首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mafic dikes, which transect the Mesoarchaean Singhbhum Granitoid Complex, are the most abundant members of the Newer Dolerite dikes of the Singhbhum Orissa craton. These dikes are subalkaline and exhibit a tholeiitic differentiation trend. Studied dikes underwent fractional crystallization of clinopyroxene and plagioclase. They show enriched patterns for the light rare earth elements (LREE) and large ion lithophile elements (LILE). On primitive mantle-normalized multi-element patterns, they possess Ba, Nb, Sr, P, and Ti depletions similar to subduction-related basaltic rocks. The high (La/Yb) n and (Gd/Yb) n ratios suggest that the studied mafic dikes were derived by low degrees of partial melting of a garnet-bearing source. Judging by trace elemental ratios (e.g. Ba/Y, Nb/Y, Ba/Th and Th/Nb), the studied dikes were derived from a mantle source metasomatized by a subduction component (e.g. fluids derived by dehydration of the subducting slab). We conclude that interaction between these fluids and the overlying mantle was the main cause of (LREE and LILE) enrichment and Nb (high field strength elements) depletion in the mafic dikes.  相似文献   

2.
We present new geochemical data (major- and trace-elements, as well as Sr and Nd isotopic compositions) of volcanic rocks erupted from Popocatépetl volcano during the volcanic event from December 2000 to January 2001. These data along with an exhaustive compilation of geochemical and Sr, Nd, and Pb isotope data reported for Popocatépetl rocks and nearby volcanic areas are used to examine the origin and geochemical evolution of the magmas in the central Mexican volcanic belt (CMVB). During this period of volcanic eruptions Popocatépetl produced ash columns as high as 7 km. Pyroclastic flows and lahars were observed after the completion of the activity. Samples of banded pumice and a bomb fragment transported by the lahar were chemically analysed for this work. Rocks show an andesitic composition with 58.5–61.7 wt.% SiO2 and 5.9–4.0 wt.% MgO. Contents of large ion lithophile elements (LILE), rare-earth elements (REE) and Zr are nearly constant through the compositional range. No significant Eu anomaly is present, but the samples show Nb-anomaly relative to LILE and high-field strength elements (HFSE). Nd- and Sr-isotopic compositions of these samples range from 143Nd/144Nd = 0.51291 to 0.51287 and 87Sr/86Sr = 0.70399 to 0.70422. Comparison of Popocatépetl products with volcanic rocks from the nearby areas shows that the magmas in CMVB were generated in a heterogeneously veined-mantle source enriched in LILE, HFSE, and REE. Additional crustal assimilation as well as fractional crystallization could account for the great chemical variability of rocks in the CMVB. Statistical comparison of the geochemical compositions of the volcanic products ejected from 1994 to 2000 to those ejected during the 2001 event shows that most geochemical parameters (major- and trace-elements, normative minerals, Sr and Nd isotopic composition, as well some elemental ratios) present no statistically significant differences. Statistically significant differences in the mean only were computed for the major-elements SiO2, FeO, MgO, CaO, and K2O, as well as for the rare-earth elements Nd, Sm, Eu, Gd, Dy, Ho, Tm, and Yb.  相似文献   

3.
《International Geology Review》2012,54(13):1626-1640
Dolerite dike swarms are widespread across the North China Craton (NCC) of Hebei Province (China) and Inner Mongolia. Here, we report new geochemical, Sr–Nd–Pb isotope, and U–Pb zircon ages for representative samples of these dikes. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb analysis yielded consistent Permian ages of 274.8 ± 2.9 and 275.0 ± 4.5 Ma for zircons extracted from two dikes. The dolerites have highly variable compositions (SiO2 = 46.99–56.18 wt.%, TiO2 = 1.27–2.39 wt.%, Al2O3 = 14.42–16.20 wt.%, MgO = 5.18–7.75 wt.%, Fe2O3 = 8.03–13.52 wt.%, CaO = 5.18–9.75 wt.%, Na2O = 2.46–3.79 wt.%, K2O = 0.26–2.35 wt.%, and P2O5 = 0.18–0.37 wt.%) and are light rare earth element (LREE) and large ion lithophile element (LILE, e.g. Rb, Ba, and K, and Pb in sample SXG1-9) enriched, and Th and high field strength element (HFSE, e.g. Nb and Ta in sample SXG1-9, and Ti) depleted. The mafic dikes have relatively uniform (87Sr/86Sr)i values from 0.7031 to 0.7048, (206Pb/204Pb)i from 17.77 to 17.976, (207Pb/204Pb)i from 15.50 to 15.52, (208Pb/204Pb)i from 37.95 to 38.03, and positive ?Nd(t) (3.6–7.3), and variable neodymium model ages (TDM1 = 0.75–0.99 Ga, TDM2 = 0.34–0.74 Ga). These data suggest that the dike magmas were derived from partial melting of a depleted region of the asthenospheric mantle, and that they fractionated olivine, pyroxene, plagioclase, K-feldspar, and Ti-bearing phases without undergoing significant crustal contamination. These mafic dikes within the NCC formed during a period of crustal thinning in response to extension after Permian collision between the NCC and the Siberian Block.  相似文献   

4.
This paper presents detailed mineral chemical, element geochemical and Sr–Nd–Hf isotopic data for the Late Jurassic (155?±?4 Ma) lamprophyre dikes in the Liaodong Peninsula, NE China. The lamprophyres are shoshonitic and geochemically fall into three groups: Group I has relatively high SiO2 (52.5–57.0 wt.%), low MgO (5.5–8.3 wt.%) and compatible trace element (e.g. Cr?=?128–470 ppm) contents, high initial 87Sr/86Sr ratios (0.7093–0.7117), and low εNd (T) values (?9.6 to ?12.1); Group II has relatively low SiO2 (44.8–50.0 wt.%), high MgO (10.8–14.2 wt.%) and compatible trace element (e.g. Cr?=?456–1,041 ppm) contents, low initial 87Sr/86Sr ratios (0.7073–0.7087), and high εNd (T) values (?1.4 to ?2.9); Group III is transitional between the two in all elemental and isotopic compositions. Interpretation of the elemental and isotopic data suggests that the lamprophyric melts were derived by partial melting of subcontinental lithospheric mantle (SCLM) at a depth of 60–80 km (group I), decompression melting of upwelling asthenosphere at 60–100 km (group II), and mixing between the SCLM-derived and asthenosphere-derived melts (group III). It is assumed that the local SCLM was detached at a depth of 60–80 km by the 155 Ma ago. A continental arc-rifting related to the Palaeo-Pacific plate subduction is favored as a geodynamic force for such a cratonic lithosphere detachment.  相似文献   

5.
Mafic dikes of mainly Early Cretaceous age (130–110 Ma) are widely developed on the Jiaodong Peninsula, China. Previous studies of the dikes, which have focused mainly on occurrences in the Jiaobei uplift and in the Sulu orogenic belt, have thoroughly examined their petrogenesis and geodynamic setting. This study identified four previously unknown mafic dikes (dolerite and lamprophyre) in southeastern Jiaolai basin (near Haiyang city), Jiaodong Peninsula. Detailed geochemical and geochronological analyses were conducted to determine the petrogenesis of the dikes and to infer their geodynamic setting. Zircon U–Pb dating by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) indicates that the dikes were emplaced at ~126 Ma. The dikes are characterized by low SiO2 contents (44.3–52.3 wt.%), high contents of MgO (7.28–10.13 wt.%), Cr (267–652 ppm), and Ni (93–335 ppm), and high Mg# values (63–73); they are enriched in large ion lithophile elements (LILEs; Ba, K, and Sr), depleted in high field strength elements (HFSEs; Nb, Ta, P, and Ti), and are characterized by high (87Sr/86Sr)i isotope ratios (0.707226–0.708222), low εNd(t) values (?12.3 to ?13.6), and zircon εHf(t) values (?15.6 to ?23.6). These features suggest that the dikes were derived from enriched subcontinent lithospheric mantle (SCLM). The wide range of Rb/Sr (0.04–0.18) and Ba/Rb (5–34) ratios, and the low and limited range of Dy/Yb (1.93–2.52) and K/Yb (5.71–11.99) ratios of the dikes indicate that the magmas originated from a low degree of partial melting of an amphibole- and phlogopite-bearing lherzolite in the spinel–garnet transition zone. The parental magma might have experienced fractionation of olivine and clinopyroxene during its ascent without significant crustal contamination. Evident depletion of Nb–Ta and Zr–Hf, low and limited range of Th/Yb ratios, elevated Ba/La ratios, constant chondritic Zr/Hf ratios, and a large range of Hf/Sm ratios further indicate that the mantle sources of the dikes were altered by carbonate-related metasomatism from subducted slab-derived fluids, which were most likely related to subduction of the Palaeo-Pacific plate during the Mesozoic. The mafic dikes in the southeastern Jiaolai basin resemble the arc-like mafic dikes in the Jiaobei terrain and the Sulu orogenic belt, and possibly indicate lithospheric thinning induced by slab rollback of the Palaeo-Pacific plate.  相似文献   

6.
The Roshtkhar area is located in the Khaf-Kashmar-Bardaskan volcano-plutonic belt to the northeastern Iran along the regional E–W trending Dorouneh Fault, northeastern of the Lut Block. There are several outcrops of subvolcanic rocks occurring mainly as dikes in the area, which intruded into Cenozoic intrusive rocks. We present U–Pb dating of zircons from a diabase dike and syenite rock using LA-ICP-MS that yielded an age of 1778 ± 10 Ma for the dike, indicating this Cenozoic dike has zircon xenocrysts inherited from deeper sources; and 38.0 ± 0.5 Ma, indicating an Late Eocene crystallization age for the syenite. Geochemically, the dikes typical of high-K calc-alkaline to shoshonitic magmas. Petrographic observations and major and trace element variations suggest that diabase melts underwent variable fractionation of clinopyroxene, olivine, and Fe-Ti oxides and minor crustal contamination during the differentiation process. Primitive mantle-normalized multi-element diagrams display enrichment in LILE, such as Rb, Ba, Th, U, and Sr compared to HFSE, as well as negative anomalies of Nb, Ta, P, and Ti, suggesting derivation from subduction-modified mantle. Chondrite-normalized REE plots show moderately LREE enriched patterns (<3.83 LaN/YbN <8.27), and no significant Eu anomalies. Geochemical modelling using Sm/Yb versus La/Yb and La/Sm ratios suggests a low-degree of batch melting (~1–3%) of a phlogopite-spinel peridotite source to generate the mafic dikes. The geochemical signatures suggest that the Roshtkhar mafic dikes cannot be related directly to subduction and likely resulted from melting of upper mantle in an extensional setting where the heat flow was provided from deeper levels. These dikes presumably derived the zircon xenocrysts from the assimilation of upper crust of Gondwanian basement. Processes responsible for partial melting of metasomatized lithospheric mantle and post-collision magmatism in NE Iran was triggered by heating due to asthenospheric upwelling in an extensional setting.  相似文献   

7.
The NNW-trending Nova Lacerda tholeiitic dike swarm in Mato Grosso State, Central Brazil, intrudes the Nova Lacerda granite (1.46 Ga) and the Jauru granite-greenstone terrain (ca. 1.79–1.77 Ga). The swarm comprises diabases I and II and amphibolites emplaced at ca. 1.38 Ga. Geochemical data indicate that these are evolved tholeiites characterized by high LILE/HSFE and LREE/HSFE ratios. Isotopic modelling yields positive ?Nd(T) values (+0.86 to?+2.65), whereas values for ?Sr(T) range from positive to negative (+1.96 to -5.56). Crustal contamination did not play a significant petrogenetic role, as indicated by a comparison of isotopic data (Sr–Nd) from both dikes and country rocks, and by the relationship between isotopic and geochemical parameters (SiO2, K2O, Rb/Sr, and La/Yb) of the dikes. We attribute the origin of these tholeiites to fractional crystallization of evolved melts derived from a heterogeneous mantle source. Comparison of the geochemical and isotopic data of the studied swarm and other tholeiitic Mesoproterozoic mafic intrusions of the SW Amazonian Craton – the Serra da Providência, Colorado, and Nova Brasilândia bimodal suites – indicates that parental melts of the Nova Lacerda swarm were derived from the most enriched mantle source. This enrichment was probably caused by the stronger influence of the EMI component on the DMM end-member. These data, coupled with trace element bulk-rock geochemistry of the country rocks, and comparisons with the Colorado Complex of similar age, suggest a continental-margin arc setting for the emplacement of the Nova Lacerda dikes.  相似文献   

8.
The petrography, mineral chemistry and geochemical features of the Sabongari alkaline complex are presented and discussed in this paper with the aim of constraining its petrogenesis and comparing it with other alkaline complexes of the Cameroon Line. The complex is mainly made up of felsic rocks: (i) granites predominate and include pyroxene–amphibole (the most abundant), amphibole–biotite, biotite and pyroxene types; (ii) syenites are subordinate and comprise amphibole–pyroxene and amphibole–biotite quartz syenites; (iii) pyroxene–amphibole–biotite trachyte and (iv) relatively abundant rhyolite. The minor basic and intermediate terms associated with felsic rocks consist of basanites, microdiorite and monzodioites. Two groups of pyroxene bearing rocks are distinguished: a basanite–trachyte–granite (Group 1) bimodal series (SiO2 gap: 44 and 63 wt.%) and a basanite–microdiorite–monzodiorite–syenite–granite (Group 2) less pronounced bimodal series (reduced SiO2 gap: 56–67 wt.%). Both are metaluminous to peralkaline whereas felsic rocks bare of pyroxene (Group 3) are metaluminous to peraluminous. The Group 1 basanite is SiO2-undersaturated (modal analcite in the groundmass and 11.04 wt.% normative nepheline); its Ni (240 ppm) and Cr (450 ppm) contents, near mantle values, indicate its most primitive character. The Group 2 basanite is rather slightly SiO2-saturated (1.56 wt.% normative hypersthene), a marker of its high crustal contamination (low Nb/Y-high Rb/Y). The La/Yb and Gd/Yb values of both basanites (1: 19.47 and 2.92; 2: 9.09 and 2.23) suggest their common parental magma composition, and their crystallization through two episodes of partial melting (2% and 3% respectively) of a lherzolite mantle source with <4% residual garnet. The effects of crustal contamination were selectively felt in the values of HFSE/LREE, LREE/LILE and LREE/HFSE ratios, known as indicators. Similar features have been recently obtained in the felsic lavas of the Cameroon Volcanic Line.  相似文献   

9.
Epidote-bearing porphyritic dikes (whole rock analysis: SiO2?=?55–65 wt. %, MgO <2.1 wt. %, K2O <2.5 wt. %, Al2O3 >17 wt. %, Na2O + K2O?=?5.7–9.4 wt. %) situated in the continental margin zone, the Middle Urals, Russian Federation have been dated using SHRIMP U-Pb zircon techniques and give a Middle Devonian age of 388?±?2 Ma and 389?±?6 Ma. The porphyries contain phenocrysts of magmatic epidote (Ps?=?17–25 %), Ca- and Mn-rich (CaO >9 wt. %; MnO >6 wt. %) almandine garnet, Al-rich (Al2O3?=?12–16 wt. %) amphibole, titanite, plagioclase, biotite, muscovite, apatite, and quartz. 60 to 70 % groundmass of the porphyritic dikes consists of fine-grained albite, quartz, and K-feldspar. A variety of thermobarometric estimations, plus comparison with published experimental data indicate that the phenocryst assemblage was stable between 5 and 11 kbar and 690 to 800 °C. Oxygen fugacity was close to or greater than logfo2 = Ni-NiO + 1. Later stage formation of the quartz-feldspar groundmass took place at hypabyssal conditions, corresponding to 1 to 2 kbar and 660 to 690 °C. The porphyritic dikes are metaluminous to slightly peraluminous (ACNK?=?0.7–1.17). They are enriched in REE and depleted Nb and Ti. They show features typical of subduction-related magmas. Chemical composition and isotopic ratios of 86Sr/87Sri?=?0.709–0.720 suggest that both mantle- and deep crustal-derived materials were involved in their petrogenesis.  相似文献   

10.
《Chemical Geology》2003,193(3-4):215-235
Plio–Pleistocene (3.4–0.125 Ma) post-plateau magmatism in the Meseta del Lago Buenos Aires (MLBA; 46.7°S) in southern Patagonia is linked with the formation of asthenospheric slab windows due to ridge collision along the Andean margin ∼6 Ma ago. MLBA post-plateau lavas are highly alkaline (43–49% SiO2; 5–8% Na2O+K2O), relatively primitive (6–10% MgO) mafic volcanics that have strong OIB-like geochemical signatures. Their relatively enriched Sr–Nd isotope ratios (87Sr/86Sr=0.7041–0.7049; 143Nd/144Nd=0.51264–0.51279), low 206Pb/204Pb (18.13–18.45), steep REE patterns (La/Yb=11–54), and low LILE/LREE and LILE/HFSE ratios (Ba/La<15, La/Ta<15, Ba/Ta<180; Sr/La=15–22; Th/La<0.13; Ce/Pb>15) are distinctive from most other Neogene Patagonian slab window lavas. These data are interpreted to indicate contamination of OIB-like asthenosphere-derived slab window magmas with an EM1-type component derived from the Patagonian continental lithospheric mantle (CLM). The EM1-type signature in Patagonian slab window lavas are geographically associated with the Deseado Massif and indicate important regional differences in lithospheric mantle chemistry beneath southern Patagonia. We propose that hot, upwelling subslab asthenosphere in slab window tectonic settings can cause significant thermo-mechanical erosion and thinning of the continental lithospheric mantle and, thus, may be an important process in slab window magma petrogenesis.  相似文献   

11.
Voluminous Neoproterozoic mafic–ultramafic, felsic, and alkaline intrusions are found in the northern Yangtze Block, South China. Here, we present whole-rock major and trace element, and Sr–Nd isotopic compositions, together with zircon U–Pb ages, for syenite and gabbro samples from the Shuimo–Zhongziyuan alkaline intrusive complex in the Micang Mountains region at the northwestern margin of the Yangtze Block. Zircon U–Pb dating yields crystallization ages for the Na- and K-rich Shuimo syenites of 869 ± 4 (MSWD = 0.85, 2σ) and 860 ± 5 Ma (MSWD = 0.47, 2σ), respectively, and for the Zhongziyuan gabbros of 753 ± 4 Ma (MSWD = 0.23, 2σ), indicating that the syenites and gabbros represent different stages of magmatism. The syenites include both Na- and K-rich types and have high values of the Rittman index (σ), and high SiO2 and Na2O + K2O contents. These syenites are enriched in light rare earth elements (LREE) and large-ion lithophile elements (LILE), but depleted in high-field-strength elements (HFSE), with high (La/Yb)N values and small negative and positive Eu anomalies (Eu/Eu* = 0.74–1.17). In contrast, the gabbros have lower SiO2 and Na2O + K2O contents, are only slightly enriched in LREEs, are enriched in LILE but depleted in HFSEs, and have small negative and positive Eu anomalies (Eu/Eu* = 0.86–1.37). The syenites have low initial 87Sr/86Sr (0.703340) and ?Nd(t) values (+1.9 to +7.7). The gabbros have relatively high initial 87Sr/86Sr (0.703562–0.704933) and positive ?Nd(t) values (+1.6 to +4.5). These data suggest that the syenites and gabbros are isotopically similar and were largely derived from melts of depleted mantle. The syenites underwent significant fractional crystallization and small amounts of crustal contamination during magma evolution. In contrast, the gabbros were formed by partial melting (>15%) of a garnet lherzolite source and might also have experienced crustal assimilation. Taking into account the geochemical signatures and magmatic events, we propose that the Shuimo syenites formed in an intra-arc rifting setting, however, the Zhongziyuan gabbros were most likely produced in a subduction-related, continental margin arc setting during the Neoproterozoic, thus suggesting that the alkaline intrusive complex were formed by the arc-related magmatism in the Micang Mountains.  相似文献   

12.
Late intrusive Tukureswari granitoids (TKG) and the Barbhita granitoids (BBG) of Goalpara district in western Assam constitute an important component of the continental crust of the Shillong Plateau. Thus, the geochemical study of these two granitoids involving their origin, classification and petrogenetic significance would be a contribution towards a better understanding of the evolution of continental crust of the Shillong Plateau.The major oxide and trace element geochemistry reveals several genetic issues on these two granitoids. The I-type affinity of the TKG is indicated from the geochemical features such as high TiO2, P2O5 and K2O contents, low normative corundum (< 1%), high Na2O/K2O ratios, and low concentrations of Ni, Co and Cr. Further, enriched LREE-LILE and HFSE depletion, as well as the normal calc-alkaline nature of arc affinity (e.g., enhanced LILE abundance and low HFSE/LILE ratios) of the TKG indicate subduction-related magmatism. TheTKG are also categorized as a deep-level pluton, being enriched in LREE and depleted in total REE and HFSE (Y, Nb, Ta, Zr, Hf). The high La/Nb ratio (1.9–8.6), negative Nb and Ti anomalies also suggest orogenic related magmatism.On the other hand, the geochemistry of the BBG reveal a high Niggli Si and Mg values, slightly high normative corundum values (2.16–3.41), high Th/Ta, Y/Nb, La/Nb, K2O/Na2O, and Rb/Sr ratios. It also shows ASI, K, Rb, and U contents, prominent depletion of Nb, Sr and Ti on the primitive mantle-normalized multi-element spider diagrams and a low concentrations of Cu, Cr, V and Na2O (> 3.2%). All these geochemical characteristics provide strong evidences in support of a sedimentary parentage for Barbhita granitoids (BBG) and are dominantly of S-type.  相似文献   

13.
胶东北部碱性超基性脉岩地球化学特征及环境和成因探讨   总被引:6,自引:1,他引:5  
胶东地区脉岩属碱性超基性岩系(Na2O+K2O=4.67%~5.43%;SiO2=36.70%~39.99%),岩性为单一的橄榄辉石岩。从主量元素(包括CIPW标准矿物组成)和过渡元素组成来看,该岩系近似原始岩浆组成。电子探针结果显示:橄榄石为富镁质橄榄石(贵橄榄石)(Fo=71~90),单斜辉石为透辉石(次透辉石为主)。岩石富集大离子亲石元素(K、Rb、Sr、Th和Ba),但不具有高场强元素(Nb、Ta、Zr和Hf)的亏损,表明岩石形成于大陆板内环境,为地幔橄榄岩低度部分熔融(3.4%)的产物。同时,它具有大陆边缘弧的特性,暗示其为一种滞后型弧岩浆作用的产物。稀土元素特征显示,岩石强烈富集LREE,而相对亏损HREE,暗示了源区的富集特性。Eu/Eu*=0.89~1.00,总体不表现明显的负Eu异常,暗示斜长石不是主要的分馏矿物相。结合板内碱性岩石的矿物结晶顺序认为,本区岩浆分馏以较弱的橄榄石分馏为主。  相似文献   

14.
对伊春地区南部中寒武世细中粒二长花岗岩进行LA-ICP-MS锆石U-Pb定年,岩石年龄为(504.1±5.4)Ma,是中寒武世岩浆活动的产物。岩石地球化学特征显示该岩石具富碱、富钾的特征,高K2O/Na2O,低TFeO,属钾玄至高钾钙碱性系列。岩石总体上相对富集大离子亲石元素,亏损高场强元素,A/CNK>1.1,为强过铝质,显示出S型花岗岩的特征。R1-R2图解上大部分样品集中在同碰撞区和造山晚期花岗岩区;Rb-Hf-Ta图解上样品落在同碰撞-碰撞后构造花岗岩区;在Nb-Y图解上样品落在火山弧-同碰撞花岗岩区;在Rb-(Y+Nb)图解上,样品落在同碰撞花岗岩区。该地区中寒武世细中粒二长花岗岩揭示了岩石形成于板块碰撞作用,表明伊春地区在中寒武世存在碰撞造山事件。在该时期佳木斯与松嫩—张广才岭板块已经拼合,并形成具有壳源特征的同碰撞花岗岩。  相似文献   

15.
《International Geology Review》2012,54(14):1817-1834
We present new geochronological, mineralogical, geochemical, and isotopic data for recently recognized lamprophyre dikes in the East Kunlun orogenic belt of NW China. Based on euhedral amphibole phenocrysts and fine-grained, plagioclase-bearing groundmass with accessory magnetite, apatite, and titanite, these dikes are classified as spessartites. Plagioclase in these rocks is Ca-rich with An ranging from 45 to 82. Most of the amphibole phenocrysts are magnesiohastingsite or ferropargasite, with systematic ‘‘normal’ zoning in which Al2O3, CaO, and Mg# decrease from core to rim. The dikes have moderate Mg# (43–49) and high Al2O3 (17.5–18.0 wt.%), FeOtotal (7.4–8.4 wt.%), and CaO (5.9–7.4 wt.%). Based on low total alkalis (Na2O?+?K2O?=?4.2%–5.0 wt.%), most samples plot in the low-K, calc-alkaline field. They are enriched in large-ion lithophile elements (e.g. K, Rb, Sr, and Ba) and light rare-earth elements, but are depleted in high-field-strength elements (e.g. Ta, Nb, P, and Ti), and have enriched Sr-Nd-Hf isotopic compositions ((87Sr/86Sr)= 0.70883–0.71045, εNd(t) = –5.51–5.72, εHf(t)?=?–4.42–0.38). Zircon U–Pb geochronology indicates that the dikes were emplaced at 253 ± 2.5 Ma and are unrelated to their granite host, which has an age of 443 ± 1.7 Ma. The geochemical and isotopic data suggest derivation from an enriched lithospheric mantle source that had been metasomatized by subduction-related fluids. Low degrees of partial melting of a phlogopite-bearing, spinel peridotite, followed by fractional crystallization of olivine, amphibole, and Ti-bearing minerals, can account for the observed geochemical features of the dikes. Trace element geochemistry and regional geology suggest that the East Kunlun lamprophryes formed in a subduction-related setting.  相似文献   

16.
《International Geology Review》2012,54(12):1521-1540
The late Carboniferous Dongwanzi Complex in the northern North China Craton is composed of intrusive pyroxenite, hornblendite, gabbro, and syenite. The mafic-ultramafic rocks of the complex exhibit typical cumulate textures, curved-upward REE patterns, and variable contents of compatible elements, suggesting a cumulate origin. The syenite shows Sr-Nd isotopic ratios similar to the mafic-ultramafic complex and positive Eu anomalies in the chondrite-normalized REE patterns, suggesting that the syenite may represent residual melt after significant fractional crystallization of mafic melt. The mafic-ultramafic cumulates have low HREE abundance and high (Tb/Yb)N (2.5–4.2) and Dy/Yb ratios (>2), indicating that they may have originated from melting of garnet peridotite in the mantle. The Dongwanzi Complex is characterized by a large variation in Sr-Nd isotopic composition, with ISr = 0.7035 to 0.7052 and εNd(t) = ?4.0 to +5.2, which may be accounted for by mixing melts of depleted asthenospheric and enriched lithospheric sources. The radiogenic Os isotopic compositions of the complex ((187Os/188Os)i = 0.1344 to 0.3090) suggest slight contamination by mafic lower crust (≤2.5% based on Os isotopic modelling). The Dongwanzi Complex exhibits arc-related whole-rock and mineral geochemical affinities, such as enrichment in LILE (e.g. Sr, Ba, K) and depletion in HFSE (e.g. Nb, Ta, Ti). The abundance of hornblende and high CaO contents (22–24 wt.%) of clinopyroxene suggest that the source was rich in H2O, probably due to the formation above a subduction zone. We conclude that the Dongwanzi Complex and the related crust–mantle interactions probably reflect formation in a back-arc extensional environment related to the subduction of the Palaeo-Asian Ocean beneath the northern margin of the North China Craton in late Palaeozoic time.  相似文献   

17.
位于中国南天山西侧阔克萨彦岭一带的川乌鲁碱性杂岩体,与该区川乌鲁铜金多金属矿床有着直接的成因联系,该杂岩体由早期的辉长岩—闪长岩岩、主期的二长岩—正长岩和晚期的正长花岗斑岩脉组成,各期岩石在矿物组成和化学成分上有明显的变化。从早到晚,SiO2含量增加,变化范围是50.52%~70.64%;全碱含量先增后减,在SiO2含量小于61.69%时,随SiO2含量增加而增加,而当SiO2含量大于61.69%时,与SiO2含量负相关。在AR-SiO2图解上,大多样品落入碱性区间,在A/CNK-A/NK图解上表现出由准铝质向过碱性演化的趋势。微量元素表现为大离子亲石元素相对高场强元素富集,Rb、Ba、Th、Sr等元素的相对富集和Nb、Ta、P、Ti等元素的负异常。稀土元素表现为轻稀土相对富集的特征,其(La/Yb)N为14.13~25.09,具有Eu的正异常或极微弱的Eu负异常。一些元素比值的线性关系暗示了该杂岩体为岩浆混合成因,基性岩浆的源区为富水的岩石圈地幔,而酸性岩浆是中下地壳中性火成岩在含饱和水条件下部分熔融的产物。这些性质指示川乌鲁杂岩体是在后碰撞拉张环境中由岩石圈地幔熔融的基性岩浆的底侵作用导致地壳的熔融以及后期的岩浆混合作用有关。  相似文献   

18.
冈底斯岩基广泛发育三叠纪-中新世的岩浆岩,是研究与新特提斯洋北向俯冲和印度-欧亚大陆碰撞相关的构造岩浆作用特征的天然实验室。日多地区花岗岩体位于藏南墨竹工卡县东侧日多乡附近,其主体为花岗岩,被花岗闪长玢岩脉侵入。锆石U-Pb地质年代学表明:主体花岗岩形成于62.7±0.5Ma,侵入其中的花岗闪长玢岩脉形成于59.5±1.5Ma,并捕获了大量的侏罗纪岩浆岩锆石(155.4±1.8Ma)。日多地区花岗岩体的全岩地球化学特征为:(1)高Si O_2、Na_2O、Al_2O_3,低Fe O~T、MgO、Ti O_2;(2)富集轻稀土(LREE),亏损重稀土(HREE)及高场强元素Nb、Ta、Ti、P元素;(3)具有Eu负异常,总体显示高钾钙碱性、过铝质花岗岩和岛弧型岩浆岩特征。锆石Hf同位素特征暗示其岩浆源区为基性下地壳物质。花岗闪长玢岩脉裹挟大量侏罗纪岩浆型锆石,表明冈底斯岩基拉萨以东地区可能经历了较广泛的晚侏罗世岩浆作用。  相似文献   

19.
ABSTRACT

Late Jurassic ultramafic lamprophyre (UML) sills and dikes occur as 3 km-long intrusions within the allochthonous Whara Formation of the Batain nappes, eastern Oman. The sills and dikes comprise macrocrystic phlogopite and spinel-bearing aillikite and damtjernite. Aillikite is a light grey, massive fine-grained tuffaceous rock with euhedral laths of mica, while damtjernite is a dark grey, medium- to coarse-grained rock with abundant pelletal lapilli and globular segregationary textures. Both lithologies are composed of calcite, phlogopite, apatite, magnetite, spinel, diopside, and richterite. Orthoclase occurs only within damtjernite. The rocks are strongly silica undersaturated (17.6–33.7 wt.% SiO2), with low MgO (4.7–10.2 wt. %) and high Al2O3 (3.5–8.6 wt.%). The aillikites are distinguished from the damtjernites by their lower SiO2, Al2O3, and Na2O abundances, and their higher MgO, CaO, and P2O5 contents. The rare earth element (REE) patterns of both rock types are similar and show strong light REE (LREE) enrichment. Both are enriched in Ba, Th, U, Nb, and Ta, with normalized concentrations of up to 1000 times those of primitive mantle. Relative depletions are apparent for high REE (HREE), K, Rb, Pb, Sr, P, Zr, and Hf. The rocks have initial 87Sr/86Sr ratios of 0.70435–0.70646, whereas initial 143Nd/144Nd ratios vary between 0 · 512603 and 0 · 512716 (εNdi 2.6–3.2). Pb isotopic ratios are more varied among the aillikites and damtjernites: 208Pb/204Pbi = 38.97–39.39 and 207Pb/204Pbi = 15.35–15.58, 206Pb/204Pbi = 18.08–18.96. The abundance of phlogopite, apatite, and rutile and enrichment in LREEs, Ba, Th, U, Nb, and Ta in the Sal UMLs suggest metasomatic enrichment of these rocks following a low degree of partial melting of a depleted source region. Ar–Ar age dating of phlogopite macrocrysts from the aillikites and damtjernites (154 and162 Ma, respectively) correlates with large-scale tectonic events recorded in the proto-Indian Ocean at 140–160 Ma.  相似文献   

20.
ABSTRACT

Subduction-related basaltic rocks in active continental margins should record information about the lithospheric mantle. Mafic rocks from the Qimantag region of the East Kunlun Orogenic Belt (EKOB), NW China, can be used to constrain the evolution of mantle sources. The Heishan basalts (445 Ma) and Xiarihamu gabbros (427 Ma) display distinct geochemical and isotopic features, with basalts yielding relatively lower Na2O+K2O (1.48–4.16 wt.%) and Mg# (0.50–0.57) than gabbros (Na2O+K2O = 2.96–4.07 wt.%, Mg# = 0.65–0.81). Although the basalts and gabbros show similar enrichment of LILE and depletion of HFSE, the gabbros have higher Th/Y and lower Sm/Th and Nb/U ratios than the basalts, indicative of derivation from a more enriched mantle source. The Heishan basalts have relatively positive εNd(t) values (+4.7 to +5.8) whereas the Xiarihamu gabbros have negative εNd(t) values ranging from ?5.5 to ?3.8. Crustal contamination played an insignificant role in the formation of the basalts and gabbros. Our data suggest that the basalts originated from a depleted mantle source, slightly enriched by subduction-related fluids, whereas the gabbros originated from an enriched mantle source. These findings support a subduction-related progressive lithospheric mantle enrichment model over ~20 Ma beneath the Qimantag region in the Early Palaeozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号