首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The eastern part of the Guerrero terrane contains two tectonically juxtaposed metavolcanic-sedimentary sequences with island arc affinities: the lower, Tejupilco metamorphic suite, is intensely deformed with greenschist facies metamorphism; the upper, Arcelia-Palmar Chico group, is mildly to moderately deformed with prehnite-pumpellyite facies metamorphism. A U–Pb zircon age of 186 Ma for the Tizapa metagranite, and Pb/Pb isotopic model ages of 227 and 188 Ma for the conformable syngenetic Tizapa massive sulfide deposit, suggest a Late Triassic–Early Jurassic age for the Tejupilco metamorphic suite. 40Ar/39Ar and K–Ar age determinations of metamorphic minerals from different units of the Tejupilco metamorphic suite in the Tejupilco area date a local early Eocene thermal event related to the emplacement of the undeformed Temascaltepec granite. The regional metamorphism remains to be dated. 40Ar/39Ar ages of 103 and 93 Ma for submarine volcanics support an Albian–Cenomanian age for the Arcelia-Palmar Chico group, although it may extend to the Berriasian. U–Pb isotopic analyses of zircon from the Tizapa metagranite, together with Nd isotopic data, reveal inherited Precambrian zircon components within units of the Tejupilco metamorphic suite, precluding the generation of Tejupilco metamorphic suite magmas from mantle- or oceanic lithosphere-derived melts, as was previously considered to be the case. Instead, these data, together with high-grade gneiss xenoliths with Grenvillian Nd isotopic affinity in Oligocene subvolcanics, indicate the presence of pre-Mesozoic continental crust beneath at least the eastern part of the Guerrero terrane. As a Late Triassic–Early Jurassic basement unit in the eastern part of the Guerrero terrane, the Tejupilco metamorphic suite may therefore represent an evolved volcanic arc developed on old crust with assimilated craton-derived sediment. This would imply a tectonic cycle of deformation, metamorphism and erosion during the Middle–early Late Jurassic that was probably related to the accretion and consolidation of part of the Guerrero terrane into the Acatlán Complex, the pre-Mississippian poly-deformed and metamorphosed basement of the Mixteco terrane.  相似文献   

2.
Despite the exposures of Precambrian and Paleozoic rocks and the accretionary tectonic history of the northern Pacific (northeastern Asia, Alaska, and Kamchatka), it is likely that a considerable portion of the lower crust of the continental margins is much younger and was generated by Cretaceous postaccretion magmatic events. Data on xenoliths suggest that Late Cretaceous and Paleocene mafic intrusions and cumulates of calc-alkaline magmas may become more important with increasing depth. This conclusion is based on the petrological and geochronological investigation of lower-middle crustal xenoliths borne by mantlederived alkali basalt lavas and U-Pb dating of zircon cores from the igneous rocks of the region. We studied deep mafic xenoliths of granulites and gabbroids (accounting for <2% of the general xenolith population) from the Late Neogene alkali basalt lavas of the Enmelen and Viliga volcanic fields (Russia) and the Imuruk volcanic field in the Seward Peninsula, St. Lawrence Island, and Nunivak Island (Alaska). Depleted MORB-like varieties and relatively enriched in radiogenic isotopes and LREE rocks were distinguished among plagioclase-bearing xenoliths. The most representative collection of Enmelen xenoliths was subdivided into three groups: LREE enriched charnockitoids and mafic melts, pyroxene-plagioclase cumulates with a positive Eu anomaly, and LREE depleted garnet gabbroids. Mineral thermobarometry and calculated seismic velocities (P = 5–12 kbar, T = 740–1100°C, and V p = 7.1 ± 0.3 km/s) suggest that the xenoliths were transported from the lower and middle crust, and the rocks show evidence for their formation through the magmatic fractionation of calc-alkaline magmas and subsequent granulite-facies metamorphism. The U-Pb age of zircon from the xenoliths ranges from the Cretaceous to Paleocene, clustering mainly within 107–56 Ma (147 crystals from 17 samples were dated). The zircon dates were interpreted as reflecting the magmatic and metamorphic stages of the growth and modification of the regional crust. The distribution of the obtained age estimates corresponds to the main magmatic pulses in two largest magmatic belts of the region, Okhotsk-Chukchi and Anadyr-Bristol. The absence of older inherited domains in zircons from both the xenoliths and igneous rocks of the regions is a strong argument in favor of the idea on the injection of juvenile material and underplating of calc-alkaline magmas in the lower crust during that time interval. This conclusion is supported by isotope geochemical data: the Sr, Nd, and Pb isotope ratios of the rocks and xenolith minerals show mantle signatures (87Sr/86Sr = 0.7040–0.70463, 143Nd/144Nd = 0.51252–0.51289, 206Pb/204Pb = 18.32–18.69) corresponding to an OIB source and are in general similar to those of the Cretaceous calc-alkaline basalts and andesites from continental-margin suprasubduction volcanoplutonic belts. Xenoliths from Nunivak Island and Cape Navarin show more depleted (MORB-like) geochemical and isotopic characteristics, which indicates variations in the composition of the lower crust near the southern boundary of the Bering Sea shelf.  相似文献   

3.
《International Geology Review》2012,54(12):1067-1081
We report on a recent finding of granulitic and gabbroic xenoliths in the Rincon de Parangueo and La Cintura maars, within the Valle de Santiago volcanic field. The field is formed by several maars, cinder cones, and shield volcanoes and is located at the northern sector of the extensive Michoacan-Guanajuato volcanic field, characterized by abundant Neogene cinder cones and medium-sized shield volcanoes. The maars are distributed along a belt elongated NW-SE, apparently related to a regional fault system that has been documented in the west-central sector of the Trans-Mexican volcanic belt (TMVB).

Two types of xenoliths have been distinguished—i.e., hypersthene-diopside granulites and gabbroic xenoliths—which are present in the Rincon de Parangueo and La Cintura maars, respectively. The silica content in the granulites has a narrow range between 46.9 and 50.9 wt%, plagioclase crystals are fractured and display reaction borders, and crystals appear to have grown slowly and show no compositional zoning. Silica in the gabbroic xenoliths ranges from 45.7 to 47.5 wt%. Chemical composition is similar to mafic and intermediate orthogneiss xenoliths from the San Luis Potosi maars of the Central Mexican Altiplano.

An Sm/Nd model age for the granulitic xenoliths from Rincon de Parangueo maar of 1.5 Ga supports the presence of a Precambrian lower crust. This finding challenges current models of crustal structure in central and western Mexico. The Valle de Santiago field represents the westernmost lower-crustal xenolith locality reported thus far. It lies within the Guerrero terrane that has been considered as a collage of island arcs built on oceanic lithosphere and accreted to the North American plate during late Mesozoic time. Our results support a composite nature for the Guerrero terrane and extend the limit of possible granulitic lower continental crust farther to the west of the Central Altiplano province, beneath the TMVB, than currently considered (i.e., to the east of the Guerrero terrane).  相似文献   

4.
The assumption that mafic alkaline magmas are derived from mantle sources with a lherzolite mineralogy has become entrenched in the petrologic literature. Although it is commonly assumed that highly alkaline magmas require metasomatised mantle sources, there is little understanding of the spatial relation of such sources with respect to those of associated more Si-rich transitional magmas. Glasses developed in mantle xenoliths represent natural experiments which may provide some insight on this problem. Highly silica undersaturated glasses developed in the amphibole-garnet clinopyroxenite portion of a composite xenolith from Nunivak Island, Alaska, become quartz normative where they penetrate adjacent spinel lherzolite. A comparison of glass compositions in mantle pyroxenite and lherzolite xenoliths reveals that glasses developed in amphibole pyroxenite xenoliths are in general more silica undersaturated than those in lherzolite xenoliths. This suggests that some highly silica undersaturated magmas such as nephelinites may in fact be derived by the preferential melting of amphibole or amphibole-garnet pyroxenite veins and that the spectrum from nephelinite to transitional alkaline basalt that characterizes many individual alkaline volcanic suites is produced by mixing with melt derived from the host lherzolite as the degree of partial melting increases.  相似文献   

5.
A petrological model for the upper mantle and lower crust under the northern part of the Arabian Plate (Syria) has been derived on the basis of petrology of upper mantle and lower crustal xenoliths occurring in the Neogene to Quaternary alkali basalts of the Shamah volcanic fields. The xenolith suite has been classified by texture mineralogy and chemistry into the following groups: (1) Type I metasomatised and dry Cr diopside xenoliths with protogranular to porphyroclastic textures; (2) Type II Al augite spinal and garnet pyroxenite and websterite which have igneous and/or porphyroclastic textures and abundant phlogopite and/or amphibole; (3) Cr-poor megacrysts; and (4) mafic lower crustal xenoliths. Estimates of Type I xenolith temperatures are 990–1070°C with pressure between 13 and 19 kbar. Type II xenoliths yield temperatures of 930–1150°C and pressures in the range 12—13 kbar. The lower crustal xenolith mineral assemblages and geothermometry based on coexisting minerals suggest equilibration conditions between 6 and 8 kbar and 820–905°C. Mantle plumes, which may be the source of the volatile flux, have implications for melt generation in the Arabian basalt provinces. It is estimated that the lithosphere beneath the Arabian Plate is less than 80 km thick. Xenolith data and geophysical studies indicate that the Moho is located at a depth of 40–37 km and that the crust-mantle transition zone has a thickness of 8–5 km and occurs at a depth of 27–30 km. The boundary between an upper granitic crust and a lower mafic crust occurs at a depth of 19 km. Type I dry xenoliths show a low overall concentration of REE (La/Yb =1–2 and Sm = 0.7–1.1 times chondrite), whereas Type I hydrous xenoliths are LREE enriched (La/Yb=6–9 and Sm=1.1–1.3 times chondrite). Type II xenoliths show high overall LREE enrichment. Petrological and geochemical data for the lower crustal xenoliths indicate that these xenoliths represent basaltic cumulates crystallised at lower crustal pressures.  相似文献   

6.
A variety of deep-seated xenoliths occur within the Mesozoic Jiagou dioritic porphyry in the southeastern margin of the North China Craton (NCC). In this study we present a combined petrologic, geochronological, Hf isotope and geochemical study on the different types of xenoliths and use these data to better constrain the composition and age of the deep crust beneath the area. Most of the xenoliths are mafic meta-igneous rocks, among which garnet-bearing lithologies are common. The xenoliths can be classified into three broad petrographic groups: spinel-bearing garnet clinopyroxenite/phlogopite clinopyroxenite/spinel pyroxenite (Group 1), garnet amphibolite or hornblendite/garnet granulite/mafic gneiss lacking pyroxene (Group 2), and garnet-bearing felsic (intermediate-acid) gneiss (Group 3). Among these, the mafic–ultramafic rocks constitute the dominant category. The protoliths of the studied xenoliths range from basalt through andesite to dacite. Geochemical and Hf-isotope data indicate that most xenoliths belonging to Groups 2 and 3 resemble magmatic rocks formed at convergent continental margin arc setting. A few of them (mostly belonging to Group 1) represent mantle-derived products. Multiple metasomatic imprints, with contribution from subduction-related or mantle-derived fluids or melts have been recognized from the multistage mineral assemblages and ages.SHRIMP zircon U–Pb dating, Hf isotope and geochemical data offer evidence for subduction-related adakite-like and arc-related rocks in the southeastern margin of the NCC at ca. 2.5 Ga and 2.1 Ga, and confirm the occurrence of high-pressure granulite-facies metamorphism at ca. 1.8 Ga. These data suggest an episodic growth of Precambrian lower crust beneath this region in response to two stages of subduction–accretion and one vertical accretion of mantle-derived basaltic magma at the base of the lower crust. Additionally, a previously unknown late mantle-derived basaltic magmatism at 393 ± 7 Ma has also been recognized. The data presented in this paper demonstrate that the deep crust beneath the southeastern margin of the NCC is composed of hybrid protoliths derived from Paleozoic, Paleoproterozoic and late Neoarchean sources.  相似文献   

7.
St. Kitts lies in the northern Lesser Antilles, a subduction-related intraoceanic volcanic arc known for its magmatic diversity and unusually abundant cognate xenoliths. We combine the geochemistry of xenoliths, melt inclusions and lavas with high pressure–temperature experiments to explore magma differentiation processes beneath St. Kitts. Lavas range from basalt to rhyolite, with predominant andesites and basaltic andesites. Xenoliths, dominated by calcic plagioclase and amphibole, typically in reaction relationship with pyroxenes and olivine, can be divided into plutonic and cumulate varieties based on mineral textures and compositions. Cumulate varieties, formed primarily by the accumulation of liquidus phases, comprise ensembles that represent instantaneous solid compositions from one or more magma batches; plutonic varieties have mineralogy and textures consistent with protracted solidification of magmatic mush. Mineral chemistry in lavas and xenoliths is subtly different. For example, plagioclase with unusually high anorthite content (An≤100) occurs in some plutonic xenoliths, whereas the most calcic plagioclase in cumulate xenoliths and lavas are An97 and An95, respectively. Fluid-saturated, equilibrium crystallisation experiments were performed on a St. Kitts basaltic andesite, with three different fluid compositions (XH2O = 1.0, 0.66 and 0.33) at 2.4 kbar, 950–1025 °C, and fO2 = NNO ? 0.6 to NNO + 1.2 log units. Experiments reproduce lava liquid lines of descent and many xenolith assemblages, but fail to match xenolith and lava phenocryst mineral compositions, notably the very An-rich plagioclase. The strong positive correlation between experimentally determined plagioclase-melt KdCa–Na and dissolved H2O in the melt, together with the occurrence of Al-rich mafic lavas, suggests that parental magmas were water-rich (> 9 wt% H2O) basaltic andesites that crystallised over a wide pressure range (1.5–6 kbar). Comparison of experimental and natural (lava, xenolith) mafic mineral composition reveals that whereas olivine in lavas is predominantly primocrysts precipitated at low-pressure, pyroxenes and spinel are predominantly xenocrysts formed by disaggregation of plutonic mushes. Overall, St. Kitts xenoliths and lavas testify to mid-crustal differentiation of low-MgO basalt and basaltic andesite magmas within a trans-crustal, magmatic mush system. Lower crustal ultramafic cumulates that relate parental low-MgO basalts to primary, mantle -derived melts are absent on St. Kitts.  相似文献   

8.
‘Lower crustal’ suite xenoliths in basaltic and kimberlitic magmas are dominated by mafic granulites and may also include eclogites and garnet pyroxenites. Pressures of up to 25 kbar obtained from such xenoliths are well in excess of an upper value of c. 12 kbar for exposed granulite terranes. Palaeogeotherms constructed from xenoliths for the lower crust beneath the Phanerozoic fold belts of eastern Australia (SEA) and beneath the eastern margin of the Australian craton (EMAC) indicate two distinct thermal regimes. The two geotherms have similar form, with the EMAC curve displaced c. 150°C to lower temperatures. Reaction microstructures show the partial re-equilibration of primary igneous assemblages to granulite and eclogite assemblages and are interpreted to reflect the cooling from magmatic temperatures. Variations in mineral compositions and zoning are used to constrain further the history of several EMAC xenoliths to near-isobaric trajectories. Detailed graphical models are constructed to predict compositional changes for isobaric P–T paths (at 7, 14 & 21 kbar) to transform an SEA-type geotherm to a cratonic geotherm. The models show that for the assemblage grt + cpx ± ky + plag + qtz, the changes associated with falling temperature in Xgr, Xjd (increase) and Xan (decrease) will be greater at higher pressures. These results indicate that discernible zoning is more likely to be preserved in the higher pressure xenoliths. The zoning recorded in clinopyroxene from mafic granulite xenoliths over the pressure range c. 12–22 kbar suggests isobaric cooling of a large crustal thickness (30–35 km). An isobaric cooling path is consistent with magma accretion models for the transition of a crust–mantle boundary from an SEA-type geotherm to a cratonic geotherm. The coexistence of granulite and eclogite over the depth range 35–75 km beneath the EMAC indicates that the granulite to eclogite transition in the lower crust is controlled by P–T conditions, bulk chemistry and kinetic factors. At shallower crustal levels, typified by exposed granulite terranes, isobaric cooling may not result in the transition to eclogite.  相似文献   

9.
Two picrite flows from the SW rift zone of Mauna Loa containxenoliths of dunite, harzburgite, lherzolite, plagioclase-bearinglherzolite and harzburgite, troctolite, gabbro, olivine gabbro,and gabbronorite. Textures and olivine compositions precludea mantle source for the xenoliths, and rare earth element concentrationsof xenoliths and clinopyroxene indicate that the xenolith sourceis not old oceanic crust, but rather a Hawaiian, tholeiitic-stagemagma. Pyroxene compositions, phase assemblages and texturalrelationships in xenoliths indicate at least two different crystallizationsequences. Calculations using the pMELTS algorithm show thatthe two sequences result from crystallization of primitive MaunaLoa magmas at 6 kbar and 2 kbar. Independent calculations ofolivine Ni–Fo compositional variability in the plagioclase-bearingxenoliths over these crystallization sequences are consistentwith observed olivine compositional variability. Two parentsof similar bulk composition, but which vary in Ni content, arenecessary to explain the olivine compositional variability inthe dunite and plagioclase-free peridotitic xenoliths. Xenolithsprobably crystallized in a small magma storage area beneaththe rift zone, rather than the large sub-caldera magma reservoir.Primitive, picritic magmas are introduced to isolated rift zonestorage areas during periods of high magma flux. Subsequenteruptions reoccupy these areas, and entrain and transport xenolithsto the surface. KEY WORDS: xenolith; Hawaii; volcano plumbing; mineral composition; picrite  相似文献   

10.
The Mesoarchaean Tasiusarsuaq terrane of southern West Greenland consists of Tonalite–trondhjemite–granodiorite gneisses and, locally, polymetamorphic mafic and ultramafic rocks. The terrane experienced medium‐pressure granulite facies conditions during M1A in the Neoarchean, resulting in the development of two‐pyroxene melanosome assemblages in mafic granulites containing garnet‐bearing leucosome. Reworking of these rocks during retrogression introduced garnet to the melanosome in the form of overgrowths, coronas and grain necklaces that separate the mafic minerals from plagioclase. NCFMASHTO pseudosection modelling constrains the peak metamorphism during M1A to ~850 °C and 7.5 kbar at fluid‐saturated conditions. Following M1A, the rocks retained their M1A H2O content and became fluid‐undersaturated as they underwent near‐isobaric cooling to ~700 °C and 6.5–7 kbar, prior to reworking during M1B. These low H2O contents allowed for the formation of garnet overgrowths and coronas during M1B. The stability of garnet is greatly increased to lower pressure and temperature in fluid‐absent, fluid‐undersaturated mafic rocks, indicating that fluid and melt loss during initial granulite facies metamorphism is essential for the introduction of garnet, and the formation of garnet coronas, during retrogression. The occurrence of garnet coronas is consistent with, but not unique to, near‐isobaric cooling paths.  相似文献   

11.
Mafic and ultramafic xenoliths in a basaltic cone at The Anakies in south-eastern Australia are geochemically equivalent to continental basaltic magmas and cumulates. The xenolith microstructures range from recognizably meta-igneous for intrusive rocks to granoblastic for garnet pyroxenites. Contact relationships between different rock types within some xenoliths suggest a complex petrogenesis of multiple intrusive, metamorphic and metasomatic events at the crust/mantle boundary during the evolution of south-eastern Australia. Unaltered spinel lher-zolite, typical of the uppermost eastern Australian mantle, is interleaved with or veined by the metamorphosed intrusive rocks of basaltic composition. Geothermobarometry calculations by a variety of methods show a concordance of equilibration temperatures ranging from 880°C to 980°C and pressures of 12 to 18 kbar (1200-1800 mPa). These physical conditions span the gabbro to granulite to eclogite transition boundaries. The water-vapour pressure during equilibration is estimated to be about 0.5% of the load pressure, using amphibole breakdown data. Large fluid inclusions of pure CO2 are abundant in the mineral phases in the xenoliths, and it is suggested that flux of CO2 from the mantle has been an important heat source and fluid medium during metamorphism of the mafic and ultramafic protoliths at the lower crust/upper mantle boundary. The calculated pressures and temperatures suggest that the south-eastern Australian crust has sustained a high geothermal gradient. In addition, the nature of the mineral assemblages and the contact relationships of granulitic rock with spinel lherzolite, characteristic of mantle material, suggest that the Moho is not a discrete feature in this region, but is represented by a transition zone approximately 20 km thick. These inferences are in agreement with geophysical data (including seismic, heat-flow and electrical resistivity data) determined for south-eastern Australia. Underplating at the crust/mantle boundary by continental basaltic magmas may be an important alternative or additional mechanism to the conventional andesite model for crustal accretion.  相似文献   

12.
Xenoliths of quartz‐absent Fe‐rich aluminous metapelite are common within the platinum group element‐rich mafic/ultramafic magmatic rocks of the Platreef. Relative to well‐characterized protoliths, the xenoliths are strongly depleted in K2O and H2O, and have lost a substantial amount of melt (>50 vol.%). Mineral equilibria calculations in the NCKFMASHTO system yield results that are consistent with observations in natural samples. Lower‐grade rocks that lack staurolite constrain peak pressures to ~2.5 kbar in the southern Platreef. Smaller xenoliths and the margins of larger xenoliths comprise micro‐diatexite rich in coarse acicular corundum and spinel, which record evidence for the metastable persistence of lower‐grade hydrous phases and rapid melting consequent on a temperature overstep of several hundred degrees following their incorporation in the mafic/ultramafic magmas. In the cores of larger xenoliths, temperatures increased more slowly enabling progressive metamorphism by continuous prograde equilibration and the loss of H2O by subsolidus dehydration; the H2O migrated to xenolith margins where it may have promoted increased melting. According to variations in the original compositional layering, layers became aluminosilicate‐ and/or cordierite‐rich, commonly with spinel but only rarely with corundum. The differing mineralogical and microstructural evolution of the xenoliths depends on heating rates (governed by their size and, therefore, proximity to the Platreef magmas) and the pre‐intrusive metamorphic grade of the protoliths. The presence or absence of certain phases, particularly corundum, is strongly influenced by the degree of metastable retention of lower‐grade hydrates in otherwise identical protolith bulk compositions. The preservation of fine‐scale compositional layering that is inferred to be relict bedding in xenolith cores implies that melt loss by compaction was extremely efficient.  相似文献   

13.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

14.
A complete understanding of the processes of crustal growth and recycling in the earth remains elusive, in part because data on rock composition at depth is scarce. Seismic velocities can provide additional information about lithospheric composition and structure, however, the relationship between velocity and rock type is not unique. The diverse xenolith suite from the Potrillo volcanic field in the southern Rio Grande rift, together with velocity models derived from reflection and refraction data in the area, offers an opportunity to place constraints on the composition of the crust and upper mantle from the surface to depths of  60 km. In this work, we calculate seismic velocities of crustal and mantle xenoliths using modal mineralogy, mineral compositions, pressure and temperature estimates, and elasticity data. The pressure, temperature, and velocity estimates from xenoliths are then combined with sonic logs and stratigraphy estimated from drill cores and surface geology to produce a geologic and velocity profile through the crust and upper mantle. Lower crustal xenoliths include garnet ± sillimanite granulite, two-pyroxene granulite, charnokite, and anorthosite. Metagabbro and amphibolite account for only a small fraction of the lower crustal xenoliths, suggesting that a basaltic underplate at the crust–mantle boundary is not present beneath the southern Rio Grande rift. Abundant mid-crustal felsic to mafic igneous xenoliths, however, suggest that plutonic rocks are common in the middle crust and were intraplated rather than underplated during the Cenozoic. Calculated velocities for garnet granulite are between  6.9 and 8.0 km/s, depending on garnet content. Granulites are strongly foliated and lineated and should be seismically anisotropic. These results suggest that velocities > 7.0 km/s and a layered structure, which are often attributed to underplated mafic rocks, can also be characteristic of alternating garnet-rich and garnet-poor metasedimentary rocks. Because the lower crust appears to be composed largely of metasedimentary granulite, which requires deep burial of upper crustal materials, we suggest the initial construction of the continental crust beneath the Potrillo volcanic field occurred by thickening of supracrustal material in the absence of large scale magmatic accretion. Mantle xenoliths include spinel lherzolite and harzburgite, dunite, and clinopyroxenite. Calculated P-wave velocities for peridotites range from 7.75 km/s to 7.89 km/s, with an average of 7.82 km/s. This velocity is in good agreement with refraction and reflection studies that report Pn velocities of 7.6–7.8 km/s throughout most of the Rio Grande rift. These calculations suggest that the low Pn velocities compared to average uppermost mantle are the result of relatively high temperatures and low pressures due to thin crust, as well as a fertile, Fe-rich, bulk upper mantle composition. Partial melt or metasomatic hydration of the mantle lithosphere are not needed to produce the observed Pn velocities.  相似文献   

15.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

16.
 Isotopic and trace element data from mantle and granulite xenoliths are used to estimate the relative contributions of mantle and crustal components to a large ignimbrite, referred to as the upper ignimbrite, that is representative of the voluminous mid-Cenozoic rhyolites of northwestern Mexico. The study also uses data from the volcanic rocks to identify deep crustal xenoliths that are samples of new crust created by the Tertiary magmatism. The isotopic composition of the mantle component is defined by mantle-derived pyroxenites that are interpreted to have precipitated from mid-Cenozoic basaltic magmas. This component has ɛNd≈+1.5, 87Sr/86Sr≈0.7043 and 206Pb/204Pb≈18.6. Within the upper ignimbrite and associated andesitic and dacitic lavas, initial 87Sr/86Sr is positively correlated with SiO2, reaching 0.7164 in the ignimbrite. Initial 206Pb/204Pb ratios also show a positive correlation with silica, whereas ɛNd values have a crude negative correlation, reaching values as low as −2. Of the four isotopically distinct crustal components identified from studies of granulite xenoliths, only the sedimentary protolith of the paragneiss xenoliths can be responsible for the high initial 87Sr/86Sr of the upper ignimbrite. The Nd, Sr, and Pb isotopic compositions of the upper ignimbrite can be modeled with relatively modest assimilation (≤20%) of the sedimentary component ± Proterozoic granulite. Gabbroic composition granulite xenoliths have distinctive Nd, Sr, and Pb isotope ratios that cluster closely within the range of compositions found in the andesitic and dacitic lavas. These mafic granulites are cumulates, and their protoliths are interpreted to have precipitated from the intermediate to silicic magmas at 32–31 Ma. These mafic cumulate rocks are probably representative of much of the deep crust that formed during mid-Cenozoic magmatism in Mexico. Worldwide xenolith studies suggest that the relatively great depth (≤20 km) at which assimilation-fractional crystallization took place in the intermediate to silicic magma systems of the La Olivina region is the rule rather than the exception. Oligocene ignimbrites of the southwestern United States (SWUS) have substantially lower ɛNd values (e.g. <−6) than the upper ignimbrite and other rhyolites from Mexico. This difference appears to reflect a greater crustal contribution to ignimbrites of the SWUS, perhaps due to a higher temperature of the lower crust prior to the emplacement of the Oligocene basaltic magmas. Received: 16 December 1994 / Accepted: 13 September 1995  相似文献   

17.
The Anfeg batholith (or composite laccolith) occupies a large surface (2000 km2) at the northern tip of the Laouni terrane, just south of Tamanrasset in Hoggar. It is granodioritic to granitic in composition and comprises abundant enclaves that are either mafic microgranular enclaves (MME) or gneissic xenoliths. It intruded an Eburnian (≈2 Ga) high-grade basement belonging to the LATEA metacraton at approximately 608 Ma (recalculated from the U–Pb dating of [Tectonics 5 (1986) 955]) and cooled at approximately 4 kbar, with a temperature of about 750 °C. This emplacement occurred mainly along subhorizontal thrust planes related to Pan-African subvertical mega-shear zones close to the attachment zone of a strike-slip partitioned transpression system. Although affected by some LILE mobility, the Anfeg batholith can be ascribed to a high-K calc-alkaline suite but characterized by low heavy REE contents and high LREE/HREE ratios. The MME belong to the Anfeg magmatic trend while some xenoliths belong to Neoproterozoic island arc rocks.The Anfeg batholith defines a Nd–Sr isotopic initial ratios trend (Nd/(87Sr/86Sr)i from −2.8/0.7068 to −11.8/0.7111) pointing to a mixing between a depleted mantle and an old Rb-depleted granulitic lower crust. Both sources have been identified within LATEA and elsewhere in the Tuareg shield (Nd/87Sr/86Sr)i of +6.2/0.7028 for the depleted mantle, −22/0.708 for the old lower crust.The model proposed relates the above geochemical features to a lithospheric delamination along the subvertical mega-shear zones that dissected the rigid LATEA former passive margin without major crustal thickening (metacratonization) during the general northward tectonic escape of the Tuareg terranes, a consequence of the collision with the West African craton. This delamination allowed the uprise of the asthenosphere. In turn, this induced the melting of the asthenosphere by adiabatic pressure release and of the old felsic and mafic lower crust due to the high heat flow. A gradient in the mantle/crust ratio within the source of the Pan-African magmatism is observed in LATEA from the northeast (Egéré-Aleksod terrane) where rare plutons are rooted within the Archaean/Eburnian basement to the southwest (Laouni terrane) where abundant batholiths, including Anfeg, have a mixed signature. Some mantle melts with only slight crustal contamination (Laouni troctolitic layered intrusions) are even present. This suggests that the southern boundary of LATEA microcontinent is not far south of the Tuareg shield.  相似文献   

18.
Crustal xenoliths from basanitic dikes and necks that intruded into continental sediments of the Cretaceous Salta Rift at Quebrada de Las Conchas, Provincia Salta, Argentina were investigated to get information about the age and the chemical composition of the lower crust. Most of the xenoliths have a granitoid composition with quartz-plagioclase-garnet-rutile ± K-feldspar as major minerals. The exceedingly rare mafic xenoliths consist of plagioclase-clinopyroxene-garnet ± hornblende. All xenoliths show a well equilibrated granoblastic fabric and the minerals are compositionally unzoned. Thermobarometric calculations indicate equilibration of the mafic xenoliths in the granulite facies at temperatures of ca. 900 °C and pressures of ca. 10 kbar. The Sm-Nd mineral isochron ages are 95.1 ± 10.4 Ma, 91.5 ± 13.0 Ma, 89.0 ± 4.2 Ma (granitoid xenoliths), and 110.7 ± 23.6 Ma (mafic xenolith). These ages are in agreement with the age of basanitic volcanism (ca. 130–100 and 80–75 Ma) and are interpreted as minimum ages of metamorphism. Lower crustal temperature at the time given by the isochrons was above the closure temperature of the Sm-Nd system (>600–700 °C). The Sm-Nd and Rb-Sr isotopic signatures (147Sm/144Nd = 0.1225–0.1608; 143Nd/144Ndt 0 = 0.512000–0.512324; 87Rb/86Sr = 0.099–0.172; 87Sr/86Srt 0 = 0.708188–0.7143161) and common lead isotopic signatures (206Pb/204Pb = 18.43–18.48; 207Pb/204Pb = 15.62–15.70; 208Pb/204Pb = 38.22 –38.97) of the granitoid xenoliths are indistinguishable from the isotopic composition of the Early Paleozoic metamorphic basement from NW Argentina, apart from the lower 208Pb/204Pb ratio of the basement. The Sm-Nd depleted mantle model ages of ca. 1.8 Ga from granitoid xenoliths and Early Paleozoic basement point to a similar Proterozoic protolith. Time constraints, the well equilibrated granulite fabric, P-T conditions and lack of chemical zoning of minerals point to a high temperature in a crust of nearly normal thickness at ca. 90 Ma and to a prominent thermal anomaly in the lithosphere. The composition of the xenoliths is similar to the composition of the Early Paleozoic basement in the Andes of NW Argentina and northern Chile. A thick mafic lower crust seems unlikely considering low abundance of mafic xenoliths and the predominance of granitoid xenoliths. Received: 21 July 1998 / Accepted: 27 October 1998  相似文献   

19.
柴胡栏子金矿位于华北板块北缘,属中温热液蚀变岩型金矿。金成矿与矿区北部的早中生代辉石闪长岩体有密切关系。在辉石闪长岩体内发育大量包体,可以分为基性麻粒岩和角闪岩两类包体。包体的地球化学、形成温压条件表明基性岩包体为来源于大陆下地壳的基性麻粒岩包体,来源深度大约相当于下地壳中部-中上部位置,为早中生代时期底侵作用的产物。角闪岩包体来源于下地壳上部-中地壳下部位置,被上升岩浆带至地壳浅部。包体和寄主岩石具有相似的地球化学和氧、铅、锶、钕同位素特征,说明二者具有相同的岩浆来源。基性麻粒岩包体为底侵作用早期形成的堆晶岩受到后续岩浆的烘烤发生麻粒岩化形成。基性麻粒岩和寄主岩石辉石闪长岩与金矿床形成的密切时空关系显示底侵作用对柴胡栏子金矿含矿流体形成、运移和矿质富集有重要控制作用,其中 H2O和CO2等挥发性组分对控制流体形成和演化有至关重要作用。基性麻粒岩包体发育为成柴胡栏子金矿成矿物质来源于深部提供了有力的证据。  相似文献   

20.
High‐MgAl rocks occur as xenoliths (up to 2 m in diameter) in mafic granulites at a newly discovered locality near Anakapalle. Following an early phase of deformation, ultrahigh‐temperature (UHT) metamorphism and near‐isothermal decompression, the rocks were intruded in a lit‐par‐lit manner by felsic melts (charnockite), which caused local‐scale metasomatism. A subsequent deformation produced isoclinal folds and the distinct gneissic foliation of the charnockite still at granulite facies conditions. The sequence of multiphase reaction textures in the high‐MgAl xenoliths reflects the changes of physico‐chemical conditions during the polyphase evolution of the terrane; UHT metamorphism (stage 1, > 1000°C, c. 10 kbar) is documented by relics of extremely coarse grained domains with the assemblage orthopyroxene (opx)1 + garnet (grt)1 + sapphirine (spr)1 + spinel (spl)1 + rutile (rt). A subsequent phase of near‐isothermal decompression in the order of 1–2 kbar (stage 2) resulted in extensive replacement of grt1 and opx1 megacrysts by lamellar (opx2 + spr2) symplectites. The intrusion of felsic melt (stage 3) led to the development of a narrow metasomatic black wall reaction zone (bt + sil + plg3 + opx2,3 + rt) at the immediate contact of the xenoliths and in melt infiltration zones to the partial replacement of (opx2 + spr2) symplectites by biotite and sillimanite and/or plg3, mainly at the expense of orthopyroxene, with concomitant coarsening of the intergrowth texture. The subsequent deformation (stage 4) further modified the symplectite textures through polygonization, recrystallization and grain‐size coarsening. The deformation was followed by a period of cooling and decompression (stage 5, c. 800°C, 4–7 kbar) as indicated by local growth of late garnet (grt5) at the expense of (opx + spr + plg) domains at static conditions. Recently published isotope data suggest that the multistage evolution of the high‐MgAl granulites at Anakapalle followed a discontinuous P–T trajectory that may be related to heating of the crust through magmatic accretion culminating in deep‐crustal UHT metamorphism at 1.4 Ga (stage 1), fast uplift of the UHT granulites into mid‐crustal levels as a consequence of extensional tectonics (stage 2), emplacement of felsic magmas in the Grenvillian (at c. 1 Ga, stage 3) resulting in reheating of the crust to high–T conditions followed by a phase of compressional tectonics (stage 4) and a period of cooling to the stable geotherm (stage 5) still in the Grenvillian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号