首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present work deals with universe bounded by the cosmological event horizon as a thermodynamical system which is irreversible in nature. Using non equilibrium thermodynamical approach the entropy variation on the event horizon has been evaluated. The additional term in the entropy variation depends on the irreversible process parameter. Finally, two dark energy models are presented and results are analyzed.  相似文献   

2.
Using Damour-Ruffini method, Hawking radiation from the apparent horizon of a Vaidya black hole is calculated. The thermodynamics can be built successfully on the apparent horizon. In the meantime, when a time-dependent perturbation is given to the apparent horizon, the first law of thermodynamics can also be constructed successfully at a new supersurface near the apparent horizon. The expressions of the characteristic position and temperature are consistent with the previous results. It is concluded that the thermodynamics should be constructed on the apparent horizon exactly while the event horizon thermodynamics is just one of the perturbations near the apparent horizon. These conclusions can be regarded as providing some new evidences for our previous viewpoint.  相似文献   

3.
The pivotal point of the paper is to discuss the behavior of temperature, pressure, energy density as a function of volume along with determination of caloric EoS from following two model: w(z)=w 0+w 1ln(1+z) & . The time scale of instability for this two models is discussed. In the paper we then generalize our result and arrive at general expression for energy density irrespective of the model. The thermodynamical stability for both of the model and the general case is discussed from this viewpoint. We also arrive at a condition on the limiting behavior of thermodynamic parameter to validate the third law of thermodynamics and interpret the general mathematical expression of integration constant U 0 (what we get while integrating energy conservation equation) physically relating it to number of micro states. The constraint on the allowed values of the parameters of the models is discussed which ascertains stability of universe. The validity of thermodynamical laws within apparent and event horizon is discussed.  相似文献   

4.
In this work the junction conditions between the exterior Reissner-Nordstrom-Vaidya space-time with the interior quasi-spherical Szekeres space-time have been studied for analyzing gravitational collapse in the presence of a magneto-hydrodynamic fluid undergoing dissipation in the form of heat flow. We have discussed about the apparent horizon and have evaluated the time difference between the formation of apparent horizon and central singularity.   相似文献   

5.
This work is to study the generalized second law (GSL) of thermodynamics in tachyon cosmology where the tachyon field is coupled to the matter Lagrangian while the boundary of universe is assumed to be a dynamical apparent horizon. The two logarithmic and power law corrected entropy on the apparent horizon is also discussed and the conditions for validity of GSL in both scenarios are investigated by using observational data of Sne Ia. In comparison to other research works, since the model is constrained by observational data, the conditions obtained for the dimensionless constant parameter, α in both logarithmic and power law entropy correction of GSL are (physically) meaningful and realistic. The model also predicts an accelerating universe with no phantom crossing in the past or future.  相似文献   

6.
In this work we have employed two hypotheses which have been separately used in order to try to solve the horizon problem, the first one is to take a Kaluza-Klein cosmological model withd noncompact andD compact space-like dimensions, in particular we considerD=1, the second one is to use an energy-momentum tensor depicting a fluid out of equilibrium, in particular we take a mixture of two gases, one is formed by relativistic particles and the other one is a gas constituted by non-relativistic particles and they are not in thermodynamical equilibrium, such that a bulk viscosity term arises. Without actually solving the Einstein equations, we prove that the scale factor of the non-compact space is a monotonic increasing function of time, and that if the scale factor of the compact space reaches a maximum at a certain time then the non-compact space is driven to expand rapidly, and, therefore, hinting us about the possibility of solving the horizon problem.The effective pressure and density in the non-compact space are found and it is proved that they satisfy the condition for having generalized inflation, and, therefore, might permit to solve the horizon problem, even in the case ofD=1, there is no need of a large number of extra dimensions, as some other previous authors have found.Despite our higher-dimensional matter is one in which the kinetic approach is valid, the effective tensor in the non-compact space-time has the property that this treatment is not applicable.Supported in part by CONACYT grant P228CCOX891723, and DGICSA SEP grant C90-03-03447.  相似文献   

7.
In this work, we consider the framework of non-linear electrodynamics in Bianchi type I universe model composed of matter and electromagnetic field. We deal with electric and magnetic universe separately. In this scenario, we calculate the electric and magnetic fields and their corresponding matter densities using two particular types of interaction terms. We also check the validity of generalized second law of thermodynamics in both universe models enclosed by apparent horizon. It turns out that this law holds on the apparent horizon for a particular range depending upon the parameters. Finally, we discuss the deceleration and statefinder parameters to check the viability of these models.  相似文献   

8.
The cosmological event horizon entropy and the apparent horizon entropy of the ΛCDM and the Bianchi type I Universe model with viscosity has been calculated numerically, and analytically in the large time limit. It is shown that for these Universe models the cosmological event horizon entropy increases with time and for large times it approaches a finite maximum value. The effect of viscosity upon the entropy is also studied and we have found that its role is to decrease the entropy. The bigger the viscosity coefficient is the less the entropy will be. Furthermore, the radiation entropy for the ΛCDM Universe model with and without viscosity is investigated, and together with the cosmological event horizon entropy are used to examine the validity of the generalized second law of thermodynamics, which states that the total rate of change of entropy of the Universe is never negative, in this Universe model.  相似文献   

9.
The junction conditions between static and non-static space–times are studied for analysing gravitational collapse in the presence of a cosmological constant. We have discussed about the apparent horizon and their physical significance. We also show the effect of cosmological constant in the collapse and it has been shown that cosmological constant slows down the collapse of matter.  相似文献   

10.
The present work deals with irreversible thermodynamics of universe containing interacting dark fluids. Recent observational evidences reveal that the universe is dominated by two dark components-dark matter and dark energy. The interaction between them leads to spontaneous heat flow between the horizon and the fluid system and as a result the system will no longer be in thermal equilibrium. In this paper dark matter is chosen as pressureless dust while modified Chaplygin gas has been considered as dark energy. In two separate cases we have considered the universe to be bounded by apparent horizon and event horizon and the validity of generalized second law of thermodynamics in the context of irreversible thermodynamics has been studied for both the cases.  相似文献   

11.
Considering power-law for of scale factor in a flat FRW universe we reported a reconstruction scheme for f(G) gravity based on QCD ghost dark energy. We reconstructed the effective equation of state parameter and observed “quintessence” behavior of the equation of state parameter. Furthermore, considering dynamical apparent horizon as the enveloping horizon of the universe we have observed that the generalized second law of thermodynamics is valid for this reconstructed f(G) gravity.  相似文献   

12.
Using a static massive spherically symmetric scalar field coupled to gravity in the Schwarzschild-de Sitter (SdS) background, first we consider some asymptotic solutions near horizon and their local equations of state (E.O.S.) on them. We show that near cosmological and event horizons our scalar field behaves as a dust. At the next step near two pure de Sitter or Schwarzschild horizons we obtain a coupling dependent pressure to energy density ratio. In the case of a minimally coupling this ratio is ?1 which springs to the mind thermodynamical behavior of dark energy. If having a negative pressure behavior near these horizons we concluded that the coupling constant must be ξ<¼. Therefore we derive a new constraint on the value of our coupling ξ. These two different behaviors of unique matter in the distinct regions of spacetime at present era can be interpreted as a phase transition from dark matter to dark energy in the cosmic scales and construct a unified scenario.  相似文献   

13.
We discuss the generalized second law of thermodynamics in the braneworld scenario with induced gravity and curvature correction terms. To explain the present acceleration of the universe, a dark energy component has been chosen on the 3-brane in the form of Modified Chaplygin Gas together with a perfect fluid as the dark matter and we show that the GSLT is valid on the apparent horizon in late time.  相似文献   

14.
This paper investigates the validity of generalized second law of thermodynamics using both the power law and logarithmic entropy corrected formulas in a general scalar-tensor gravity. For this purpose, we take non-flat FRW universe model filled with magnetized perfect fluid matter bounded by four different horizons namely Hubble, apparent, particle and event horizons. We introduce a non-minimal interaction between scalar and matter fields and take Lagrangian density of non-linear electromagnetic effects. Finally, we extend this study to anisotropic case by taking Bianchi I universe model bounded by apparent horizon only and investigate the role of anisotropy parameter on the validity of GSLT. In this case, we also explore the behavior of some cosmological parameters.  相似文献   

15.
The connection between the magnetic field geometry and the thermal properties of solar coronal structures is investigated. Gravitational effects, that can modify the spatial dependence of the thermodynamical quantities, but have no influence on the plasma-field interaction, are omitted to simplify the problem. A series of two-dimensional models is constructed, in which a strong coupling between the magnetic field shear and the thermal structure of the loop is clearly pointed out.It is shown how it is possible to deduce detailed information on the small scale magnetic structure by the use of measurement of purely thermodynamical quantities. Similarly information on the spatial dependence of the energy deposition function can also be obtained.  相似文献   

16.
Using the extented Jaynes's principle of maximum entropy we determine the effect of the quantum phenomena on the thermodynamical properties of matter in the early stage of Universe. It is shown that the thermodynamical free energy of the matter of the early Universe becomes very large value due to these quantum phenomena. Both the entropy as well as the free energy of the Universe become singular at the Big Bang.  相似文献   

17.
We study the generalized second law (GSL) of thermodynamics in f(T) cosmology, where T is the torsion scalar in teleparallelism. We consider the universe as a closed bounded system filled with n component fluids in the thermal equilibrium with the cosmological boundary. We use two different cosmic horizons: the future event horizon and the apparent horizon. We show the conditions under which the GSL will be valid in specific scenarios of the quintessence and the phantom energy dominated eras. Further we associate two different entropies with the cosmological horizons: with a logarithmic correction term and a power-law correction term. We also find the conditions for the GSL to be satisfied or violated by imposing constraints on model parameters.  相似文献   

18.
Using a simple model sketched by Thirring, thermodynamical quantities of a system of self-gravitating fermions are investigated. The onset of a core-halo structure is considered as a phase transition; free energy degeneracy and related critical parameters are found.  相似文献   

19.
The catastrophic thermodynamic destruction of large cometary heterogeneous grains lying on the surface of a comet nucleus is examined. The core–mantle grain-structure model is assumed. Grain fragmentation as an explanation of sudden changes in cometary brightness is proposed. The approach presented to the problem of cometary outbursts is a development of a previous author's paper. The proposed mechanism is based on the idea of thermodynamical destruction of heterogeneous cometary grains. Numerical simulations have been carried out for a wide range of values of physical characteristics of cometary material. The results obtained are consistent with observational data. The main conclusion of this paper is that thermodynamical fragmentation of large grains can explain variations in brightness and also outbursts of comets.  相似文献   

20.
Both dark energy and the thermodynamics on apparent horizon in cosmology have been broadly investigated in recent several years. In order to maintain the continuity equation of the total matter in the universe, a new interacting dark energy in the framework of Brans-Dicke theory is proposed. Considering this new interacting dark energy, an equilibrium thermodynamics in Brans-Dicke theory is constructed successfully. Moreover, this new interacting dark energy can be regarded as arising from the “Holographic Dark Energy” models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号