首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The propagation of cylindrical and spherical electron acoustic (EA) shock waves in unmagnetized plasmas consisting of cold fluid electrons, hot electrons obeying a superthermal distribution and stationary ions, has been investigated. The standard reductive perturbation method (RPM) has been employed to derive the cylindrical/spherical Korteweg-de-Vries-Burger (KdVB) equation which governs the dynamics of the EA shock structures. The effects of nonplanar geometry, plasma kinematic viscosity and electron suprathermality on the temporal evolution of the cylindrical and spherical EA shock waves are numerically examined.  相似文献   

2.
Interaction of nonplanar ion acoustic solitary waves is an important source of information to study the nature and characteristics of ion acoustic solitary waves (IASWs) structures. The head-on collision between two cylindrical/spherical IASWs in un-magnetized plasmas comprising with inertial ions, superthermal electrons and positrons is investigated by using the extended version of Poincaré-Lighthill-Kuo (PLK) perturbation method. It has been shown numerically that how the interactions are taking place in cylindrical and spherical geometry. The nonplanar geometry modified analytical phase shifts following the head-on collision are derived. The effects of the superthermal electrons and positrons on the phase shift are studied. It is shown that the properties of the interaction IASWs in different geometry are very different.  相似文献   

3.
Nonlinear propagation of cylindrical and spherical dust-acoustic solitons in an unmagnetized dusty plasma consisting of cold dust grains, superthermal ions and electrons are investigated. For this purpose, the standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation which governs the dynamics of dust-acoustic solitons. The effects of nonplanar geometry and superthermal distributions on the cylindrical and spherical dust acoustic solitons structures are also studied by numerical calculation of the cylindrical/spherical Korteweg-de-Vries equation.  相似文献   

4.
Using a well-known similarity method, different aspects of cylindrical shock waves in magnetogasdynamics are investigated. Weak and strong shocks have been discussed in strong magnetic field. Combined effects of both the components of magnetic field on flow variables are studied.  相似文献   

5.
The properties of cylindrical and spherical ion acoustic solitary waves (IASWs) are investigated in a three-component unmagnetized, collisionless plasma consisting of warm ion fluid and superthermally distributed electrons and positrons in a nonplanar cylindrical or spherical geometry. Using the reductive perturbation technique, the nonplanar cylindrical and spherical Korteweg-de Vries (KdV) equations are derived. The effects of spectral index of electron and positron, and other plasma parameters are studied. It is found that both negative as well as positive solitary potential structures are formed in nonplanar geometries. The numerical solution shows that amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry. Numerical results indicate that the amplitude of the soliton is large in spherical geometry in comparison with cylindrical geometry.  相似文献   

6.
Propagation of cylindrical and spherical electron-acoustic solitary waves in unmagnetized plasmas consisting of cold electron fluid, hot electrons obeying a superthermal distribution and stationary ions are investigated. The standard reductive perturbation method is employed to derive the cylindrical/spherical Korteweg-de-Vries equation which governs the dynamics of electron-acoustic solitons. The effects of nonplanar geometry and superthermal hot electrons on the behavior of cylindrical and spherical electron acoustic soliton and its structure are also studied using numerical simulations.  相似文献   

7.
Cylindrical Korteweg-de Vries-Burgers (cKdVB) equation for magnetoacoustic wave is derived for dissipative magneto plasmas. Two fluid collisionless electromagnetic model is considered and reductive perturbation method is employed to study the propagation of magnetoacoustic shock waves in cylindrical geometry. Two level finite difference method is employed by using Runge-Kutta method to solve cKdVB equation numerically. The effects of nonplanar geometry, plasma density, magnetic field strength, temperature dependence and kinematic viscosity on magnetoacoustic shocks are investigated. The numerical results are also presented for illustration.  相似文献   

8.
Using the C.C.W. method, propagation of diverging cylindrical shock wave in a self-gravitating and rotating gas under the influence of a constant axial magnetic field has been studied for two cases of weak and strong shocks. Medium ahead of the shock is supposed to be homogeneous. Analytical relations for shock velocity and shock strength along with the expressions for the pressure, density, and particle velocity just behind the shock wave have been also obtained for both cases.  相似文献   

9.
A theoretical investigation has been made on the head-on collision of cylindrical and spherical electron-acoustic solitary waves in a non-Maxwellian plasma composed of stationary ions, cold fluid electrons, and superthermal electrons obeying κ velocity distribution. By using the extended Poincaré-Lighthill-Kuo perturbation method, the effects of plasma parameters, especially the superthermal effect on the interaction of colliding solitary waves are studied. It is found that there are both positive and negative colliding phase shifts for each colliding wave in its traveling direction. Also, it is shown that the solitary waves received the largest colliding phase shifts in spherical geometry, followed by the cylindrical and planar geometries.  相似文献   

10.
By employing the reductive perturbation technique, nonlinear cylindrical and spherical Korteweg–de Vries Burgers (KdVB) equation is derived for ion acoustic shock waves in an unmagnetized electronegative plasma. The latter is composed of warm positive and warm negative ions as well as q-distributed nonextensive electrons. Numerically, the modified KdVB equation is solved to examine the impact of nonthermal electrons on the profiles of nonplanar fast ion acoustic shocks. With the help of experimental parameters, it is found that the variations of different quantities, like q (nonextensive parameter), α (the negative-to-positive ion mass ratio), μ (the electron-to-positive ion density ratio) and θ i (the positive ion-to-electron temperature ratio), η i0,n0 (the positive/negative ion viscosities) significantly modify the propagation characteristics of nonplanar shocks in electronegative plasmas. The relevance to a laboratory experiment is highlighted, where positive and negative ions are present.  相似文献   

11.
Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili (KP) equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with nonthermal electrons and warm ions. The influence of nonthermally distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that the presence of nonthermally distributed electrons has a significant role in the nature of ion acoustic waves. In particular, when the nonthermal distribution parameter ?? takes certain values the usual cylindrical KP equation (CKPE) and spherical KP equation (SKPE) become invalid. One then has to have recourse to the modified CKPE or SKPE. Analytical solutions of both CKPE and SKPE and their modified versions are discussed in the present paper. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.  相似文献   

12.
Generation of quasielastic electron-acoustic (EA) waves head-on collision are investigated in non-planar (cylindrical/spherical) plasma composed of cold electrons fluid, hot electrons obeying nonthermal distribution, and stationary ions. The cylindrical/spherical Korteweg-de Vries (KdV) equations describing two bidirectional EA waves are derived and solved analytically. Numerical investigation have shown that only positive electron-acoustic (EA) structures can propagate and collide. The analytical phase shift |Δ A | due to the non-Maxwellian (nonthermal) electrons is different from the Maxwellian case. Both the hot-to-cold electron number density ratio α and nonthermal parameter β have opposite effect on the phase shift behavior. The phase shift of the spherical EA waves is smaller than the cylindrical case, which indicates that the former is more stable for collision. The relevance of the present study to EA waves propagating in the Earth’s auroral zone is highlighted.  相似文献   

13.
14.
The propagation of plane, cylindrical, and spherical waves in a thermally unstable gas–dust medium has been simulated numerically. As applied to the photodissociation regions near O and B stars, we take into account the interaction of ultraviolet radiation with dust grains and large polycyclic aromatic hydrocarbon molecules as well as the gas cooling through the excitation of СII ions and OI atoms and the deexcitation of rotational levels of CO molecules. The instability regions have been determined. The perturbation growth times corresponding to them are ~103?105 yr. We show that wave breaking occurs irrespective of the geometry of motion, while a perturbation in the form of a single pulse gives rise to a sequence of shock waves. The post-shock gas velocity is approximately 0.1?0.5 of the sound velocity, so that the autowaves can contribute noticeably to the observed velocity dispersion of the gas near the boundaries of HII regions. Two-dimensional simulations suggest that the presence of multiple shocks in a thermally unstable medium can accelerate significantly the destruction of preexisting isolated condensations.  相似文献   

15.
Non-similarity solutions of the equations governing the motion of a perfect gas behind a cylindrical shock wave of variable strength have been obtained. These solutions are applicable to both the weak and the strong shocks. The nature of flow and field variables are illustrated through graphs. The total energy of the wave is taken to be constant.  相似文献   

16.
Radiation-driven winds of hot, massive stars showvariability in UV and optical line profiles on time scales of hours to days.Shock heating of wind material is indicated by the observed X-ray emission. We present time-dependent hydrodynamical models of these winds, where flowstructures originate from a strong instability of the radiative driving. Recent calculations (Owocki 1992) of the unstable growth of perturbations were restricted by the assumptions of 1-D spherical symmetry and isothermality of the wind. We drop the latter assumption and include the energy transfer in the wind. This leads to a severe numerical shortcoming, whereby all radiative cooling zones collapse and the shocks become isothermal again. We propose a method to hinder this collapse. Calculations for dense supergiant winds then show: (1) The wind consists of a sequence of narrow and dense shells, which are enclosed by strong reverse shocks (with temperatures of 106 to 107 K) on their starward facing side. (2) Collisions of shells are frequent up to 6 to 7 stellar radii. (3) Radiative cooling is efficient only up to 4 to 6R *. Beyond these radii, cooling zones behind shocks become broad and alter the wind structure drastically: all reverse shocks disappear, leaving regions ofpreviously heated gas.  相似文献   

17.
The properties of nonplanar (cylindrical and spherical) ion-acoustic solitary waves (IA SWs) in an unmagnetized, collisionless electron-positron-ion (e-p-i) plasma, whose constituents are q-distributed electrons and positrons and inertial ions, are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation. The basic features of nonplanar IA Gardner solitons (GSs) are discussed. It is found that the properties of nonplanar IA GSs (rarefactive and compressive) are significantly affected by the particle nonextensivity.  相似文献   

18.
Propagation of cylindrical and spherical ion acoustic solitary waves in plasmas consisting of cold ions, superthermal electrons and thermal positrons are investigated. It is shown that cylindrical/spherical Korteweg-de-Vries equation governs the dynamics of ion-acoustic solitons. The effects of nonplanar geometry and also superthermal electrons on the characteristics of solitary wave structures are studied using numerical simulations. Obtained results are compared with the results of the other published papers and errors in the results of some papers are pointed.  相似文献   

19.
The properties of heavy-ion-acoustic (HIA) solitary structures associated with the nonlinear propagation of cylindrical and spherical electrostatic perturbations in an unmagnetized, collisionless dense plasma system has been investigated theoretically. Our considered model contains degenerate electron and inertial light ion fluids, and positively charged static heavy ions, which is valid for both of the non-relativistic and ultra-relativistic limits. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations have been derived by employing the reductive perturbation method, and numerically examined in order. It has been found that the effect of degenerate pressure and number density of electron and inertial light ion fluids, and positively charged static heavy ions significantly modify the basic features of HIA solitary waves. It is also noted that the inertial light ion fluid is the source of dispersion for HIA waves and is responsible for the formation of solitary waves. The basic features and the underlying physics of HIA solitary waves, which are relevant to some astrophysical compact objects, are briefly discussed.  相似文献   

20.
This paper introduces new families of Sun-centered non-Keplerian orbits (NKOs) that are constrained to a three-dimensional, cylindrical or spherical surface. As such, they are an extension to the well-known families of displaced NKOs that are confined to a two-dimensional plane. The cylindrical and spherical orbits are found by investigating the geometrically constrained spacecraft dynamics. By imposing further constraints on the orbit’s angular velocity and propulsive acceleration, the set of feasible orbits is defined. Additionally, the phase spaces of the orbits are explored and a numerical analysis is developed to find periodic orbits. The richness of the problem is further enhanced by considering both an inverse square acceleration law (mimicking solar electric propulsion) and a solar sail acceleration law to maintain the spacecraft on the three-dimensional surface. The wealth of orbits that these new families of NKOs generate allows for a range of novel space applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号