首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
地震临界区域尺度的界定对于地震前兆研究有着重要意义。通过加卸载响应比(LURR)及震前矩张量加速释放(AMR)两种模型对地震临界区域尺度进行了分析。采用不同半径区域内地震事件的Benioff应变分别计算LURR和AMR时间序列,震前引起时间序列异常变化最明显的半径尺度所定义的区域就是最佳地震临界区域。华北地区M>5震例研究结果显示两种模型所得到的最佳地震临界区域具有明显的一致性,最佳临界区域半径与主震震级之间统计的线性关系斜率约为0.34~0.36。研究结果表明通过不同预测模型可以较为定量的评价地震临界区域尺度,从而为地震预测研究提供依据。  相似文献   

2.
— The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AMR. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.  相似文献   

3.
We investigate spatio-temporal properties of earthquake patterns in the San Jacinto fault zone (SJFZ), California, between Cajon Pass and the Superstition Hill Fault, using a long record of simulated seismicity constrained by available seismological and geological data. The model provides an effective realization of a large segmented strike-slip fault zone in a 3D elastic half-space, with heterogeneous distribution of static friction chosen to represent several clear step-overs at the surface. The simulated synthetic catalog reproduces well the basic statistical features of the instrumental seismicity recorded at the SJFZ area since 1981. The model also produces events larger than those included in the short instrumental record, consistent with paleo-earthquakes documented at sites along the SJFZ for the last 1,400 years. The general agreement between the synthetic and observed data allows us to address with the long-simulated seismicity questions related to large earthquakes and expected seismic hazard. The interaction between m ≥ 7 events on different sections of the SJFZ is found to be close to random. The hazard associated with m ≥ 7 events on the SJFZ increases significantly if the long record of simulated seismicity is taken into account. The model simulations indicate that the recent increased number of observed intermediate SJFZ earthquakes is a robust statistical feature heralding the occurrence of m ≥ 7 earthquakes. The hypocenters of the m ≥ 5 events in the simulation results move progressively towards the hypocenter of the upcoming m ≥ 7 earthquake.  相似文献   

4.
Because seismic activity within mid-continents is usually much lower than that along plate boundary zones, even small earthquakes can cause widespread concerns, especially when these events occur in the source regions of previous large earthquakes. However, these small earthquakes may be just aftershocks that continue for decades or even longer. The recent seismicity in the Tangshan region in North China is likely aftershocks of the 1976 Great Tangshan earthquake. The current earthquake sequence in the New Madrid seismic zone in central United States, which includes a cluster of M ~ 7.0 events in 1811–1812 and a number of similar events in the past millennium, is believed to result from recent fault reactivation that releases pre-stored strain energy in the crust. If so, this earthquake sequence is similar to aftershocks in that the rates of energy release should decay with time and the sequence of earthquakes will eventually end. We use simple physical analysis and numerical simulations to show that the current sequence of large earthquakes in the New Madrid fault zone is likely ending or has ended. Recognizing that mid-continental earthquakes have long aftershock sequences and complex spatiotemporal occurrences are critical to improve hazard assessments.  相似文献   

5.
We systematically investigated precursory seismic patterns using the pattern informatics (PI) method and suggest an operable procedure for making PI maps for all seasons, in the context of earthquake forecasting. We examined the PI patterns before several inland earthquakes with magnitudes larger than 6, which occurred between 2001 and 2010 in Taiwan. We fixed a cutoff magnitude and a change interval, which is the time span used to calculate the seismicity change. Our results show that locations with high PI anomalies are typically associated with large earthquakes when the cutoff magnitude is 3.2 and the change interval is 4 years. Therefore, the PI method can be utilized as a routine forecasting tool with regular updates, such performing the PI calculation every season. We also conducted random tests, the results of which indicate a significant difference between large events and random, hypothetical events.  相似文献   

6.
Earthquakes trigger other earthquakes and build up clusters in space and time that in turn create a bias in seismic catalogues. Therefore, declustering is considered as a prerequisite in seismic studies, particularly for probabilistic seismic hazard analysis, not only to eliminate the bias but also to decouple mainshocks and triggered events. However, a declustering process is not a straightforward task due to the complex nature of earthquake phenomena. There exist several declustering methods that mostly employ subjective rules to distinguish between background seismicity and offsprings. Eventually, the final declustered catalogues usually deviate significantly according to the employed method. This issue is raising some concerns, such as how to select the most suitable declustering algorithm, or to assess how this selection affects seismic hazard assessment. In consequence, the main goal of this paper is to quantify the sensitivity of seismic hazard assessments to different declustering techniques. Accordingly, the recently compiled Turkish earthquake catalogue was declustered by making use of three declustering algorithms. A total of six declustered catalogues, two catalogues per method, one by implementing the default input parameters, and one by altering the free input parameters of the employed methods, were produced. The clusters of selected earthquakes were studied in terms of the spatial–temporal distribution of earthquake sequences. A sensitivity analysis was conducted through the major steps of seismic hazard assessment for Istanbul metropolitan city. The seismicity of Istanbul and surroundings was modeled on the basis of four areal source zones. Comparative studies showed that, while the selected declustering algorithm did not significantly affect the completeness periods of moderate to large size earthquakes, it considerably altered those of small magnitude events (e.g. Mw 4.3–5.2) and consequently the recurrence parameters of the source zones. Depending on the declustering algorithm and input parameters, the activity rate was observed to vary up to a factor of two. The differences in the declustered catalogues obtained from different declustering approaches resulted in considerable variations in seismic hazard estimations. The hazard maps at return periods of 475 and 2475 years indicated that peak ground acceleration values may vary up to 20% at some locations. Moreover, the differences in 5% damped elastic spectral accelerations at T = 0.2 for the return periods of 475 and 2475 years are about 18 and 12%, respectively, on the southern shores of Istanbul where the highest hazard levels are observed.  相似文献   

7.
This paper discussed the random distribution of the loading and unloading response ratio(LURR) of different definitions(Y_1~Y_5)using the assumptions that the earthquakes occurfollowing the Poisson process and their magnitudes obey the Gutenberg-Richter law.Theresults show that Y_1~Y_5 are quite stable or concentrated when the expected number of eventsin the calculation time window is relatively large(>40);but when this occurrence ratebecomes very small,Y_2~Y_5 become quite variable or unstable.That is to say,a high value ofthe LURR can be produced not only from seismicity before a large earthquake,but also from arandom sequence of earthquakes that obeys a Poisson process when the expected number ofevents in the window is too small.To check the influence of randomness in the catalogue tothe LURR,the random distribution of the LURR under Poisson models has been calculated bysimulation.90%,95% and 99% confidence ranges of Y_1 and Y_3 are given in this paper,which is helpful to quantify the random influe  相似文献   

8.
Seismic hazard analysis requires knowledge of the recurrence rates of large magnitude earthquakes that drive the hazard at low probabilities of interest for seismic design. Earthquake recurrence is usually determined through studies of the historic earthquake catalogue for a given region. Reliable historic catalogues generally span time periods of 100–200 years in North America, while large magnitude events (M?≥?7) have recurrence rates on the order of hundreds or thousands of years in many areas, resulting in large uncertainty in recurrence rates for large events. Using Monte Carlo techniques and assuming typical recurrence parameters, we simulate earthquake catalogues that span long periods of time. We then split these catalogues into smaller catalogues spanning 100–200 years that mimic the length of historic catalogues. For each of these simulated “historic” catalogues, a recurrence rate for large magnitude events is determined. By comparing recurrence rates from one historic-length catalogue to another, we quantify the uncertainty associated with determining recurrence rates from short historic catalogues. The use of simulations to explore the uncertainty (rather than analytical solutions) allows us flexibility to consider issues such as the relative contributions of aleatory versus epistemic uncertainty, and the influence of fitting method, as well as lending insight into extreme-event statistics. The uncertainty in recurrence rates of large (M?>?7) events is about a factor of two in regions of high seismicity, due to the shortness of historic catalogues. This uncertainty increases greatly with decreasing seismic activity. Uncertainty is dependent on the length of the catalogue as well as the fitting method used (least squares vs. maximum likelihood). Examination of 90th percentile recurrence rates reveals that epistemic uncertainty in the true parameters may cause recurrence rates determined from historic catalogues to be uncertain by a factor greater than 50.  相似文献   

9.
There are seven strong earthquakes with M ≥ 6.5 that occurred in southern California during the period from 1980 to 2005. In this paper, these earthquakes were studied by the LURR (Load/Unload Response Ratio) method and the State Vector method to detect if there are anomalies before them. The results show that LURR anomalies appeared before 6 earthquakes out of 7 and State Vector anomalies appeared before all 7 earthquakes. For the LURR method, the interval between maximum LURR value and the forthcoming earthquake is 1 to 19 months, and the dominant mean interval is about 10.7 months. For the State Vector method, the interval between the maximum modulus of increment State Vector and the forthcoming earthquake is from 3 to 27 months, but the dominant mean interval between the occurrence time of the maximum State Vector anomaly and the forthcoming earthquake is about 4.7 months. The results also show that the minimum valid space window scale for the LURR and the State Vector is a circle with a radius of 100 km and a square of 3°×3°, respectively. These results imply that the State Vector method is more effective for short-term earthquake prediction than the LURR method, however the LURR method is more effective for location prediction than the State Vector method.  相似文献   

10.
Pattern Informatics (PI) technique can be used to detect precursory seismic activation or quiescence and make an earthquake forecast. Here we apply the PI method for optimal forecasting of large earthquakes in Japan, using the data catalogue maintained by the Japan Meteorological Agency. The PI method is tested to forecast large (magnitude m ≥ 5) earthquakes spanning the time period 1995–2004 in the Kobe region. Visual inspection and statistical testing show that the optimized PI method has forecasting skill, relative to the seismic intensity data often used as a standard null hypothesis. Moreover, we find in a retrospective forecast that the 1995 Kobe earthquake (m = 7.2) falls in a seismically anomalous area. Another approach to test the forecasting algorithm is to create a future potential map for large (m ≥ 5) earthquake events. This is illustrated using the Kobe and Tokyo regions for the forecast period 2000–2009. Based on the resulting Kobe map we point out several forecasted areas: The epicentral area of the 1995 Kobe earthquake, the Wakayama area, the Mie area, and the Aichi area. The Tokyo forecast map was created prior to the occurrence of the Oct. 23, 2004 Niigata earthquake (m = 6.8) and the principal aftershocks with 5.0 ≤ m. We find that these events were close to in a forecasted area on the Tokyo map. The PI technique for regional seismicity observation substantiates an example showing considerable promise as an intermediate-term earthquake forecasting in Japan.  相似文献   

11.
Immediately following the M S7.0 Lushan earthquake on April 20, 2013, using high-pass and low-pass filtering on the digital seismic stations in the Shanxi Province, located about 870–1,452 km from the earthquake epicenter, we detected some earthquakes at a time corresponding to the first arrival of surface waves in high-pass filtering waveform. The earthquakes were especially noticed at stations in Youyu (YUY), Shanzizao (SZZ), Shanghuangzhuang (SHZ), and Zhenchuan (ZCH), which are located in a volcanic region in the Shanxi Province,but they were not listed in the Shanxi seismic observation report. These earthquakes occurred 4–50 min after the passage of the maximum amplitude Rayleigh wave, and the periods of the surface waves were mainly between 15 and 20 s following. The Coulomb stresses caused by the Rayleigh waves that acted on the four stations was about 0.001 MPa, which is a little lower than the threshold value of dynamic triggering, therefore, we may conclude that the Datong volcanic region is more sensitive to the Coulomb stress change. To verify, if the similar phenomena are widespread, we used the same filtering to observe contrastively continuous waveform data before, and 5 h after, the M S7.0 Lushan earthquake and M S9.0 Tohoku earthquake in 2011. The results show that the similar phenomena occur before the earthquakes, but the seismicity rates after the earthquakes are remarkably increased. Since these weak earthquakes are quite small, it is hard to get clear phase arrival time from three or more stations to locate them. In addition, the travel time differences between P waves and S waves (S–P) are all less than 4 s, that means the events should occur in 34 km around the stations in the volcanic region. The stress of initial dynamic triggering of the M S9.0 Tohoku earthquake was about 0.09 MPa, which is much higher than the threshold value of dynamic triggering stress. The earthquakes after the M S9.0 Tohoku earthquake are related to dynamic triggering stress, but the events before the earthquake cannot be linked to seismic events, but may be related to the background seismicity or from other kinds of local sources, such as anthropogenic sources (i.e., explosions). Using two teleseismic filtering, the small background earthquakes in the Datong volcanic region occur frequently, thus we postulate that previous catalog does not apply bandpass filter to pick out the weak earthquakes, and some of the observed weak events were not triggered by changes in the dynamic stress field.  相似文献   

12.
A reliable and homogenized earthquake catalogue is essential for seismic hazard assessment in any area. This article describes the compilation and processing of an updated earthquake catalogue for Pakistan. The earthquake catalogue compiled in this study for the region (quadrangle bounded by the geographical limits 40–83° N and 20–40° E) includes 36,563 earthquake events, which are reported as 4.0–8.3 moment magnitude (MW) and span from 25 AD to 2016. Relationships are developed between the moment magnitude and body, and surface wave magnitude scales to unify the catalogue in terms of magnitude MW. The catalogue includes earthquakes from Pakistan and neighbouring countries to minimize the effects of geopolitical boundaries in seismic hazard assessment studies. Earthquakes reported by local and international agencies as well as individual catalogues are included. The proposed catalogue is further used to obtain magnitude of completeness after removal of dependent events by using four different algorithms. Finally, seismicity parameters of the seismic sources are reported, and recommendations are made for seismic hazard assessment studies in Pakistan.  相似文献   

13.
In recent years, a large number of quarry blasts have been detonated in the eastern Black Sea region. When these blasts are recorded by seismic stations, they contaminate the regional earthquake catalog. It is necessary to discriminate quarry blast records from the earthquake catalogs in order to determine the real seismicity of the region. Earthquakes and quarry blasts can be separated through different methods. These methods should be applied concurrently in order to safely distinguish these events. In this study, we discriminated quarry blasts from earthquakes in the eastern Black Sea region of Turkey. We used 186 seismic events recorded by the Karadeniz Technical University and Bogaziçi University Kandilli Observatory Earthquake Research Institute stations which are Trabzon, Espiye, Pazar, Borçka, Ayd?ntepe, and Gümü?hane between years of 2002 and 2010. For the discrimination of quarry blasts from earthquakes, we used both, statistical methods (calculation of the maximum ratio of S to P waves (S/P), complexity (C)) and spectral methods (spectrogram calculation). These methods included measuring the maximum amplitude S/P, C, spectral ratio, and time-frequency analysis. We especially relied on two-dimensional time-frequency analysis methods to discriminate quarry blasts from earthquakes in Turkey. As a result of this study, 68 % of the examined seismic events were determined to be quarry blasts and 32 % to be earthquakes. The earthquakes occurring on land are related to small faults and the blasts are concentrated in large quarries. Nearly 40 % of the earthquakes occurred in the Black Sea, most of them are related to the Black Sea thrust belt, where the largest earthquake was observed in the time period studied. The areas with the largest earthquake potential in the eastern Black Sea region are in the sea.  相似文献   

14.
A long-range correlation between earthquakes is indicated by some phenomena precursory to strong earthquakes. Most of the major earthquakes show prior seismic activity that in hindsight seems anomalous. The features include changes in regional activity rate and changes in the pattern of small earthquakes, including alignments on unmapped linear features near the (future) main shock. It has long been suggested that large earthquakes are preceded by observable variations in regional seismicity. Studies on seismic precursors preceding large to great earthquakes with M ≥ 7.5 were carried out in the northeast India region bounded by the area 20°–32°N and 88°–100°E using the earthquake database from 1853 to 1988. It is observed that all earthquakes of M ≥ 7.5, including the two great earthquakes of 1897 and 1950, were preceded by abnormally low anomalous seismicity phases some 11–27 years prior to their occurrence. On the other hand, precursory time periods ranged from 440 to 1,768 days for main shocks with M 5.6–6.5 for the period from 1963 to 1988. Furthermore, the 6 August, 1988 main shock of M 7.5 in the Arakan Yoma fold belt was preceded by well-defined patterns of anomalous seismicity that occurred during 1963–1964, about 25.2 years prior to its occurrence. The pattern of anomalous seismicity in the form of earthquake swarms preceding major earthquakes in the northeast India region can be regarded as one of the potential seismic precursors. Database constraints have been the main barrier to searching for this precursor preceding smaller earthquakes, which otherwise might have provided additional information on its existence. The entire exercise indicates that anomalous seismicity preceding major shocks is a common seismic pattern for the northeast India region, and can be employed for long-range earthquake prediction when better quality seismological data sets covering a wide range of magnitudes are available. Anomalous seismic activity is distinguished by a much higher annual frequency of earthquake occurrence than in the preceding normal and the following gap episodes.  相似文献   

15.
-- The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.  相似文献   

16.
The Canterbury earthquake sequence beginning with the 2010 M W 7.2 Darfield earthquake is one of the most notable and well-recorded crustal earthquake sequences in a low-strain-rate region worldwide and as such provides a unique opportunity to better understand earthquake source physics and ground motion generation in such a tectonic setting. Ground motions during this sequence ranged up to extreme values of 2.2 g, recorded during the February 2011 M W 6.2 event beneath the city of Christchurch. A better understanding of the seismic source signature of this sequence, in particular the stress release and its scaling with earthquake size, is crucial for future ground motion prediction and hazard assessment in Canterbury, but also of high interest for other low-to-moderate seismicity regions where high-quality records of large earthquakes are lacking. Here we present a source parameter study of more than 200 events of the Canterbury sequence, covering the magnitude range M W 3–7.2. Source spectra were derived using a generalized spectral inversion technique and found to be well characterized by the ω ?2 source model. We find that stress drops range between 1 and 20 MPa with a median value of 5 MPa, which is a factor of 5 larger than the median stress drop previously estimated with the same method for crustal earthquakes in much more seismically active Japan. Stress drop scaling with earthquake size is nearly self-similar, and we identify lateral variations throughout Canterbury, in particular high stress drops at the fault edges of the two major events, the M W 7.2 Darfield and M W 6.2 Christchurch earthquakes.  相似文献   

17.
The evolution laws of LURR (Loading–Unloading Response Ratio) before strong earthquakes, especially the peak point of LURR, are described in this paper. The results of four methods (experimental, numerical simulation, seismic data analysis and with damage mechanics analysis) lead to a consistent conclusion—the evolution laws of LURR before strong earthquakes are that, at the early stage of the seismic cycle, LURR will fluctuate around 1 and in the late stage, it rises swiftly and to its peak point. At some time after this peak point, a catastrophic event or events occur. These do not occur at the peak point, but lag behind. The lag time which is denoted by T 2 depends on the magnitude M of the upcoming earthquake among other factors. In order to consider the influence of geophysical parameters in a specific region such as $ \dot{\gamma }, $ E a and J (t), where $ \dot{\gamma } $ is the shear strain rate of tectonic loading in situ, E a is the sum of radiated energy of all earthquake occurring in a specific region measured during a long time duration (110 years in this paper) divided by the area of the region and the time duration, and J (t) is a parameter denoting the LURR anomaly area weighted with Y (the value of LURR) and represents the expanse and degree of the seismogenic zone. The dimensional analysis method has been used to reveal the relation between M, T 2 and other parameters in situ for more reliable earthquake prediction.  相似文献   

18.
The parametric catalogues of historical earthquakes in East Siberia contain large data gaps. Among these is a 15-year period in the late nineteenth century (1886–1901). This period was not covered by any of macroseismic catalogues known; neither acquisition nor systematization of macroseismic data was ever performed for that purpose. However, 15 years is a rather long period in which large seismic events may have occurred. The present paper deals with the previously unknown earthquake that occurred on November 13, 1898. The primary macroseismic data were taken from regional periodicals. On the strength of all the evidence obtained, the earthquake epicenter is localized in Western Transbaikalia, near the western end of the Malkhansky Range; the magnitude is estimated at M?=?5.9. The information about the large earthquake of November 13, 1898 provides filling significant gaps in knowledge for seismicity in Western Transbaikalia and a better understanding of seismic potential of faults therein. The obtained results show that the periods of seismic quiescence in catalogues may be related to insufficient information on seismicity of Eastern Siberia in the historical past rather than to the absence of large earthquakes.  相似文献   

19.
Universality of the Seismic Moment-frequency Relation   总被引:1,自引:0,他引:1  
—We analyze the seismic moment-frequency relation in various depth ranges and for different seismic regions, using Flinn-Engdahl's regionalization of global seismicity. Three earthquake lists of centroid-moment tensor data have been used the Harvard catalog, the USGS catalog, and the Huang et al. (1997) catalog of deep earthquakes. The results confirm the universality of the β-values and the maximum moment for shallow earthquakes in continental regions, as well as at and near continental boundaries. Moreover, we show that although fluctuations in earthquake size distribution increase with depth, the β-values for earthquakes in the depth range of 0–500 km exhibit no statistically significant regional variations. The regional variations are significant only for deep events near the 660 km boundary. For declustered shallow earthquake catalogs and deeper events, we show that the worldwide β-values have the same value of 0.60 ± 0.02. This finding suggests that the β-value is a universal constant. We investigate the statistical correlations between the numbers of seismic events in different depth ranges and the correlation of the tectonic deformation rate and seismic activity (the number of earthquakes above a certain threshold level per year). The high level of these correlations suggests that seismic activity indicates tectonic deformation rate in subduction zones. Combined with the universality of the β-value, this finding implies little if any variation in maximum earthquake seismic moment among various subduction zones. If we assume that earthquakes of maximum size are similar in different depth ranges and the seismic efficiency coefficient, χ, is close to 100% for shallow seismicity, then we can estimate χ for deeper earthquakes for intermediate earthquakes χ≈ 5%, and χ≈ 1% for deep events. These results may lead to new theoretical understanding of the earthquake process and better estimates of seismic hazard.  相似文献   

20.
K-means cluster analysis and seismicity partitioning for Pakistan   总被引:2,自引:2,他引:0  
Pakistan and the western Himalaya is a region of high seismic activity located at the triple junction between the Arabian, Eurasian and Indian plates. Four devastating earthquakes have resulted in significant numbers of fatalities in Pakistan and the surrounding region in the past century (Quetta, 1935; Makran, 1945; Pattan, 1974 and the recent 2005 Kashmir earthquake). It is therefore necessary to develop an understanding of the spatial distribution of seismicity and the potential seismogenic sources across the region. This forms an important basis for the calculation of seismic hazard; a crucial input in seismic design codes needed to begin to effectively mitigate the high earthquake risk in Pakistan. The development of seismogenic source zones for seismic hazard analysis is driven by both geological and seismotectonic inputs. Despite the many developments in seismic hazard in recent decades, the manner in which seismotectonic information feeds the definition of the seismic source can, in many parts of the world including Pakistan and the surrounding regions, remain a subjective process driven primarily by expert judgment. Whilst much research is ongoing to map and characterise active faults in Pakistan, knowledge of the seismogenic properties of the active faults is still incomplete in much of the region. Consequently, seismicity, both historical and instrumental, remains a primary guide to the seismogenic sources of Pakistan. This study utilises a cluster analysis approach for the purposes of identifying spatial differences in seismicity, which can be utilised to form a basis for delineating seismogenic source regions. An effort is made to examine seismicity partitioning for Pakistan with respect to earthquake database, seismic cluster analysis and seismic partitions in a seismic hazard context. A magnitude homogenous earthquake catalogue has been compiled using various available earthquake data. The earthquake catalogue covers a time span from 1930 to 2007 and an area from 23.00° to 39.00°N and 59.00° to 80.00°E. A threshold magnitude of 5.2 is considered for K-means cluster analysis. The current study uses the traditional metrics of cluster quality, in addition to a seismic hazard contextual metric to attempt to constrain the preferred number of clusters found in the data. The spatial distribution of earthquakes from the catalogue was used to define the seismic clusters for Pakistan, which can be used further in the process of defining seismogenic sources and corresponding earthquake recurrence models for estimates of seismic hazard and risk in Pakistan. Consideration of the different approaches to cluster validation in a seismic hazard context suggests that Pakistan may be divided into K?=?19 seismic clusters, including some portions of the neighbouring countries of Afghanistan, Tajikistan and India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号