首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 674 毫秒
1.
Various cosmological models in frames of F(T) gravity are considered. The general scheme of constructing effective dark energy models with various evolution is presented. It is showed that these models in principle are compatible with ΛCDM model. The dynamics of universe governed by F(T) gravity can mimics ΛCDM evolution in past but declines from it in a future. We also construct some dark energy models with the “real” (non-effective) equation-of-state parameter w such that w≤?1. It is showed that in F(T) gravity the Universe filled phantom field not necessarily ends its existence in singularity. There are two possible mechanisms permitting the final singularity. Firstly due to the nonlinear dependence between energy density and H 2 (H is the Hubble parameter) the universe can expands not so fast as in the general relativity and in fact Little Rip regime take place instead Big Rip. We also considered the models with possible bounce in future. In these models the universe expansion can mimics the dynamics with future singularity but due to bounce in future universe begin contracts.  相似文献   

2.
We introduce a four-dimensional dilaton-Brans-Dicke cosmological scenario corresponding to multiverse filled with dark energy or phantom energy having a positive cosmological constant and containing infinite singularities with eternally Big Rip. Many interesting consequences are revealed and discussed in some details.  相似文献   

3.
We have studied flat FRW cosmological model of the universe filled with an ideal fluid with quadratic equation of state (EOS) with time dependent parameters \(\omega(t)\) and \(\varLambda(t)\). We found the equation of the state parameter \(\omega(t)\) is less than ?1 and also found Little Rip (LR) and Pseudo Rip (PR) behavior for dark energy.  相似文献   

4.
5.
The Nine-Year WMAP results combined with other cosmological data seem to indicate an enhanced favor for the phantom regime, comparing to previous analyses. This behavior, unless reversed by future observational data, suggests to consider the phantom regime more thoroughly. In this work we provide three modified gravitational scenarios in which we obtain the phantom realization without the appearance of ghosts degrees of freedom, which plague the naive approaches on the subject, namely the Brans-Dicke type gravity, the scalar-Einstein-Gauss-Bonnet gravity, and the F(R) gravity, which are moreover free of perturbative instabilities. The phantom regime seems to favor the gravitational modification instead of the universe-content alteration.  相似文献   

6.
In this work, we first obtain the hydrostatic equilibrium equation in dilaton gravity. Then, we examine some of the structural characteristics of a strange quark star in dilaton gravity in the context of Einstein gravity. We show that the variations of dilaton parameter do not affect the maximum mass, but variations in the cosmological constant lead to changes in the structural characteristics of the quark star. We investigate the stability of strange quark stars by applying the MIT bag model with dilaton gravity. We also provide limiting values for the dilaton field parameter and cosmological constant. We also study the effects of dilaton gravity on the other properties of a quark star such as the mean density and gravitational redshift.We conclude that the last reported value for the cosmological constant does not affect the maximum mass of a strange quark star.  相似文献   

7.
On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it is found that most of these universes contain a dark energy like fluid which confirms the present scenario of the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology when the cosmological constant is not in the picture. In one particular model it is found that the universe may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.  相似文献   

8.
An alternative to dark energy as an explanation for the present phase of accelerated expansion of the Universe is that the Friedmann equation is modified, e.g. by extra dimensional gravity, on large scales. We explore a natural parametrization of a general modified Friedmann equation, and find that the present supernova Type Ia and cosmic microwave background data prefer a correction of the form 1/ H to the Friedmann equation over a cosmological constant.  相似文献   

9.
In this paper, we study a cosmological application of the new agegraphic dark energy density in the f(R) gravity framework. We employ the new agegraphic model of dark energy to obtain the equation of state for the new agegraphic energy density in a spatially flat universe. Our calculations show, taking n<0, that it is possible to have w Λ crossing −1. This implies that one can generate a phantom-like equation of state from a new agegraphic dark energy model in a flat universe in the modified gravity cosmology framework. Also, we develop a reconstruction scheme for the modified gravity with f(R) action.  相似文献   

10.
11.
Although it is well known that any consideration of the variations of fundamental constants should be restricted to their dimensionless combinations, the literature on variations of the gravitational constant G is entirely dimensionfull. To illustrate applications of this to cosmology, we explicitly give a dimensionless version of the parameters of the standard cosmological model, and describe the physics of both Big Bang Nucleosynthesis and recombination in a dimensionless manner. Rigorously determining how to talk about the model in a way which avoids physical dimensions is a requirement for proceeding with a calculation to constrain time-varying fundamental constants. The issue that appears to have been missed in many studies is that in cosmology the strength of gravity is bound up in the cosmological equations, and the epoch at which we live is a crucial part of the model. We argue that it is useful to consider the hypothetical situation of communicating with another civilization (with entirely different units), comparing only dimensionless constants, in order to decide if we live in a Universe governed by precisely the same physical laws. In this thought experiment, we would also have to compare epochs, which can be defined by giving the value of any one of the evolving cosmological parameters. By setting things up carefully in this way one can avoid inconsistent results when considering variable constants, caused by effectively fixing more than one parameter today. We show examples of this effect by considering microwave background anisotropies, being careful to maintain dimensionlessness throughout. We present Fisher matrix calculations to estimate how well the fine structure constants for electromagnetism and gravity can be determined with future microwave background experiments. We highlight how one can be misled by simply adding G to the usual cosmological parameter set.  相似文献   

12.
The new class of cosmological model of the early Universe is considered with f(R,T) modified theories of gravity (Harko et al. in Phys. Rev. D 84:024020, 2011). The exact solutions to the corresponding field equations are obtained in quadrature form. The cosmological parameters have been discussed in detail. We have also discussed the well-known astrophysical phenomena, namely the Hubble parameter H(z), luminosity distance (d L ) and distance modulus μ(z) with redshift.  相似文献   

13.
A flat FLRW (Friedmann–Lemaitre–Robertson–Walker) cosmological model with perfect fluid comprising of variable Chaplygin gas (VCG) has been studied in the context of f(R, T) gravity with particle creation. The solutions of the modified field equations are obtained through three different considered form of scale factors. The effective pressure is negative throughout the evolution of universe, which leads to accelerated expansion of the universe. In addition to that we have also discussed the importance of particle creation pressure on the cosmological parameters, energy conditions and state-finder diagnostic parameters. It is noticed that the time evolution of source function yields almost constant particle production at late times.  相似文献   

14.
We report results on the construction of cosmological braneworld models in the context of the Einstein-Gauss-Bonnet gravity, which include the leading correction to the Einstein-Hilbert action suggested by superstring theory. We obtain and study the equations governing the dynamics of the standard cosmological models. We find that they can be written in the same form as in the case of the Randall-Sundrum model but with time-varying four-dimensional gravitational and cosmological constants. Finally, we discuss the cosmological evolution predicted by these models and their compatibility with observational data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We investigate the conditions under which general scalar-tensor gravity theories relax towards General Relativity. We extend the work of Damour and Nordtvedt [2] by studying the effects of the inclusion of a cosmological potential term. When the universe is either radiation dominated or vacuum, we find that Einstein's gravity is indeed a cosmological attractor and, also, that the universe exhibits inflationary expansion. This latter feature provides another striking argument in favour of the inflationary paradigm, which in the present setting arises without the intervention of the usual inflaton field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
We have studied the evolution of cosmological parameters by considering exponential harmonic field with collisional matter. A comparison has been made with the behavior of these parameters in the presence of ordinary matter and the model \(\Lambda CDM\). We have also compared the evolution of these parameters with the ones obtained in the modified gravity f(R) and f(RT) theory case. The results are in line with those of the modified gravity so that the harmonic exponential field can be used to explain why the Universe has gone from the deceleration phase to the acceleration phase.  相似文献   

17.
It is shown that the acceleration of the universe can be understood by considering a f(T) gravity models. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. For these f(T) gravity models, a variant of the accelerating cosmology reconstruction program is developed. We consider spatially homogenous and anisotropic Bianchi type I universe in the context of f(T) gravity. The de Sitter, power-law and general exponential solutions are assumed for the scale factor in each spatial direction and the corresponding cosmological models are reconstructed. We reconstruct f(T) theories from two different holographic dark energy models in different time durations. For the holographic dark energy model, the dark energy dominated era with new setting up is chosen for reconstruction, and the Ricci dark energy model, radiation, matter and dark energy dominated time durations are all investigated. Finally we have obtained a modified gravity action consistent with the holographic dark energy scenario.  相似文献   

18.
As a generalization of the Brans-Dicke type scalar-tensor gravity in a braneworld context, we study cosmological phase space of a braneworld model with induced gravity in the presence of a scalar field on the brane. We consider a quintom field minimally or non-minimally coupled to induced gravity on the warped DGP brane and we present a detailed analysis of the critical points, their stability and late-time cosmological viability of the solutions within a phase space approach. In particular, de Sitter solutions, different from the famous self-accelerated branch of the DGP model are found and the phase-space analysis for checking their attractor properties is performed. We analyze also the possibility of crossing of the phantom divide by the effective equation of state parameter of the model. We also focus on the classical stability of the solutions in ww′ phase plane.  相似文献   

19.
Multiple ΛCDM cosmology is studied in a way that is formally a classical analog of the Casimir effect. Such cosmology corresponds to a time-dependent dark fluid model or, alternatively, to its scalar field presentation, and it motivated by the string landscape picture. The future evolution of the several dark energy models constructed within the scheme is carefully investigated. It turns out to be almost always possible to choose the parameters in the models so that they match the most recent and accurate astronomical values. To this end, several universes are presented which mimic (multiple) ΛCDM cosmology but exhibit Little Rip, asymptotically de Sitter, or Type I, II, III, and IV finite-time singularity behavior in the far future, with disintegration of all bound objects in the cases of Big Rip, Little Rip and Pseudo-Rip cosmologies.  相似文献   

20.
The notion that microparsec-scale black holes can be used to probe gigaparsec-scale physics may seem counterintuitive, at first. Yet, the gravitational observatory LISA will detect cosmologically-distant coalescing pairs of massive black holes, accurately measure their luminosity distance and help identify an electromagnetic counterpart or a host galaxy. A wide variety of new black hole studies and a gravitational version of Hubble’s diagram become possible, if host galaxies are successfully identified. Furthermore, if dark energy is a manifestation of large-scale modified gravity, deviations from general relativistic expectations could become apparent in a gravitational signal propagated over cosmological scales, especially when compared to the electromagnetic signal from a same source. Finally, since inspirals of white dwarfs into massive black holes at cosmological distances may permit pre-merger localizations, we suggest that careful monitoring of these events and any associated electromagnetic counterpart could lead to high-precision cosmological measurements with LISA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号