首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Stress models for Tharsis formation, Mars   总被引:1,自引:0,他引:1  
A critical survey is presented of most stress models proposed for the formation of the tectonic structures in the Tharsis volcano-tectonic province on Mars and provides new constraints for further models. First papers, in the 1970s, attempted to relate the Tharsis formation to asthenospheric movements and lithosphere loading by magma bodies. These processes were then quantified in terms of stress trajectory and magnitude models in elastic lithosphere (e.g. Banerdt et al., J. Geophys. Res. 87(B12), 9723–9733, 1982). Stresses generated by dynamic lithosphere uplift were rapidly dismissed because of the poor agreement between the stress trajectories provided by the elastic models and the structural observations. The preferred stress models involved lithosphere loading, inducing isostatic compensation, and then lithosphere flexure. Some incomsistency with structural interpretation of Viking imagery has been found. In the early 1990s, an attempt to solve this problem resulted in a model involving the existence of a Tharsis-centred brittle crustal cap, deteched from the strong mantle by a weak crustal layer (Tanaka et al., J. Geophys. Res. 96(E1), 15617–15633, 1991). Such a configuration should produce loading stresses akin to those predicted by some combination of the two loading modes. This model has not been quantified yet, however it is expected to reconcile stress trajectories and most structural patterns. Nevertheless, some inconsistencies with observed structures are also expected to remain. Parallel to this approach focused on loading mechanisms, the idea that volcanism and tectonic structures could be related to mantle circulation began to be considered again through numerical convection experiments, whose results have however not been clearly correlated with surface observations. Structural clues to early Tharsis dynamic uplift are reported. These structures have little to do with those predicted by elastic stress modelling of dynamic lithosphere uplift. They denote the existence of unsteady stress trajectories responsible for surface deformations that cannot be readily predicted by elastic models. These structures illustrate that improving current stress models for Tharsis formation shall come from deeper consideration of rock failure criterion and load growth in the lithosphere (e.g. Schultz and Zuber, J. Geophys. Res. 99(E7), 14691–14702, 1994). Improvements should also arise from better understanding rheological layering in the lithosphere and its evolution with time, and from consideration of stress associated to magma emplacement in the crust, which may have produced many tectonic structures before loading stress resulting from magma freezing became significant (Mège and Masson, Planet. Space Sci. 44, 1499–1546, 1996a).  相似文献   

2.
The Tharsis region is an 8000-km-wide structural dome that incorporates a concentration of the main volcanic and tectonic activity on the Planet Mars. The area of structural doming is characterised by giant radial graben-dike systems. Nested on a set of these giant dikes to the northern side of Tharsis, is Alba Patera, one of the largest volcanoes in the planetary system. The regional dikes there are in arcuate arrangement and imply an E-W to NW-SE regional extension at Alba Patera. To assess the influence of regional and local tectonics, we studied the dike orientations on the volcano with Viking mosaic data and simulated plausible stress fields with finite element modelling. We found that the influence of a NW-SE regional extension was strong near the volcano centre but decreased rapidly in importance towards the northern pole, i.e., far from the Tharsis centre. By combining this regional stress with a broad uplift that is due to a buoyancy zone of about 1400 km in lateral extent and centred under Alba Patera, we reproduced the radial pattern of dike swarms that diverge from the Tharsis trend. Regional tectonics may have dominated the early stages of dike injection. During the evolution of Alba Patera, however, local updoming controlled the dike pattern, supporting the idea of a hotspot under Alba Patera. The well-expressed dike geometry and characteristics of Alba Patera provide an ideal example for comparative study with analogue hotspots on Earth where plate tectonics and active erosion may complicate the reconstruction of volcanic and tectonic history and the understanding of involved geodynamic processes.  相似文献   

3.
Topographic information, surface structures and construction of the Martian Tharsis bulge are used to estimate the previous stresses across the low-lying peripheral margins of the crustal blocks in terms of simple compensation models. Hot mantle activity, crustal roots, isostasy, and late-stage extensive lithosphere thickening together with volcanic building have been in combined response to the high-elevated Tharsis bulge. The initial phases of the Tharsis building have been dominated by the mantle plume doming, followed by extrusional dome raising. The volcanism has been most important bulge building factor only after thickening of the crust. During the initial mantle-generated doming and igneous activity the thin-lithosphere block tectonics has been very important. There has been a compressional peripheral zone around the bulge giving rise to dorsa formation while the high bulge crests have been in tensional state. The situation may be favorable for comparative studies with other planets. We may have something to learn from this block tectonics on the one-plate planet Mars even in respect to the Earth's plate tectonic paradigm.On leave from Dept. of Astronomy, University of Oulu, Finland.  相似文献   

4.
The tectonic style of a terrestrial planet depends strongly on the mechanisms of heat release from the mantle through the lithosphere to the surface. Three types of lithospheric heat transfer have been proposed. (1) Lithospheric conduction, (2) (hot spot) volcanism, (3) plate recycling (mainly at spreading plate margins). In the case of the Earth the total heat flow is determined by plate recycling 65%, heat conduction through the lithosphere 20%, decay of radioactive elements in the crust 15%, hot spot volcanism <1%. Scaling the mean surface heat flow density of the Earth to venusian conditions leads to 66 mW/m2. In the case of Venus plate tectonics play only a minor role. Thus, two processes remain for heat release: (hot spot) volcanism and conduction. The term hot spot is written in brackets because volcanism on Venus occurs globally, not necessarily associated with hot spots.The volcanic lava production has been estimated from Venera 15/16 scenes. Arecibo and Magellan images revealed that the surface character south of 30° N is very similar to the area covered by Venera. The main results of the estimation are: (i) The maximum thickness of the plain lavas is 3 km. (ii) With plain lava thicknesses larger than 200 m the lava production from central volcanoes is negligible, (iii) Two age models have been used for the mean age of the area obseved: t 1 = 109 a, t 2 = 400 x 106 a. t 1 leads to the maximum lava production rate of 3 km3/a compared to 20 to 25 km3/a of the Earth; this gives a maximum contribution of 0.75mW/m2 to the heat flow density of Venus, i.e. about 1%. This implies that either heat conduction is the only dominating process for heat release or there is a hidden reservoir of the missing basalt somewhere or there is another unknown tectonic process. Assuming pure conduction and correcting the surface heat flow density for radioactive elements in the crust leads to a thickness of the thermal lithosphere of 45km. A reservoir for the missing basalt could be basaltic underplating to a depth of 100 km. This gives a contribution of about 20 mW/m2 with the age model t 2 to the heat flow density from first order calculations.While the tectonic style of the Earth can be described to be linear formed at the plate margins, the surface of Venus is characterized by global spotty volcanism. The surface is more dominated by volcanic landforms than in the case of the Earth despite the relatively low lava production rate with a maximum of 3 km3/a. As plate tectonics is a minor process on Venus, conduction through a rather thin lithosphere should play an important role for heat release.Contribution No. 437, Institut für Geophysik der Universität Kiel, Germany.  相似文献   

5.
The Tharsis rise on Mars with a diameter of about 8000 km and an elevation up to 10 km shows extensive volcanism and an extensional fracture system. Other authors explained this structure by (I) an uplift due to mantle processes and by (II) volcanic construction. Gravity models of four profiles are in accordance with a total Airy isostatic compensation of the whole rise with mean crustal thicknesses of 50 km and 100 km. But two regions exhibit significant mass deficits: (i) the area between Olympus Mons and the three large Tharsis volcanoes and (ii) central Tharsis. This can be explained by (1) a heated upper mantle, (2) a chemically modified upper mantle, (3) a crustal thickening, or (4) a combination of these three processes. Crustal thickening is mainly a constructional process, but the mass deficit should contribute to a certain degree of uplift causing the extensional area of Labyrinthus Noctis. Gravity modelling results in a different isostatic state of the three Tharsis volcanoes. Pavonis Mons is not compensated, Ascraeus Mons is highly or totally compensated, and Arsia Mons is medium or not compensated. The large, flat volcanic structure Alba Patera has been explained by a hot spot with an evolution of a mantle diapir.The results have shown that the Tharsis rise is a very complex structure. The central and eastern part of the rise is characterized by extensional features and a mass deficit (Extensional Province). The western part is dominated by many volcanic features and a central elongated mass deficit (Volcanic Province). The northern part consists of Alba Patera. It seems unlikely that the whole rise has been generated by one stationary large axisymmetric plume or hot spot. There could have been one or more active hot spots with an evolution in space and time.Contribution Nr. 421, Institut für Geophysik der Universität Kiel, Germany.  相似文献   

6.
H.J. Melosh 《Icarus》1980,44(3):745-751
Both geologic and free-air-gravity data suggest that the positive mass anomaly associated with the Tharsis volcanoes may have reoriented Mars' lithosphere by as much as 25°. Since Mars is oblate (with flattening ? ?0.005), rotation of the lithosphere over the equatorial bulge by 25° produces membrane stresses of several kilobars, large enough to initiate faulting. These stresses were first evaluated by F.A. Vening-Meinesz (1947, Trans. Amer. Geophys. Union28, 1–61) who treated the lithosphere as a thin elastic shell. The fracture patterns which result from these stresses are determined by the relation between stress and faulting proposed by E.M. Anderson (1951, The Dynamics of Faulting, Oliver & Boyd, Edinburgh). Plots of the magnitude and direction of stresses in a reoriented planet show that near Tharsis the dominant fault type should be north-south- trending normal faults. This normal fault province is centered about 30°N latitude and extends about 45° east and west in longitude. Similar faults should occur at the antipodes, north of Hellas Planitia. The polar regions should be occupied by roughly north-south-trending thrust faults which extend close to the equator south of Tharsis and north of Hellas. The regions between Tharsis and Hellas are subject to compression on a NE-trending axis and extension along a NW axis east of Tharsis (west of Tharsis the directions are NW compression and NE extension), thus predicting a zone of NNW and ENE strike slip faults east of Tharsis (NNE and WNW west of Tharsis). Although these patterns, except for the north-south normal faults north of Tharsis, have not yet been recognized, the discovery of such a tectonic system of the same age as Tharsis would provide strong support for the reorientation idea. Stresses due to reorientation appear to have little to do with Valles Marineris, since the stress normal to the axis of the Valles is predicted to be compressive, whereas geologic evidence suggests extension.  相似文献   

7.
Galileo's Near-Infrared Mapping Spectrometer (NIMS) obtained its final observations of Io during the spacecraft's fly-bys in August (I31) and October 2001 (I32). We present a summary of the observations and results from these last two fly-bys, focusing on the distribution of thermal emission from Io's many volcanic regions that give insights into the eruption styles of individual hot spots. We include a compilation of hot spot data obtained from Galileo, Voyager, and ground-based observations. At least 152 active volcanic centers are now known on Io, 104 of which were discovered or confirmed by Galileo observations, including 23 from the I31 and I32 Io fly-by observations presented here. We modify the classification scheme of Keszthelyi et al. (2001, J. Geophys. Res. 106 (E12) 33 025-33 052) of Io eruption styles to include three primary types: promethean (lava flow fields emplaced as compound pahoehoe flows with small plumes <200 km high originating from flow fronts), pillanian (violent eruptions generally accompanied by large outbursts, >200 km high plumes and rapidly-emplaced flow fields), and a new style we call “lokian” that includes all eruptions confined within paterae with or without associated plume eruptions). Thermal maps of active paterae from NIMS data reveal hot edges that are characteristic of lava lakes. Comparisons with terrestrial analogs show that Io's lava lakes have thermal properties consistent with relatively inactive lava lakes. The majority of activity on Io, based on locations and longevity of hot spots, appears to be of this third type. This finding has implications for how Io is being resurfaced as our results imply that eruptions of lava are predominantly confined within paterae, thus making it unlikely that resurfacing is done primarily by extensive lava flows. Our conclusion is consistent with the findings of Geissler et al. (2004, Icarus, this issue) that plume eruptions and deposits, rather than the eruption of copious amounts of effusive lavas, are responsible for Io's high resurfacing rates. The origin and longevity of islands within ionian lava lakes remains enigmatic.  相似文献   

8.
The Alba Patera main graben zone is radial to the Tharsis bulge, indicating the importance of the Tharsis bulge-related peripheral rift tectonics. The concentric grabens around the Alba Patera area are also partly caused by crustal bending due to the central load of the Alba Patera volcano. These two graben sets partly coincide forming composite structures. Both tectonic systems were still active after the last major volcanic lava extrusions took place. After this, the crater chain grabens, radial to the northernmost part of the Tharsis bulge were formed. These collapse craters were evidently caused by the late-tectonic forces due to the northern Tharsis and adjoining lava loads, resulting in flexural tension and activating previous faults.  相似文献   

9.
Amazonian-aged fan-shaped deposits extending to the northwest of each of the Tharsis Montes in the Tharsis region on Mars have been interpreted to have originated from mass-wasting, volcanic, tectonic and/or glacial processes. We use new data from MRO, MGS, and Odyssey to characterize these deposits. Building on recent evidence for cold-based glacial activity at Pavonis Mons and Arsia Mons, we interpret the smaller Ascraeus fan-shaped deposit to be of glacial origin. Our geomorphological assessment reveals a number of characteristics indicative of glacial growth and retreat, including: (1) a ridged facies, interpreted to be composed of drop moraines emplaced during episodic glacial advance and retreat, (2) a knobby facies, interpreted to represent vertical downwasting of the ice sheet, and (3) complex ridges showing a cusp-like structure. We also see evidence of volcano-ice interactions in the form of: (1) an arcuate inward-facing scarp, interpreted to have formed by the chilling of lava flows against the glacial margin, (2) a plateau feature, interpreted to represent a subglacial eruption, and (3) knobby facies superimposed on flat-topped flows with leveed channels, interpreted to be subglacial inflated lava flows that subsequently drained and are covered by glacial till. We discuss the formation mechanisms of these morphologies during cold-based glacial activity and concurrent volcanism. On the basis of a Mid- to Late-Amazonian age (250-380 Ma) established from crater size-frequency distribution data, we explore the climatic implications of recent glaciation at low latitudes on Mars. GCM results show that increased insolation to the poles at high obliquities (>45°) forces sublimation of polar ice, which is transported to lower latitudes and deposited on the flanks of the Tharsis Montes. We assess how local orographic effects, the mass balance of the glacier, and the position of equilibrium line altitudes, all played a role in producing the observed geomorphologies. In doing so, we outline a glacial history for the evolution of the Ascraeus Mons fan-shaped deposit and compare its initiation, growth and demise with those of Arsia Mons and Pavonis Mons.  相似文献   

10.
P. van Thienen  A. Rivoldini 《Icarus》2006,185(1):197-210
The two main volcanic centers on Mars, Tharsis and Elysium, are often interpreted in terms of mantle plume hotspots, even though there are several problems with the plume hypothesis for Mars. We present results of 2D cylindrical shell numerical mantle convection experiments in which we try to ascertain whether flushing of the hot lower mantle could provide a mechanism for the generation of a small number of plume-like features, i.e., localized upwelling of hot material. In this scenario the formation of hot upwellings is driven from the top by cold downwellings rather than from a hot thermal boundary layer at the CMB. First we construct a range of Mars interior structure models consistent with observations in order to demonstrate that the presence of a thin lower mantle in the martian interior is a viable scenario. Then we use a series of numerical convection experiments to investigate the effects of solid-state phase transitions, different stratified and temperature-dependent viscosity models, and the presence of a thick southern hemisphere crust on the operation of such a mechanism. Our results show that it is possible to generate hot strong localized upwellings from top-down dynamics if the lithosphere is thin or actively involved in the convective pattern. The presence of a thick, immobile, insulating southern hemisphere crust reduces the number of upwellings, and the perovskite phase transition causes a focusing of the upwellings. Further experiments demonstrate that an initial 500 Myr phase of mobile lid is sufficient to start this process create an upwelling which is stable for billions of years.  相似文献   

11.
The concept of block tectonics provides a framework for understanding many aspects of Tharsis and adjoining structures. This Tharsis block tectonics on Mars is manifested partly by mantle-related doming and partly by response to loading by subsequent volcanic construction. Although the origin of the volcanism from beneath Tharsis is a subject of controversy explanations have to include inhomogenities in Martian internal structure, energy distribution, magma accumulation and motion below the lithosphere. Thermal convection can be seen as a necessary consequence for transient initial phase of Martian cooling. This produced part of the elevated topography with tensional stresses and graben systems radial to the main bulge. The linear grabens, radial to the Tharsis center, can be interpreted to indicate rift zones that define the crustal block boundaries. The load-induced stresses may then have contributed on further graben and ridge formation over an extended period of time.On leave from Dept. of Astronomy University of Oulu, Oulu, Finland.  相似文献   

12.
D. Studd  C. Samson 《Icarus》2011,215(1):279-291
Radiating graben-fissure systems are common on Venus. Most are thought to be underlain by mafic dykes, fed by centrally-located magmatic centres. From previous work it has been shown that these magmatic plumbing systems can extend out up to 2000 km or more and that interaction between neighbouring systems can provide insight into the relative chronology of their magmatic centres. Systematic mapping of graben-fissure systems has potential as a tool for regional magmatic chronology and correlation on Venus.This methodology is applied to the Ulfrun Regio area (200-240°E, 0-25°N) where we mapped 47,000 graben and fissures. From these, 66 radiating systems comprised of 13,000 individual graben and fissures, and having radii of up to 2000 km have been identified, and are interpreted to be underlain by dyke swarms focussed on magmatic centres. Cross-cutting relationships among these systems and with the Hecate Chasma rift zone have been examined to provide a relative chronology for the magmatic centres. Two trends emerged: (a) an apparent younging from the southwest to northeast of the study area and (b) a cluster of older ages in the southwest, linked to the Atla Regio mantle plume.  相似文献   

13.
Centers of tectonic activity in the eastern hemisphere of Mars   总被引:1,自引:0,他引:1  
We compiled a paleotectonic map for the eastern hemisphere of Mars to determine if extensional tectonic features (graben) are radial or compressional tectonic features (wrinkle ridges) are concentric to centers of tectonic activity defined by axisymmetric stress fields. Using a vector analysis technique all latitude and longitude points (1° bins) are tested to see if they lie on great circle extensions of extensional structures (the plane defined by the maximum and intermediate principal stresses) or great circle perpendiculars to compressional structures (the plane defined by the maximum and minimum compressional stresses). Centers of tectonic activity are defined as 5° areas whose concentrations of great circle extensions of tectonic features are statistically significant (e.g., 3σ or 7.4σ for large populations) and therefore are not the result of random noise. Our paleotectonic investigation has identified four statistically significant centers of tectonic activity within the eastern hemisphere: Elysium, Hadriaca/Tyrrhena-Hellas, Isidis-Syrtis, and Arabia Terra. Two of these centers (Hadriaca/Tyrrhena and Isidis-Syrtis) meet the 7.4σ statistical criteria and thus represent primary centers of tectonic activity with axisymmetric stress fields. The remaining two meet the 3σ statistical criteria and thus are defined as secondary centers of tectonic activity. Because the structures that define the centers extend over 80° of the planet the defined centers of tectonic activity are regional in character and related to modified impact basins or volcanic centers (all are more limited in extent than the Tharsis stress system that extends over the entire western hemisphere). The observation that statistically significant centers of tectonic activity are quantifiably and statistically identified argues that the crust and lithosphere of the eastern hemisphere at a regional scale is not dominated by regional inhomogeneities and anisotropies.  相似文献   

14.
The tectonics of the Tharsis and adjoining areas is considered to be associated with the convection in the Martian mantle. Convection and mantle plume have been responsible for the primary uplift and volcanism of the Tharsis area. The radial compressional forces generated by the tendency for downslope movement of surface strata, vertical volcanic intrusions and traction of mantle spreading beneath Tharsis were transmitted through the lithosphere to form peripheral mare ridge zones. The locations of mare ridges were thus mainly controlled by the Tharsis-radial compression. The load-induced stresses then contributed on further ridge formation over an extended period of time by the isostatic readjustment which was reponsible for long-term stresses in the adjoining areas. Extrusions, changes in internal temperature and possible phase changes may also have caused changes in mantle volume giving rise to additional compressional forces and crustal deformations.On leave from Dept. of Astronomy, University of Oulu, Oulu, Finland  相似文献   

15.
Studies extending over three decades have concluded that the current orientation of the martian rotation pole is unstable. Specifically, the gravitational figure of the planet, after correction for a hydrostatic form, has been interpreted to indicate that the rotation pole should move easily between the present position and a site on the current equator, 90° from the location of the massive Tharsis volcanic province. We demonstrate, using general physical arguments supported by a fluid Love number analysis, that the so-called non-hydrostatic theory is an inaccurate framework for analyzing the rotational stability of planets, such as Mars, that are characterized by long-term elastic strength within the lithosphere. In this case, the appropriate correction to the gravitational figure is the equilibrium rotating form achieved when the elastic lithospheric shell (of some thickness LT) is accounted for. Moreover, the current rotation vector of Mars is shown to be stable when the correct non-equilibrium theory is adopted using values consistent with recent, independent estimates of LT. Finally, we compare observational constraints on the figure of Mars with non-equilibrium predictions based on a large suite of possible Tharsis-driven true polar wander (TPW) scenarios. We conclude, in contrast to recent comparisons of this type based on a non-hydrostatic theory, that the reorientation of the pole associated with the development of Tharsis was likely less than 15° and that the thickness of the elastic lithosphere at the time of Tharsis formation was at least ∼50 km. Larger Tharsis-driven TPW is possible if the present-day gravitational form of the planet at degree 2 has significant contributions from non-Tharsis loads; in this case, the most plausible source would be internal heterogeneities linked to convection.  相似文献   

16.
The orientation of a planet is controlled by the positions of the principal axes of the inertia tensor relative to the planetary surface. Using the theory for the deflection of thin elastic shells the principal axes are computed after emplacement of an arbitrary axisymmetrical load. The partial compensation of the load and the partial relaxation of rotational flattening are included in the computation. It is found that the amount of reorientation is independent of lithosphere thickness. The parameters controlling the amount of reorientation are the location of the load and the size of the load compared to the rotational flattening. The results indicate that the Tharsis rise has probably reoriented Mars by only 3 to 9° and certainly less that 18°. The position of the Caloris Basin on Mercury indicates that if the surrounding lava sheet controls the planetary orientation then the lava sheet is probably less than 2000 m thick.  相似文献   

17.
We have developed a numerical model for assessing the lifetime of ice deposits in martian caves that are open to the atmosphere. Our model results and sensitivity tests indicate that cave ice would be stable over significant portions of the surface of Mars. Ice caves on Earth commonly occur in lava tubes, and Mars has been significantly resurfaced by volcanic activity during its history, including the two main volcanic provinces, the Tharsis and Elysium rises. These areas, known or suspected of having subsurface caves and related voids are among the most favorable regions for the occurrence of ice stability. The martian ice cave model predicts regions which, if caves occur, would potentially be areas of astrobiological importance as well as possible water sources for future human missions to Mars.  相似文献   

18.
Global data sets of images, topography and gravity are available for Mars from several orbiter missions. At the eve of new global data from Mars Global Surveyor (MGS), the capabilities of 3D geophysical modelling based on areal topography and gravity data combined with geologic-tectonic image interpretation is demonstrated here. A unique structure is chosen for the model calculations: the Alba Patera volcanic complex at the northern border of the Tharsis rise. Five groups of graben are discriminated: Ceraunius Fossae, Catenae, Tantalus Fossae (radial group) radial to the Tharsis rise, mainly associated to the formation of Tharsis, and Alba and Tantalus Fossae (circular group), younger than the other graben and circular around Alba Patera. Combining 3D elastic flexure of the lithosphere due to a 3D topographic surface load with 3D gravity models results in a rather thick lithosphere (150–200 km) and thick crust (60–100 km). In another model estimate it has been assumed that the circular grabens are induced by the stresses from the surface load of Alba Patera. In a first order calculation the surface stresses under a point load have been determined resulting in a good correlation of the stress maximum with the location of the circular grabens for a 50-km thick lithosphere. This is in accordance with earlier results from this method, but in contradiction with the thick lithosphere derived from flexure-gravity models. One possibility for this contradiction may be that the different models represent two evolutionary points of Alba Patera. (1) The correlation of stresses with the circular grabens may represent an older stage of evolution with a thinner lithosphere. (2) The flexure-gravity models represent a younger to present stage with a thick lithosphere. The results of the lithosphere thicknesses are compared with an admittance calculation and different thermal evolution models which determine comparable thicknesses (150 km). More detailed models including 3D stress models should wait for new data sets from MGS. The results from the lineament analysis and geophysical modelling are summarized in an evolution model for Alba Patera.  相似文献   

19.
The paradigm of an ancient warm, wet, and dynamically active Mars, which transitioned into a cold, dry, and internally dead planet, has persisted up until recently despite published Viking-based geologic maps that indicate geologic and hydrologic activity extending into the Late Amazonian epoch. This paradigm is shifting to a water-enriched planet, which may still exhibit internal activity, based on a collection of geologic, hydrologic, topographic, chemical, and elemental evidences obtained by the Viking, Mars Global Surveyor (MGS), Mars Odyssey (MO), Mars Exploration Rovers (MER), and Mars Express (MEx) missions. The evidence includes: (1) stratigraphically young rock materials such as pristine lava flows with few, if any, superposed impact craters; (2) tectonic features that cut stratigraphically young materials; (3) features with possible aqueous origin such as structurally controlled channels that dissect stratigraphically young materials and anastomosing-patterned slope streaks on hillslopes; (4) spatially varying elemental abundances for such elements as hydrogen (H) and chlorine (Cl) recorded in rock materials up to 0.33 m depth; and (5) regions of elevated atmospheric methane. This evidence is pronounced in parts of Tharsis, Elysium, and the region that straddles the two volcanic provinces, collectively referred to here as the Tharsis/Elysium corridor. Based in part on field investigations of Solfatara Crater, Italy, recommended as a suitable terrestrial analog, the Tharsis/Elysium corridor should be considered a prime target for Mars Reconnaissance Orbiter (MRO) investigations and future science-driven exploration to investigate whether Mars is internally and hydrologically active at the present time, and whether the persistence of this activity has resulted in biologic activity.  相似文献   

20.
Review of morphologic, morphometric and compositional data from Mars suggests that volcanism in the early Hesperian Syrtis Major edifice was predominantly ultramafic, in contrast to the abundant basaltic volcanism of the Hesperian to Amazonian Tharsis and Elysium provinces. Comparisons of edifice characteristics between Syrtis Major and the large, circum-Hellas Noachian to Hesperian volcanoes suggest that these structures may also be formed by ultramafic volcanic activity. The data suggest that a global scale magma compositional change occurred on Mars during the late Hesperian. The occurrence of widespread ultramafic volcanism suggests that a high degree of partial melting in a relatively hot mantle characterized Mars?? early thermal history, conditions that may be analogous to those that prevailed in the Archean Earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号