analysis of the migration of the Cretaceous sedimentation centers, different basin structures formed during different periods, including periods of peripheral mountain asynchronous thrusting and regional differential uplift. Thus, the Sichuan Cretaceous sedimentary basin is recognized as a superimposed foreland basin.  相似文献   

10.
The ca. 700-km-long Yalu River Fault Zone (YRFZ) in East China, adjacent to the Pacific Ocean, underwent a polyphase evolution during the Cretaceous when it controlled the development of rift basins interrupted by several shortening events. The East China continent lies in an overriding plate with respect to the subducting Paleo-Pacific Plate during the Cretaceous. The YRFZ is ideal for studying the episodicity of stress state in the overriding plate. To constrain the polyphase evolution of the YRFZ, structural observations, fault-slip data measurements and LA–ICP–MS zircon U–Pb dating on Cretaceous volcanic rocks and sandstones were undertaken in this study. The first deformation (D1) is characterized by sinistral strike-slip shear in the earliest Cretaceous. The D2 event is featured by normal faulting deformation along the fault zone, which led to development of rift basins during the rest of the Early Cretaceous. Sinistral faulting (D3) developed again in the earliest Late Cretaceous, followed by dextral normal faulting (D4) and rift basin development during the rest of the Late Cretaceous, and finally reverse dextral faulting (D5) at the end of the Cretaceous. The fault-slip data show that compressional directions during D1, D3 and D5 faulting events are N–S, N–S and E–W respectively. Extensional directions during D2 and D4 faulting events are NW–SE and N–S. The zircon U–Pb ages indicate that the Early Cretaceous basins (D2 event) controlled by the YRFZ were active between 131 and 100 Ma, and the Late Cretaceous basins (D4 event) were active between 97 and 70 Ma. These U–Pb ages, together with previous geochronological data, show that the D1 and D3 episodes of compression each lasted 3 Ma, D2 extension lasted 31 Ma, and D4 extension 27 Ma. These data indicate an episodicity in the stress state with longer periods of extension and shorter periods of compression. A slab-driven model with relatively long periods of low-velocity subduction alternating with shorter periods of high-velocity subduction could account for the episodicity of stress state in the overriding plate from D1 to D5.  相似文献   

11.
张岳桥 《地质学报》2008,82(9):1229-1257
基于野外和钻孔测井资料分析、火山岩同位素年代学分析 (40Ar-39Ar and SHRIMP U-Pb)、地震剖面的构造解释、断层运动学的野外分析结果,综合研究了胶莱盆地及其邻区白垩纪-古新世沉积构造演化历史。岩性地层分析表明,胶莱断陷盆地由三套地层单元所充填:早白垩世莱阳群和青山群、晚白垩世-古新世王氏群。青山群火山岩的同位素年代学测试结果给出了该火山岩的喷发时代在120~105 Ma。地震剖面的构造解译结果揭示胶莱盆地伸展构造受到深部两个拆离构造系统控制:一个发育于盆地南部地区,拆离断面位于深部8~10 km,向南缓倾于苏鲁造山带之下;另一个拆离系统由一系列北倾的犁式断层组成、分布于宽阔的胶莱盆地北部地区,主拆离面向北倾。这两个拆离系统分别形成于早白垩世莱阳群和晚白垩世-古新世王氏群沉积阶段。通过对不同地层单元断层滑动矢量的野外测量和古构造应力场反演,以及地层时代和同位素年代学测试结果的制约,建立了白垩纪-古新世构造应力场演替的年代序列。结果表明,胶莱盆地在白垩纪-古新世之间经历了伸展-挤压应力体制的交替演化。早白垩世伸展作用经历了两个不同的阶段:早期NW-SE向伸展和晚期近W-E向伸展。在早白垩世末期至晚白垩世初期,盆地遭受NW-SE向挤压,导致了胶莱盆地的缩短变形和郯庐断裂带的左旋走滑活动。晚白垩世-古新世时期,构造应力场转变为N-S向伸展,直到古新世末期,构造应力场转换为NE-SW向挤压。胶莱盆地和沂沭裂谷系白垩纪-古新世沉积构造演化历史对华北地区岩石圈减薄过程的动力学背景提供了重要的构造地质学制约。笔者推断,早白垩世两期引张应力作用是分别对华北地区增厚地壳或岩石圈的重力垮塌和岩石圈拆沉的响应,而早白垩世末期NW-SE向挤压记录了古太平洋板块与亚洲陆缘俯冲碰撞产生的远程效应。晚白垩世-古新世的引张伸展作用完全不同于早白垩世伸展构造,它指示了沿NNE向郯庐断裂带的右旋走滑活动及其拉分作用,在动力学上受到青藏地区块体的陆-陆碰撞产生的远程效应和古太平洋板块向亚洲大陆俯冲作用的联合应力场控制。  相似文献   

12.
《International Geology Review》2012,54(10):1196-1214
ABSTRACT

The distinct basin and range tectonics in southeast China were generated in a crustal extension setting during the late Mesozoic. Compared with the adjacent granitoids of the ranges, the redbeds of the basins have not been well characterized. In this article, provenance, source weathering, and tectonic setting of the redbeds are investigated by petrographic and geochemical studies of sandstone samples from the Late Cretaceous Guifeng Group of the Yongchong Basin in the Gan-Hang Belt, southeast China. Detrital grains are commonly subangular to subrounded, poorly sorted, and are rich in lithic fragments. The variable pre-metasomatic Chemical Index of Alternation (CIA* = 62–85), Chemical Index of Weathering (CIW = 70.90–98.76, avg. 85.62), Plagioclase Index of Alteration (PIA = 60.23–98.35, avg. 79.91), and high Index of Compositional Variability (ICV = 0.67–3.08, avg. 1.40) values collectively suggest an overall intermediate degree of chemical weathering and intense physical erosion of the source rocks, but a relatively decreased degree of chemical weathering during the late stage (Lianhe Formation) of the Guifeng Group is observed. Several chemical ratios (e.g. Al2O3/TiO2, La/Th, Cr/Th, Th/Sc, Zr/Sc) also suggest a dominant felsic source nature, significant first-cycle sediment supply, and low sedimentary recycling. Such features are consistent with active extension tectonic setting. Sandstone framework models and geochemical characteristics suggest the provenance is related to passive margin (PM), active continental margin (ACM), and continental island arc (CIA) tectonic settings. Sediment derivation from the Neoproterozoic metamorphic rocks and Silurian–Devonian granites indicates a PM provenance, whereas sediments derived from the Early Cretaceous volcanic-intrusive complexes suggest an ACM and CIA nature. Therefore, the Late Cretaceous redbeds were deposited in a dustpan-like half-graben under the back-arc extension regime when southeast China was possibly influenced by northwestward subduction of the Palaeo-Pacific plate beneath East Asia.  相似文献   

13.
Qinshui basin has abundant coal-bed methane resources and has been undergoing intensive intracontinental rifting and extensional tectonics since the Late Mesozoic. Some fractures, which were previously considered as conjugate shear fractures, are interpreted as joint sets with extension characteristics, for the first time in the Qinshui basin. The widely distributed joint sets with stable attitudes can be divided into four sets. This paper presents updated results of fault-slip datasets collected in different zones of the Qinshui basin and addresses the changes in the direction of extensional stresses since the Late Mesozoic. Based on the analysis results of the slickenline of normal faults, joint sets in the field, and focal mechanism solutions data from the Shanxi Province, we identified four main directions of extension since the Late Mesozoic in the Qinshui basin: (1) Early Cenozoic ENE–WSW (85 ± 15°) extension; (2) Palaeogene NNE–SSW (30 ± 5°) extension; (3) Miocene NW–SE (135 ± 15°) extension; and (4) Late Pliocene–quaternary NNW–SSE (170 ± 5°) extension. The principal extension directions in the Qinshui basin seem to have undergone a counterclockwise rotation from the Early Cenozoic to the Miocene. We prefer that the extension deformation events in the Qinshui basin since the Late Mesozoic were mainly related to the back-arc spreading induced by westward subduction of the paleo-Pacific plate under the Eurasian continent.  相似文献   

14.
《International Geology Review》2012,54(11):1417-1442
ABSTRACT

The Ordos Basin, situated in the western part of the North China Craton, preserves the 150-million-year history of North China Craton disruption. Those sedimentary sources from Late Triassic to early Middle Jurassic are controlled by the southern Qinling orogenic belt and northern Yinshan orogenic belt. The Middle and Late Jurassic deposits are received from south, north, east, and west of the Ordos Basin. The Cretaceous deposits are composed of aeolian deposits, probably derived from the plateau to the east. The Ordos Basin records four stages of volcanism in the Mesozoic–Late Triassic (230–220 Ma), Early Jurassic (176 Ma), Middle Jurassic (161 Ma), and Early Cretaceous (132 Ma). Late Triassic and Early Jurassic tuff develop in the southern part of the Ordos Basin, Middle Jurassic in the northeastern part, while Early Cretaceous volcanic rocks have a banding distribution along the eastern part. Mesozoic tectonic evolution can be divided into five stages according to sedimentary and volcanic records: Late Triassic extension in a N–S direction (230–220 Ma), Late Triassic compression in a N–S direction (220–210 Ma), Late Triassic–Early Jurassic–Middle Jurassic extension in a N–S direction (210–168 Ma), Late Jurassic–Early Cretaceous compression in both N–S and E–W directions (168–136 Ma), and Early Cretaceous extension in a NE–SW direction (136–132 Ma).  相似文献   

15.
The Mesozoic Xigaze ophiolite is a key to understanding the tectonic evolution of the Yarlung Zangbo suture zone. Although many studies have been reported, the formation age and petrogenesis of the Xigaze ophiolite remain controversial. In this paper, new geochronological and geochemical data for mafic dikes (diabase, dolerite), lavas, and gabbros of the Xigaze ophiolite are provided to constrain the origin of the Xigaze ophiolite. Combined with previous studies, three new zircon U–Pb ages of samples from two gabbro and one dolerite samples show that the Xigaze ophiolite was produced at two distinct stages of 174–149 Ma and 137–123 Ma. Whole-rock geochemical data indicate that these rocks exhibit N-MORB-like features, but the gabbros are more depleted in trace elements and belong to cumulates. Geochemical characters, combined with their positive εNd(t) values (+3.2 to +9.6), suggest that these samples originated from depleted mantle sources with minor influence of slab-derived fluids. Considering the previous studies on the Yarlung Zangbo suture zone, the Xigaze ophiolite was likely generated in an active continental margin fore-arc basin with a multistage model associated with the northward subduction of the Yarlung Zangbo Neo-Tethys Ocean beneath the Lhasa terrane. The Middle–Late Jurassic ophiolitic massifs (174–149 Ma) were produced as the result of slab rollback and were followed by subsequent slab break-off at ~ 150 Ma. The fore-arc lithosphere may be frozen at ~150–137 Ma, consistent with the termination of the Gangdese arc magmatism during this period. The Early Cretaceous ophiolitic massifs (137–123 Ma) were developed in relation to the reinitiation of the Neo-Tethyan oceanic lithosphere subduction, the retreat of the subduction zone, and the creation of a fore-arc basin with strong hyperextension in a new cycle.  相似文献   

16.
龙江盆地是松辽盆地外围西部重要的火山断陷盆地之一,盆地内自下而上依次发育龙江组、光华组和甘河组火山岩。本文对龙江盆地火山岩进行了详细的锆石U-Pb年代学研究,结果显示:龙江组流纹岩、辉石英安岩、安山岩锆石U-Pb年龄分别为(129.7±2.4)、(129.0±2.3)和(125.6±1.3)Ma;光华组3个流纹岩锆石U-Pb年龄分别为(122.5±1.4)、(119.9±1.1)和(116.7±1.5)Ma;甘河组最年轻的锆石年龄为(114.3±2.9)Ma;显示盆地内火山岩浆活动的时限为129.7~114.3 Ma,火山岩均为早白垩世岩浆活动的产物。同时在甘河组玄武质粗面安山岩中测到多组捕获锆石年龄,反映出晚二叠世(254 Ma)、晚石炭世(302 Ma)、晚泥盆世(367 Ma)、早志留世(433 Ma)、古元古代(2 395 Ma)、新太古代(2 523 Ma)岩浆事件记录,这在一定程度上为龙江盆地存在古老结晶基底提供了证据。  相似文献   

17.
余姚—丽水断裂带是浙东南地区活动时间长、延伸远、发育比较宽的一条NE—NNE展布的断裂构造带,在浙江嵊州地区上火山岩系磨石山群和下火山岩系永康群中构造形迹表现十分明显。余姚—丽水断裂带由一系列NE—NNE向控制区内白垩纪盆地形成与发展的正断层,以及NE—NNE走向、自北西向南东逆冲的叠瓦状断层和轴迹呈NE—NNE向的褶皱组成。通过对其构造活动特征及控制新老地层的时序关系研究,结合区域构造活动规律和时空演化关系等综合分析认为: 正断层形成时间较早,控制白垩纪盆地的形成和发展,与早白垩世岩石圈伸展减薄形成的拉张作用密切相关; 叠瓦状逆冲断层及斜歪褶皱、紧闭同斜褶皱等褶、断构造组合形成于晚白垩世之后,其动力学机制可能与古太平洋构造域向太平洋构造域的转换效应有关。研究成果为深入探讨浙东地区燕山期构造演化提供了新的素材和资料。  相似文献   

18.
浙江白垩纪恐龙与恐龙蛋化石的时空分布   总被引:2,自引:0,他引:2  
浙江省恐龙化石地质遗迹调查表明,全省有9个白垩纪陆相红层盆地产恐龙和恐龙蛋化石,至今已发现有4科5属5种恐龙骨骼和7科11属24种恐龙蛋化石。浙江省恐龙和恐龙蛋化石主要分布在天台盆地和金衢盆地的东阳、衢州、龙游、金华、浦江、兰溪一带,主要产于天台群的赖家组,衢江群的金华组、衢县组。永康、南马、新昌、嵊州、仙居、诸暨、湖山等地永康群朝川组、方岩组中也有较丰富的恐龙化石。依据恐龙和恐龙蛋化石在盆地内地层中的分布、地层的同位素年龄和相伴生的其他生物群特征等分析表明,恐龙和恐龙蛋化石的赋存地质时代以晚白垩世为主。此外,恐龙和恐龙蛋化石在浙江的广泛分布表明该地区地质历史时期气候温暖,植被茂盛,水资源丰富,是恐龙及其他生物生存繁衍的理想场所。  相似文献   

19.
江西峡江-广丰地区产铀盆地常具有特殊的三元结构:含铀火山岩发育在燕山早期的断陷区内,火山岩之下为一(几)套煤系地层,火山岩系之上为一套红色碎屑岩层,构成“黑-灰-红”特色三层结构的叠合式盆地。本文在总结前人工作的基础上,分析了该区叠合式盆地的空间分布、组成结构、形成演化和矿化等特征,并探讨区域构造演化对铀成矿富集的控制作用,以期为研究区铀矿勘查提供新的思路。研究表明:(1)叠合式盆地主要由多旋回的火山岩及其上部的巨厚红层组成,发育在前寒武系变质基底及较薄的峡山群(D2X)、安源群(T3A,含煤层)和林山群(J1L)之上。下白垩统武夷群(K1W)与火把山群(K1H)之间存在构造挤压事件,时限约为132~110 Ma,主要表现为近SN向的挤压和区域性抬升剥蚀,并导致NE和NW向两组共轭断裂分别发生左行和右行压扭,派生的近SN向断裂以张性为主。这些断裂构造是主要的控矿-赋矿构造,特别是近SN向张性断裂,富大矿体均赋存其中;(2)铀矿化时代晚于火山岩围岩的成岩时代,与红层沉积时代有很大程度上的重叠,暗示红盆发育过程对区内铀成矿起重要控制作用;(3)与铀矿物相伴生的萤石、石英中H、O、C同位素指示大气水对铀成矿的贡献,大气水对红层中的Fe^3+、F、Cl、H2S、(U)等进行淋滤,并携带至火山岩的构造裂隙中,在与深部来源流体共同作用下,使火山岩普遍发育水云母化、铀矿化等,因而成矿作用应滞后于火山作用。  相似文献   

20.
李理  钟大赉  陈霞飞  陈衍 《地质学报》2018,92(3):413-436
不同于华北克拉通东部普遍存在的NE走向断层,鲁西地块广泛发育一组特征明显的NW走向断层,包括非控盆断层和控盆断层两类。前者位于鲁西地块最南部,倾角相对较陡,错开了古生界及以下地层,下盘太古宇中发育韧性剪切带,断层碎裂岩指示断层存在多期活动;后者位于非控盆断层以北,除蒙山断层外韧性剪切带不发育,倾角相对较缓,控制了中生代以来的沉积。磷灰石/锆石裂变径迹证据分析得出NW走向断层的活动存在差异。断层上、下盘样品磷灰石裂变径迹表观年龄在在67±5~35±2Ma之间,径迹直方图表明样品在冷却过程中没有受到热扰动。通过平均径迹长度-年龄(或香蕉图)图、单颗粒峰值年龄、径迹年龄谱模式以及热史反演模拟综合分析来约束断层的活动时间,结果表明非控盆断层可能在早侏罗世约184Ma开始活动,之后在晚白垩世80~75Ma以及新生代~61Ma和51~43Ma活动,43Ma之后不再活动。控盆断层活动时间稍晚,于早白垩世约141Ma、晚白垩世80~75Ma活动,新生代活动时间为约61Ma、49~42Ma以及36~32Ma。总体上,NW走向断层由早到晚由南向北发育,非控盆断层活动时间早、结束早;控盆断层活动晚、结束晚,并控制了凹陷的向北发育。中生代以来区域构造应力场的变化和郯庐断裂带的走滑作用是导致两类NW走向断层差异演化的根本原因,在深部则受控于晚三叠世以来华北、扬子板块陆陆碰撞和古太平洋板块俯冲方向和速度的改变。印支期后挤压到伸展的转变,加上郯庐断裂带的左行走滑,使靠近华北克拉通南缘的前端NW走向断层首先发育,因倾角较大故不控制盆地发育;向北的后端相对伸展,成为控盆断层,后经早白垩世约141Ma期间的伸展、晚白垩世末80~75Ma和新生代的发育断层最终成型。NW走向断层的这种大致向北迁移的规律,隐示华北克拉通破坏可能始于早侏罗世或晚侏罗世,且由南向北逐渐拆沉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号